Robust Insider Attacks Countermeasure for Hadoop:
Design & Implementation

Zuochao Dou, Student Member, IEEE, Issa Khalil, Member, IEEE, Abdallah Khreishah, Member, IEEE,
and Ala Al-Fuqaha, Senior Member, IEEE

Abstract—Hadoop is an open source software framework for
storage and processing of large-scale data sets. The proliferation
of cloud services and its corresponding increasing number of
users lead to a larger attack surface, especially for internal
threats. Therefore, in corporate data centers, it is essential to
ensure the security, authenticity, and integrity of all the entities of
Hadoop. The current secure implementations of Hadoop mainly
utilize Kerberos, which is known to suffer from many security
and performance issues including the concentration of authenti-
cation credentials, single point of failure, and online availability.
Most importantly, these Kerberos-based implementations do
not guard against insider threats. In this paper, we propose
an authentication framework for Hadoop that utilizes Trusted
Platform Module (TPM) technology. The proposed approach
provides significant security guarantees against insider threats,
which manipulate the execution environment without the consent
of legitimate clients. We have conducted extensive experiments
to validate the performance and the security properties of our
approach. The results demonstrate that the proposed approach
alleviates many of the shortcomings of Kerberos-based state-
of-the-art protocols and provides unique security guarantees
with acceptable overhead. Moreover, we have formally proved
the correctness and the security guarantees of our protocol via
Burrows-Abadi-Needham (BAN) logic.

Index Terms—Hadoop, Kerberos, Trusted Platform Module
(TPM), authentication, platform attestation, insider threats

I. INTRODUCTION

PACHE Hadoop provides an open source framework for

the storage and parallel processing of large-scale data
sets on clusters of commodity computers. As the amount of
data maintained by industrial corporations grows over time,
big data processing becomes more important to enterprise
data centers. However, the threat of data leaks also continues
to grow due to the increasing number of entities involved
in running and maintaining cloud infrastructure and oper-
ations [2]. The recent boost of big data start-ups such as
MongoDB, DataStax, MapR Technologies and Skytree leads
to an increased number of points of access in the cloud, that is,
larger attack surface for intruders. This can be clearly inferred

Z. Dou is with the Electrical Computer Engineering Department, New
Jersey Institute of Technology, Newark, USA, E-mail: zd36 @njit.edu.

I. Khalil is with the Qatar Computing Research Institute, Hamad bin Khalifa
University, Doha, Qatar. E-mail: ikhalil@qf.org.qa.

A. Khreishah is with the Electrical Computer Engineering Department, New
Jersey Institute of Technology, Newark, USA, E-mail: abdallah@njit.edu.

A. Al-Fuqaha is with the NEST Research Lab, College of Engineering &
Applied Sciences Computer Science Department, Western Michigan Univer-
sity, Kalamazoo, USA, E-mail: ala.al-fugaha@wmich.edu.

This work is supported by award No. ECCS-1331018.

Part of this work was presented in proceedings of 10th International Con-
ference on Security and Privacy in Communication Networks(SecureComm
2014), Beijing, China [1].

from a recent report of the Health Information Trust Alliance
(HITRUST), which reveals that the total cost of health-care
data breach incidents has grown to $4.1 billion over the recent
years [3].

Authentication is the process of gaining assurance that an
entity is performing robustly and precisely as intended [4] [5].
In addition, data confidentiality in the cloud is tightly corre-
lated to the user authentication [2]. Therefore, a secure and
robust authentication mechanism of both users and services is
imperative for secure and private cloud computing and stor-
age operations [6]. However, the continuous growth and the
concentration of data in clouds, combined with the increasing
adoption of security solutions such as authentication, access
control, and encryption drives intruders to be more persistent
and creative in developing sophisticated attack strategies [7].
One way to protect clouds and to successfully combat such
sophisticated attacks is to push the bar higher through the com-
bination of hardware and software security solutions. Pushing
the security down to the hardware level in conjunction with
software techniques provides better protection over software-
only solutions [8], which is especially feasible and suitable for
entity authentication and platform attestation in the cloud.

