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Sampling and Aliasing

Lecture #6
Chapter 4
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What Is this Course All About ?

• To Gain an Appreciation of the 
Various Types of Signals and Systems 

• To Analyze The Various Types of 
Systems

• To Learn the Skills and Tools needed 
to Perform These Analyses.

• To Understand How Computers 
Process Signals and Systems
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Discrete-time Signals and Computers
• Up to now we have been studying continuous-time signals (also 

called analog signals) such as

• However, digital computers and computer programs can not 
process analog signals.

• Instead they store discrete-time versions of analog signals

• This is because digital computers can only store discrete 
numbers.
– There are computers called analog computers which do process 

continuous-time signals
• Since the computer only stores numbers, how does one know 

what continuous-time signal it represents?

( ) cos( )ox t A t  

)(][ snTxnx 



BME 310 Biomedical Computing -
J.Schesser

155

Sampling
• We can obtain a discrete-time signal by sampling a 

continuous-time signal at equally spaced time 
instants, tn = nTs

x[n] = x(nTs)    -∞ < n < ∞
• The individual values x[n] are called the samples of 

the continuous time signal, x(t).
• The fixed time interval between samples, Ts, is also 

expressed in terms of a sampling rate fs (in samples 
per second) such that: 

fs = 1/ Ts samples/sec.
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Continuous-to-Discrete Conversion
• By using a Continuous-to-Discrete (C-to-D) 

converter, we can take continuous-time signals and 
form a discrete-time signal.

• There are devices called Analog-to-Digital converters 
(A-to-D) 

• The books chooses to distinguish an C-to-D converter 
from an A-to-D converter by defining a C-to-D as an 
ideal device while    A-to-D converters are practical 
devices where real world problems are evident.
– Problems in sampling the amplitudes accurately
– Problems in sampling at the proper times
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Discrete-Time Signals
• A discrete-time signal is 

a sequence of numbers 
and carry no 
information about the 
time-sequence.

• Looking at the 
following diagram, 
which (gray or solid) 
waveform are these 
(red) samples associated 
with?
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Discrete-Time Sinusoidal Signals
• Since a Fourier series can be written for any continuous-time 

signal, let’s concentrate on sinusoids
• We define a normalized frequency for the discrete sinusoidal 

signal.

• is the normalized or discrete-time frequency
• Since we can have different signals with the same     , then 

there can be an infinite number of continuous-time signal 
which yield the same discrete-time sinusoid!           
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Two Problems with Sampling
• Problem 1:  How many samples are enough to 

have to represent a continuous time signal?

• In this figure, we have a continuous-time signal 
sampled every .4 seconds (red samples) and 
every 1 second (black samples).
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Discrete-Time Sinusoidal Signals
• Problem 2: Can a set of samples be represent 

more that one continuous-time signal

 4.)1)(2.0(2ˆ 
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• The discrete-time sinusoid 
shown in the figure has                  
which can be obtain from, for 
example, either a 1 second 
sampled continuous-time 
sinusoid with  f = 0.2 Hz or 1.2 
Hz.

• In the first case, where f = 0.2 
Hz, we have: 
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Discrete-Time Sinusoidal Signals
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• In the first case, where f = 0.2 
Hz, we have: 

• Since a sinusoid is periodic in 
2, then for the case where 
f=1.2 Hz
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Aliasing
• This example 

illustrates that two 
sampled sinusoids can 
produce the same 
discrete-time signal.
1. cos [2π(0.2) t]
2. cos [2π(1.2) t]
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• When this occurs we say that that these signals 
are aliases of each other.



BME 310 Biomedical Computing -
J.Schesser

163

Aliasing
• There are more alias signals for this example:

1. x(t) = cos (2π(0.2) t) => x[n] = cos (2π(0.2) 1n) = cos (0.4π n) 
2. x(t) = cos (2π(1.2) t) => x[n] = cos (2π(1.2) 1n) = cos (2.4π n) = 

cos (0.4 π n + 2 π n) = cos (0.4π n) 

3. x(t) = cos (2π(.8) t) => x[n] = cos (2π(.8) 1n) = cos (1.6π n) =  
cos (2 π n - 0.4 π n) = cos (0.4π n) 

• In summary, (for l = positive 
or negative integer):
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where ̂o  is called the principal alias



BME 310 Biomedical Computing -
J.Schesser

164

Aliasing
• Let’s look at signals of the form: cos(ωlt)
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Shannon’s Sampling Theorem

• How frequently do we need to sample?
• The solution: Shannon’s Sampling Theorem: 

A continuous-time signal x(t) with frequencies 
no higher than fmax can be reconstructed 
exactly from its samples x[n] = x(nTs), if the 
samples are taken a rate fs = 1 / Ts that is 
greater than 2 fmax.

