Homework Problems for Week 4-Solution

1. Consider the equation $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ on $(-\infty, \infty)$
a) Verify that $y_{1}=\mathrm{x}^{3}$ and $y_{2}=|\mathrm{x}|^{3}$ are linearly independent solutions of the equation on the interval $(-\infty, \infty)$.
Solution: First check that $y_{1}=\mathrm{x}^{3}$ is a solution:

$$
\begin{gathered}
y_{1}=\mathrm{x}^{3} \\
\left(y_{1}\right)^{\prime}=3 \mathrm{x}^{2} \\
\left(y_{1}\right)^{\prime \prime}=3 \cdot 2 \cdot \mathrm{x}=6 \mathrm{x} \\
\mathrm{x}^{2}\left(y_{1}\right)^{\prime \prime}-4 x\left(y_{1}\right)^{\prime}+6 y_{1}=0 \\
\mathrm{x}^{2} \cdot 6 x-4 x \cdot 3 x^{2}+6 x^{3}=0
\end{gathered}
$$

So, obviously $y_{2}=x^{3}$ solves the equation.

$$
\begin{aligned}
& y_{2}=|\mathrm{x}|^{3} \leftrightarrow\left[\begin{array}{l}
\mathrm{x}^{3}, \text { if } x \geq 0 \\
-\mathrm{x}^{3}, \text { if } x<0
\end{array}\right. \\
& \left(y_{2}\right)^{\prime}=\left[\begin{array}{c}
3 \mathrm{x}^{2}, \text { if } x>0 \\
0, \text { if } x=0 \\
-3 \mathrm{x}^{2}, \text { if } x<0
\end{array}\right. \\
& \left(y_{2}\right)^{\prime \prime}=\left[\begin{array}{c}
6 \mathrm{x}, \text { if } x>0 \\
0 \text {, if } x=0 \\
-6 \mathrm{x} \text {, if } x<0
\end{array}\right.
\end{aligned}
$$

So, obviously $y_{2}=|\mathrm{x}|^{3}$ solves the equation too.

$$
\begin{gathered}
C_{1} y_{1}+C_{2} y_{2}=0 \\
{\left[\begin{array}{c}
C_{1} x^{3}+C_{2} x^{3}=0 \leftrightarrow x^{2}\left(C_{1}+C_{2}\right)=0 \leftrightarrow C_{1}=-C_{2} \\
C_{1} x^{3}-C_{2} x^{3}=0 \leftrightarrow x^{2}\left(C_{1}-C_{2}\right)=0 \leftrightarrow C_{1}=C_{2} \\
\\
\text { then } C_{1}=C_{2}=0
\end{array}\right.}
\end{gathered}
$$

So y_{1}, y_{2} are linearly independent.
b) Show that $W\left(y_{1}, y_{2}\right)=0$ for every real x . Does this result violate theorem 3.2.4? Explain.

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{3} & \pm x^{3} \\
3 x^{2} & \pm 3 x^{2}
\end{array}\right|= \pm 3 x^{5}-\left(\pm 3 x^{5}\right) \equiv 0
$$

But this result doesn't violate the theorem, because

$$
P(x)=-\frac{4}{x}, \text { and } Q(x)=\frac{6}{x^{2}} \text { are not continuous on }((-\infty, \infty)
$$

c) Verify that $Y_{1}=\mathrm{x}^{2}$ and $Y_{2}=x^{3}$ are linearly independent solutions of the equation on the interval $(-\infty, \infty)$.

$$
\begin{aligned}
W\left(Y_{1}, Y_{2}\right)= & \left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|=x^{4} \neq 0, \text { if } x \neq 0 \\
& \text { so } Y_{1}, Y_{2} \text { are linearly independent }
\end{aligned}
$$

d) Both combinations $C_{1} y_{1}+C_{2} y_{2}$ and $B_{1} Y_{1}+B_{2} Y_{2}$ are solutions of the given equation. (Why? Explain.)

$$
C_{1} y_{1}+C_{2} y_{2} \text { and } B_{1} Y_{1}+B_{2} Y_{2}
$$

are solutions by Theorem 3.2.2 (Principle of Superposition)
Discuss whether one, both or neither of these combinations is a general solution of the equation on $(-\infty, \infty)$.
Neither of these combinations is a general solution of the equation on $(-\infty, \infty)$.
2. Find a second order linear equation with constant coefficients that has a solution $y=e^{x} \cos 3 x$.

$$
\begin{gathered}
y=e^{x} \cos 3 x \text { means that C.P. has the complex roots } \\
\qquad r_{1,2}=1 \pm 3 i
\end{gathered}
$$

And can be factored as

$$
\begin{gathered}
(r-(1+3 i)) \cdot(r-(1-3 i))=0 \\
r^{2}-2 r+10=0
\end{gathered}
$$

So, the corresponding diff.equation is

$$
y^{\prime \prime}-2 y^{\prime}+10 y=0
$$