Currently, Hadoop leverages Kerberos [9] [10] as the pri-
mary authentication method and uses DIGEST-MDS5 security
tokens [11] to supplement the primary Kerberos authentication
process, as detailed in Section II. However, in addition to
its limitations and security weaknesses, the use of Kerberos
for authentication in Hadoop-based environments raises many
security concerns. The most vital weakness of Kerberos lies
in its dependency on passwords. The session key for data
encryption during the initial communication phase with the
Key Distribution Center (KDC) is derived from the user’s
password. Disclosure of KDC passwords allows attackers to
capture users’ credentials, which turns all Hadoop’s security to
be useless. The large number of password disclosure incidents
through cracking, social engineering, or even database leakage,
clearly indicates that this threat is real and pervasive. For
example, in 2011, RSA was a target of a spear Phishing
attack [12]. A backdoor was installed due to a mistake by
an employee who retrieved the Phishing email from her junk
mail box and opened it. The malware successfully harvested
credentials as confirmed by RSA FraudAction Research Labs.
It threatened the security of many important defense contrac-
tors like Northrop Grumman, Lockheed Martin, and L-3.

Another important issue of Kerberos lies in its dependency
on the KDC which constitutes a single point of failure and
even a single point of attack for persistent and dedicated

attackers. Although Hadoop’s security design introduces del-
egation tokens to overcome this bottleneck, they lead to a
more complex authentication mechanism due to the extra
tokens and data flows that are required to enable access to
Hadoop services. Many types of token have been introduced,
including delegation tokens, block tokens, and job tokens
for different subsequent authentications. This, relatively, large
number of tokens, not only complicates the configuration and
the management of the tokens, but also expands the attack
surface [13]. Kerberos keys are stored in an on-line third-party
database. If anyone other than the proper user has access to
the KDC, through, for example, a malware installation by an
insider, the entire Kerberos authentication infrastructure will
be compromised and the attacker will be able to impersonate
any user [14]. This highlights the fact that insiders could create
havoc in Kerberos infrastructure itself, and consequently affect
the security posture of the supported Hadoop. It is clear that
Kerberos is not well-equipped against insiders or outsiders
who could change the execution environment that the user
trusts. For example, attackers may install key loggers or other
malware-tools to steal users’ credentials and data.

In this paper, we design and implement a TPM-based
authentication protocol for Hadoop that provides strong mu-
tual authentication services among internal Hadoop entities,
in addition to mutually authenticating external clients. Each
entity in Hadoop is equipped with a TPM (or vIPM in
the case of multi-home virtualized environments) that locks-
in the root keys for authenticating the entity to the outside
world. In addition to locally hiding the authentication keys and
the authentication operations, the TPM captures the current
software and hardware configurations of the machine hosting it
in an internal set of Platform Configuration Registers (PCRs),
as detailed in Section II-C. Using the authentication keys and
the PCRs, the TPM-enabled communicating entities are able to
establish session keys that can be sealed (decrypted only inside
the TPM) and bound to specific trusted platform software
and hardware configurations. The bind and seal operations
protect against malicious insiders, because they will not be
able to change the state of the machine without affecting
the values of the PCRs. Our protocol enables remote plat-
form attestation services to clients of third-party, possibly not
trusted, Hadoop providers. Moreover, the seal of the session
key protects against the ability to disclose the encrypted data
in any platform other than the one that matches the trusted
configurations specified by the communicating entities. As Fig.
1 shows, the protocol consists of three overlapping phases:
(1) Secure exchange of the session key at the beginning of
each communication session; (2) Session key management;
and (3) “Fingerprint” attestation mechanism. The details are
presented in the subsequent sections. Our contributions can be
summarized as follows:

e Propose a novel TPM-based authentication protocol
among Hadoop entities to reduce the risk of the con-
tinuously evolving insider attacks, especially due to the
proliferation of cloud services and big data applications.

e Propose a periodic remote mechanism for attesting the
hardware and software platform configurations. Such
attestation mechanism provides hardware level security

that supports other software mechanisms in reducing the
risk of internal, as well as, external threats.

o Implement the whole system on real world Hadoop
platforms and conduct extensive sets of experiments
to evaluate the performance overhead and the security
merits of our mechanism. The performance and security
evaluation clearly shows that our framework provides
better security guarantees with acceptable performance
overhead compared to the state-of-the-art Kerberos-based
implementations.

o Provide a thorough theoretical analysis using the BAN
logic to rigorously prove the correctness and the trust-
worthiness properties of our authentication protocol.