• Note that the minimum sampling rate, 2 fmax , 
is called the Nyquist rate.
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Spectrum of the Discrete-time 
Signal

0.4 1.6 2.4-0.4-1.6-2.4
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• There are an infinite number of frequency 
components of discrete-time signal

• They consists of the principal along with the 
other aliases (an infinite number of them).
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Nyquist Rate

• Shannon’s theorem tell us that if we have at 
least 2 samples per period of a sinusoid, we 
have enough information to reconstruct the 
sinusoid.

• What happens if we sample at a rate which is 
less than the Nyquist Rate?

– Aliasing will occur!!!!
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Ideal Reconstruction
• The sampling theorem suggests that a process exists 

for reconstructing a continuous-time signal from its 
samples.

• If we know the sampling rate and know its spectrum 
then we can reconstruct the continuous-time signal by 
scaling the principal alias of the discrete-time signal 
to the frequency of the continuous signal.

• The normalized frequency will always be in the range 
between 0 ~ π and be the principal alias if the 
sampling rate is greater than the Nyquist rate.
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Ideal Reconstruction Continued
• If continuous-time signal has a frequency of ω, then the discrete-time 

signal will have a principal alias of 

• So we can use this equation to determine the frequency of the 
continuous-time signal from the principal alias:

• Note that the normalized frequency must be less than  if the Nyquist
rate is used

• And the reconstructed continuous-time frequency must be
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Oversampling
• When we sample at a rate which is greater than the Nyquist

rate, we say we are oversampling.
• If we are sampling a 100 Hz signal, the Nyquist rate is 200 

samples/second  => x(t)=cos(2π(100)t+π/3)
• If we sample at 2.5 times the Nyquist rate, then fs = 500 

samples/sec
• This will yield a normalized frequency  at 2π(100/500) = 0.4π 
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Oversampling
• Since we are greater than the Nyquist rate, the normalized 

frequency will be < π  which means it is the principal alias.
• And we get back the original continuous frequency when we 

do the reconstruction
• f = 0.4πfs / 2π = 0.4π500 / 2π = 0.2 (500) = 100 Hz
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Undersampling and Aliasing
• When we sample at a rate which is less than the Nyquist rate, 

we say we are undersampling and aliasing will yield 
misleading results.

• If we are sampling a 100 Hz signal, the Nyquist rate is 200 
samples/second  => x(t)=cos(2π(100)t+π/3)

• If we sample at .4 times the Nyquist rate, then fs = 80 s/sec
• This will yield a normalized frequency at 2π(100/80) = 2.5π
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Undersampling
• Since it is > π, 2.5π is NOT the principal alias 
• The principle alias is 2.5π - 2π = 0.5π

• Using 0.5π as the principal alias and performing a reconstruction we then 
have:
f = 0.5π fs / 2π = 0.5π 80 / 2π = 0.5 (40) = 20 Hz and we have         
reconstructed the wrong signal!!!
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The Alias Problem due to 
Undersampling
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Aliasing and Folding

• Your book treats undersampling in terms of 
aliasing and folding

• During reconstruction, both of these 
phenomenon will produce erroneous results.

• The difference between aliasing and folding 
has to do with which part of the spectrum 
created the alias.
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Discrete-to-Continuous Conversion

• An D-to-C converter uses the samples to 
reconstruct the continuous-time signal by 
interpolation.

• There are various interpolation algorithms 
which may be used:
– Zero-Order Hold
– Linear
– Cubic Spline
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Interpolation

• Oversampling always improves the reconstruction

• Best reconstruction is Low Pass Filter or what the text 
calls: Ideal Bandlimited Interpolation
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Zero-Order Hold Linear



BME 310 Biomedical Computing -
J.Schesser

178

Non-sinusoidal Signals

• Since a Fourier series can be written for any 
continuous-time signal, the sampling and 
reconstruction processes for any continuous-
time signal is the same
– Shannon’s Sampling theorem
– Nyquist Rate fs ≥ 2fmax to eliminate aliasing
– Oversampling to improve interpolation
– Ideal (low pass filter) Bandlimited interpolation
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Homework

• Exercises:
– 4.1 – 4.5

• Problems:
– 4.1, 4.2, 4.3, 
– 4.4, Use Matlab to plot the signal in part a. 
– 4.5, 4.8, 4.11, 4.19