The rest of this paper is organized as follows. In Section

II, we provide the background knowledge about Hadoop
architecture, the state-of-the-art security design of Hadoop,
and the overview of Trusted Platform Module technology
(TPM). In Section III, we first lay out our attack model
and then present the design of our TPM-based authentication
protocol. In Section IV, we provide the formal proof of the
proposed authentication protocol. In Section V, we perform the
comparative security analysis between Kerberos-based Hadoop
and the proposed TPM-based Hadoop. In Section VI, we
present the detailed implementation methodology of the pro-
posed protocols. In Section VII, we introduce the experimental
test-bed configurations and present the performance evaluation
of our protocol. Section VIII presents the related work. In
Section IX, we conclude this study and discuss potential future
research extensions.

II. BACKGROUND
In this section, we introduce necessary information about

Hadoop architecture, state-of-the-art Hadoop security design
and the basis of Trusted Platform Module technology (TPM).

A. Hadoop Structure

As depicted in Fig. 2, Hadoop clusters have three major cat-
egories of server roles: (1) Client machines, (2) Master nodes,
and (3) Slave nodes. The role of the client machine is to load
the data into the cluster, to submit MapReduce jobs describing
how data should be processed, and to fetch or view the results
of the task when processing finishes. The Master nodes (i.e.,
NameNode, Secondary NameNode and JobTracker) supervise
the two major components of Hadoop, namely, the distributed
data storage (HDFS), and the distributed data processing
(MapReduce) [15] [16]. The NameNode is responsible for
coordinating data storage operations when a client machine
requests to load the data into HDFS, while the JobTracker is
in charge of supervising parallel MapReduce processing. The
slave nodes (i.e., DataNodes and TaskTrackers) are responsible
for storing the data and executing the computational tasks
assigned by the Master nodes, respectively.

B. Hadoop Security Design

Hadoop uses Kerberos for its authentication operations [11].
The complete authentication process is illustrated in Fig. 3.
The client obtains a Delegation Token (DT) through initial
Kerberos authentication (step 1). When the client uses the
DT to authenticate, she first sends the ID of the DT to the

Secure exchange of the session keys

L
f |)

' : Distributed Data
“Seal” the session key when there isino data to transfer Processing (MapReduce)

A

JobTracker

Cciens]

T 1)

- [IR
hngcl'm'mt verifica tion

S —
S

DataNode &
TaskTracker

Session #1 Session #2 Session #3

Fig. 1: The overlapping phases of the
TPM-based authentication protocol

NameNode (step 2). Then, the NameNode checks if the DT
is valid. If the DT is valid, the client and NameNode try to
mutually authenticate using their own Token Authenticators,

which are contained in the delegation tokens, as the secret key
using DIGEST-MD5 protocol (steps 3-6) [17].

Server Roles

C. Trusted Platform Module (TPM)

TPM is a secure crypto-processor, which is designed to
protect hardware platforms by integrating cryptographic keys
into devices [18]. It has been designed with the goal to enhance
platform security through mechanisms that are beyond the
capabilities of today’s software-based systems [19].

TPM supports three main services: (1) The remote attesta-
tion service creates a nearly un-forgeable hash-key summary
of the hardware and software configurations in a way that
allows other parties to verify the integrity of the software and
the hardware. (2) The binding service encrypts data using the
TPM endorsement key, a unique RSA key burned into the chip
during its production, or another trusted key descended from
it. (3) The sealing service encrypts data in a similar manner
to binding, but it additionally specifies the state that the TPM
must be in for the data to be unsealed (decrypted) [18].

The platform configuration register (PCR) of the TPM is
a 160-bit storage location that is used to record aggregate
software and hardware measurements of the platform, which
include: (1) BIOS, ROM, Memory Block Register [PCR index
0-4]; (2) OS loaders [PCR index 5-7]; (3) Operating System
(OS) [PCR index 8-15]; (4) Debug [PCR index 16]; (5) Lo-
calities, Trusted OS [PCR index 17-22]; and (6) Applications
specific measurements [PCR index 23] [20].

The TPM is capable of creating an unlimited number of
Attestation Identity Keys (AIK). Each AIK is an asymmetric
key pair that is used for signing data that is internally generated
by the TPM, such as the storage key. A storage key is derived
from the Storage Root Key (SRK), which is embedded in
the TPM chip during the manufacturing process. Using the
generated storage key along with the PCR values, one could
perform sealing to bind the data to a certain platform state (i.e.,
a specific platform software and hardware configuration). The
encrypted data could only be unsealed (decrypted) under the
same PCR values (i.e., the same platform state).

To date, more than 500 million PCs have been shipped
with TPMs, an embedded crypto capability that supports user,
application, and machine authentication with a single solution
[8]. Additionally, many virtual TPM implementations exist for
virtualized environments [21] [22].

Distributed Data Storage (HDFS] Kerb. n
y Connect (tokenID) [2]
NameNode
o SASL-Digest-Challenge()[3] |
Masters .
Client

Fig. 2: Hadoop Architecture based on Fig. 3:

NameNode

SASL-Digest-Response () [4]

(—————
—————
DataNode &
TaskTracker

SASL-Response-Auth () [5]

Access Service [6]

Authentication
Kerberos-based Hadoop

process in

D. Integrity Measurement Architecture

Co-operating with the hardware TPM, the integrity measure-
ment architecture (IMA) (proposed by IBM [23]) provides an
efficient measurement system for dynamic executable content.
IMA provides real time measurements of the platform (user
applications, OS libraries, etc.) during the post-boot period,
while the TPM enables the pre-boot measurements. In this
work, we assume the IMA is pre-configured and installed on
each platform.

ITII. TPM-BASED HADOOP AUTHENTICATION
FRAMEWORK

In this section, we first introduce the attack model, then,
we present the design of the proposed TPM-based Hadoop
authentication protocol.

The protocol uses the key binding of the TPM to secure the
exchange and management of the session keys between any
two Hadoop communicating entities (NameNode/JobTracker,
DataNode/TaskTracker and Client). To achieve this, we assume
that every Hadoop entity has a TPM. Fig. 4 (a) depicts the
high-level processes of the protocol which are detailed in the
following subsections. The protocol consists of two processes,
the certification process and the authentication process.

Note that the public key infrastructure (PKI) is only used
to secure the exchange of the symmetric session keys. The
expensive certification and management process is only used
during the certification process, where the cost amortized
through the use of TPM AIK functionality as explained in
Section III-B.

A. Attack Model

In addition to the traditional external threats, we believe
that clouds are more susceptible to internal security threats,
especially from other untrusted users [24] [25]. Many en-
terprises are likely to deploy their data and computations
across different cloud providers for many reasons including
load balancing, high availability, fault tolerance, and security,
in addition to avoiding single-point of failure and vendor
lock-in [26] [27] [28]. However, such behavior increases the
attack surface and the probability of compromise of Hadoop
entities. For example, a DataNode may get infected with a
malware that makes it unsafe to operate on sensitive data.
Therefore, it is imperative for any security solution for Hadoop
to enable the detection of any unauthorized change in the
software and hardware configurations of its entities. Our entity
authentication protocol is specifically designed to counter

such adversarial actions, assuming an attack model with the
following attacker capabilities and possible attack scenarios:

o Attacks against TPM: We do not address the attacks
against TPM (e.g., side channel timing attack [29]).Thus,
we assume attackers can not compromise the TPM chip
or its functions.

o Attacks against slave nodes or client machines: We
assume that attackers are capable of installing (directly
or remotely) malware or making malicious hardware
changes in the compromised slave nodes (e.g., the DataN-
odes) or client machines.

« Attacks against master nodes: We assume that attackers
are capable of installing (physically or remotely) malware
or making malicious hardware changes in the master
nodes (e.g., the NameNode). However, this capability
could be revoked if the NameNode is deployed in a
trustworthy environment (e.g., a private cloud with strict
security policy enforced), as detailed in Section III-D.

o Denial of Service attacks (DoS attacks): We do not
address DoS attacks.

B. TPM-Based Hadoop Certification Process

The certification process (similar to that presented in [30])
is triggered by the client or the NameNode and is depicted
in Fig. 4 (b). The client in this paper refers to any entity that
interacts with the NameNode such as a user submitting a job or
a DataNode. The TPM of the client/NameNode creates a RSA
key using the SRK as a parent. This key is used as the AIK.
The AIK is then certified by a PCA. This process is a onetime
pre-configuration operation that takes place once during the
initialization of the TPM. The client’s/NameNode’s TPM then
creates a binding key that is bound to a certain platform. Then
the TPM seals the private part of the binding key with a certain
PCR configuration. Finally, the client/NameNode uses the AIK
to certify the public part of the binding key. Once the AIK is
certified by the PCA, it can be used to sign all types of keys
generated by the TPM without referring back to the PCA,
which greatly reduces the communication overhead.

C. The Authentication Process

The authentication process (cf. Fig. 4 (c)) implements
the mutual authentication between the NameNode and the
client. The Client sends a random number K7 along with the
corresponding IDs (e.g., remotel D in Hadoop codes) to the
NameNode. This message is encrypted by the public binding
key of the NameNode. The NameNode sends a random
number K5 along with the corresponding ID to the client. This
message is encrypted by the public binding key of the client.
Using K and K5, both the client and the NameNode generate
the session key key_session = K7 @ Ko. Note that only the
correct NameNode can obtain K7 by decrypting the message
sent by the client using the NameNode’s S K_bind, which is
bound to the target NameNode’s TPM with a certain software
and hardware configuration (sealed binding key). Similarly,
only the correct client can obtain Ky by decrypting the
message sent by the NameNode using the client’s SK_bind,
which is bound to the client’s TPM with the corresponding
software and hardware configurations. This ensures mutual
authentication between the client and the NameNode.

(St i t el bl !

1
------ > - ---->

PCA Certification Client |Authentication] NameNode
€------ €------

@)

ul Certify AIK via PCA

Create AIK]

Create binding key

PCA

®)

(K1, IDS)PK_bind NameNode

Client NameNode

(K2, IDS)PK _bind_Client

(M, MAC. Nonce, IDs) xi@x2

©

Fig. 4: (a)The high level processes of our TPM-based Hadoop
authentication protocol (Client to NameNode in this example);
(b)TPM-based Hadoop certification process; and (c)TPM-
based Hadoop authentication process

The newly exchanged session key is then locked
into a certain PCR value in an operation known as
seal operation using the TPM’s command “Seal”. Seal
takes two inputs, the PCR value and the session key
(Seal(PCRindexes, Key_session)). This ensures that
key_session can only be decrypted using the hardware
secured keys of the TPM in that particular platform state. By
sealing the session key to specific acceptable hardware and
software configurations (i.e., specific PCRs value), we protect
against potential tampering with the firmware, hardware,
or software on the target machine (e.g., through malware
installations or added hardware/software key loggers).
Moreover, the session key (key_session) is made to be valid
only for a predefined period of time, after which the session
key expires and the authentication process has to be restarted
to establish a new session key as needed. The validity period
of the session key is an important security parameter in our
protocol. Short validity periods provide better security in the
case of session key disclosure since fewer communications
are exposed by disclosing the key. However, shorter periods
incur extra overhead in establishing more session keys.

Additionally, a nonce is added to every message to pre-
vent replay attacks. Finally, message authentication codes
(MAC) are included with each message to ensure data in-
tegrity. The communication message format is as follows:
(Message, M AC, Nonce = Nonce++, [Ds)key_session.
D. Periodic Fingerprint Checking (Cross-Platform Authenti-
cation)

In a non-virtualized environment, the TPM specification
assumes a one-to-one relationship between the OS and the
TPM. On the other hand, virtualized scenarios assume one-to-
one relationship between a virtual platform (virtual machine)
and a virtual TPM [31]. However, Hadoop systems employ a
master/slaves architecture. The NameNode is the master that
manages many DataNodes as slaves. If the number of DataN-
odes grows, the number of session establishment processes

that the NameNode is involved in also grows. Each session
involves many TPM operations (e.g., seal and unseal). For
large systems, the TPM may become a bottleneck due to the
limitation of one TPM/vVITPM per NameNode according to
current implementations of TPM/vTPM.

To address this practical issue and alleviate the potential
performance penalty of TPM operations, we introduce the
concept of periodic platform-Fingerprint checking mechanism
based on the heartbeat protocol in Hadoop (cf. Fig. 5). The
idea is to offload most of the work from the TPM of the
NameNode to the NameNode itself. However, this requires
us to loosen our security guarantees and change the attack
model by assuming that the NameNode is “partially” trusted.
We argue that this assumption is reasonable for the following
reasons: (i) Hadoop deployment usually involves one or few
NameNodes [32], and hence, it is plausible and affordable
to secure them in a trusted environment. For example, an
enterprise can secure its NameNode by deploying it in the
enterprise’s local data center or in a high-reputation cloud
platform with strict security standards. While the DataNodes
can be deployed in environments with less strict security
requirements. (ii) Our protocol is designed to limit the poten-
tial security damage of untrusted NameNode. A NameNode
that gets compromised (that is, its software and/or hardware
configuration is changed illegally) will only stay unnoticed for
a short time, because other parties (such as DataNodes and
clients) are designed to randomly request attestation of the
authenticity of the NameNode. In on-demand attestation, an
interacting entity with the NameNode asks the NameNode to
send a TPM-sealed value of its current software and hardware
configurations. If the requesting entity receives the right values
for the PCR of the NameNode within a predefined time, then
the NameNode is trusted; otherwise, a suspicious alert is raised
about the trustworthiness of the NameNode.

The platform Fingerprints (i.e., PCR values) of each Hadoop
entity that interacts with the NameNode (e.g., DataNode) are
collected a priori and stored in the NameNode. This can be
achieved during the registration process of the entity with the
NameNode. The heartbeat protocol in Hadoop periodically
sends alive information from one entity to another (e.g., from
DataNode to NameNode). We leverage this native Hadoop
feature by configuring each Hadoop entity to periodically (or
on-demand) send the new PCR values (modified by PCR
extension operations) to the NameNode for consistency check-
ing with the stored PCR values. The TPM in the interacting
entity signs its current PCR values using its AIK key and
sends the message to the NameNode. When the NameNode
receives the signed PCR values, it verifies the signature, and
if valid, it compares the received values with the trusted pre-
stored values. If a match is found, the authentication succeeds
and the session continues. Otherwise, the authentication fails
and penalty may apply (e.g., clear up the session key, shut
down the corresponding DataNode, etc.). By doing so, the
number of NameNode TPM operations decreases significantly
as we replace the TPM seal and unseal operations with the
Fingerprint verification that is performed outside the TPM (cf.
Fig.5).

However, there is a tradeoff between the security guarantees

and the interval of the Fingerprint verification process, which
reflects the extra overhead of the system. In other words, the
interval value depends on the user’s security requirements and
is application dependent.

So far we have assumed that the NameNode is partially
trusted and argue in favor of that. Nevertheless, in systems
that require higher security guarantees and that can afford
redundancy, we can eliminate the assumption of partial trusted
NameNode. Untrusted NameNode can be neutralized by bor-
rowing concepts from the fault tolerance domain. Multiple
redundant NameNodes can be deployed and the NameNode
attestation can be achieved through majority voting among
the responses of the different NameNodes [33], [34], [35].
In fact, multiple NameNodes have been used in Hadoop
implementations to scale up services such as directory, file
and block management [32]. We can leverage such deployment
(or deploy new NameNodes if necessary) to implement ma-
jority voting on the process of periodic platform-Fingerprint
checking mechanism. Correct NameNode operations can be
achieved as long as the total number of NameNodes is more
than 2n, where n is the number of compromised NameNodes
(assuming no faulty nodes). For example, given 5 NameNodes
that are independently running on different clouds, the attesta-
tion decision can be made based on the majority voting among
them. Under this scenario, even if two of the NameNodes are
compromised, the attestation decision will still be the correct
one.

E. Security Features

The security features of our design include: (1) Session key
binding. The session key is generated by XORing a local
and an external random numbers (K7 and K5). This ensures
that only the party that has the appropriate private portion
of the binding key will be able to decrypt the message and
get the external random number. Furthermore, the decryption
keys exist only inside the TPM chip and are sealed to specific
hardware and software configurations. This would protect
against potential malicious insiders as they will not be able
to know anything about the session key. (2) Session key
sealing. The session key is sealed with TPM functions. The
sealed session key can be decrypted only under the same
platform conditions (as specified by the PCR values) using the
associated sealing key that resides inside the TPM. (3) Periodic
Fingerprint attestation mechanism. This guards against mali-
cious users who attempt to change the execution environment
in a DataNode (by, for example, installing malware/spyware)
in a bid to compromise data confidentiality.

IV. FORMAL SECURITY ANALYSIS
We use Burrows-Abadi-Needham (BAN) logic ([30]) to

formally prove the following two properties of the proposed
authentication protocol:

o Correctness: Implies that the protocol performs as in-
tended, that is, two legitimate parties should always
correctly authenticate.

o Trustworthiness: Implies that the protocol is secure
under the attack model defined earlier, that is, only
legitimate parties can successfully authenticate.

The proof sketch is shown as follows:

a4 .) . N Nod
— —\ 4{ Client.java /Server.java }7 ameode Heartbeats DataNode
777777777777777 [1] Random attestation request - — e R
e PR B 3] Verify i ! i S Frmimimm s !
i Fingerprint | [2] TPM-sealed PCR values the PCR : [| NameNode.java i Exchange ! DataNode.java_
Pool | ‘ Sametodend, | DataNodeCommands | t-=-=-=-= ===~ E
ool | ____ > values
") pmemimime M ; ;
---------------- <- E‘q f‘_[?idilf': iezp_"i"_e_ o i Invoke the seal process i Invoke the unseal process i V. N7
___________________________ e e Fromrede s
! i " ' ! ReadPCR
NameNode DataNode] T H FSNal.ues} stem 1 I N PR pupup .0_.-
[2] Send PCR signed by AIK \L \J/ ; Java i !
[3]Verify the |<G--=--------"-------——- [l Extend the | _._._._._._.M_._._._._._._ [2, i Verification i} . __ . _ . _._ Vo, .
signature, if PCR values Execute Seal.sh i Execute UnSeal.sh ! Comparison !|' Measurements.sml — ExtendPCR.sh ;
valid, compare . o and sign it use [P et P [P ot bvtysintnriiio P UUO S (RS E 1) [i Ty g
the PCRs [4] Send back response ATK T \L /]\ \I/ T \L /]\
JTPM command line tools o l:‘" ST JTPM tools
\ / \), i Fingerprint 1
iTSS Communication Interface : Pool jTSS Interface
""" Random Attestation TPM Emulator TPM Emulator
————— Fingerprint Verification

Fig. 5: Illustration of the random attes-
tation and the periodic Fingerprint veri-
fication

1) Present the notations and postulates/rules of BAN logical.
2) Generate a simplified version of the original protocol.
3) Idealize the simplified protocol.

4) Symbolize the assumptions.

5) Formalize the goals.

6) Present the formal prove of the goals.

Recall that the proposed protocol (cf. Fig. 4) consists of two
main phases: (1) the certification phase and (2) authentication
phases. The simplified objective of the protocol is to correctly
and securely exchange the necessary keys among legitimate
entities in the presence of the defined attackers. Therefore,
we first prove that the public keys distributed by the PCA
correspond to the claimed owners, that is, the mutual authen-
tication parties believe in the public keys of each other, and
that the random numbers (/7 and K>) are securely exchanged.
Second, we need to prove that only legitimate entities can
compute the session keys, that is, an entity can get the session
key if and only if it maintains the same hardware and software
state bound to that key.

A. Notations and postulates/rules of BAN logical

Following is a list of the BAN logical notations that we use
in our proof steps:

1) Basic notations:

e« C, N, P denote the client, the NameNode and the PCA.

e K; and K, are random numbers.

o K., is the computed symmetric session key, which is
only known by C and N, where, K., = K1 & Ks.

o K., K,, K, are the public keys of C, N, and P.

o K7U, K1, K, ! are the private keys of C, N, and P.

e X or Y : represents a formula (e.g., a message sent).

In addition to the traditional basic notations, we introduce two
new basic notations that represent the hardware and software
configurations (recorded in the PCR values of the TPM):

e U and U’ represent the TPM combined hardware and
software initial state and the state when authenticating,
respectively.

2) Logical notations:

e C'|= X : C believes/would be entitled to believe X;

¢« C < X : C sees X. Someone has sent a message
containing X to C, who can read and repeat X;

e C'|~ X : C said X. The principal C' at some time sent
a message including the statement X;

e C'|= X : C controls X. The principal C is an authority
on X and should be trusted on this matter;

Fig. 6: Flow of seal and unseal op-
erations within the various TPM-based of periodic Fingerprint checking mecha-
Hadoop implementation layers

Fig. 7: Nllustration of the detailed process

nism

. C’éN : X is only known by C' and N;

« CRF N K., is the key shared by C' and N;

e #(X): X is fresh. X has not been sent in a message at
any time before the current run of the protocol;

e {X}k,, : X is encrypted by K.p;

B0 K. is a public key of C;

% . if X is true, then Y is true.

3) Ban logical postulates: BAN logic consists of many
logical rules. These pre-agreed rules are used as theorems in
the deduction. For the purpose of the current proof, we use 4
of the existing rules, in addition to a new TPM unsealing rule.
Note that every C' in the rules could be replaced by N.

— The Message meaning rule for the interpretation of mes-

sages. Here, we only use the rule for public keys.

C|l=5 PP <a{X} g
Cl=P|~X

That is, if C believes that K is P’s public key, and C
receives a message encoded with P’s secret key, then C
believes P once said X.

— The nonce-verification rule expresses the check that a
message is recent, and hence, that the sender still believes

n it Cl=#(X),C|l=P |~ X
Cl=P|=X

That is, if C' believes that X could have been uttered only
recently and that P once said X, then C believes that P
believes X.
— The jurisdiction rule states that if C' believes that P has
jurisdiction over X, then C trusts P on the truth of X:
Cl=Pl=X,C|=P|=X
Pl=X

— If a principal sees a formula, then he also sees its
components, provided that he knows the necessary keys:
-1
Ccl=E% N, Ca{X}k
PaX

— If a principle’s hardware and software state equals to the
initial state, then he is able to unseal the content he sealed

before. C(U/) —= C(U), C<« {X}Seal
CaX

B. The simplified version of the original protocol

The original authentication protocol (ref. fig 5) can be
simplified as follows:
Step 1: C' and N get each other’s public key from P:

P—C: {Kn,N}K;; P— N: {KC,C’}K;1

Step 2: C' and N exchange two random numbers K7 and K>
to generate the session key.

C—)NI{Kl,C}K N—)CZ{KQ,N}KC

n?

Step 3: C and N unseal K! and K, ! to extract K; and
K, if the software and hardware configuration do not change,
then the shared session key K.n = K1&® K2 can be generated
and used for later communication.

C gets Ko; N gets K;

C. The idealized protocol

Now we idealize the original protocol to the standard form
of BAN logic: Step 1: P — C': {¥$ N}, _1; Step 2: P —
N : {55 C} s Step 3: C — N : {Ki}x,; Step 4 N —
C: {KQ}KC; Step 5:C« Ky, N < Kj.

D. Symbolizing the assumptions
We formalize the assumptions of the proposed protocol as
follows:

C |E'5> C, N |E»5> N, C ‘E& P, N |El}i§ P
rP=lso PN =S
Cl=(P|=X N), N =P |=50)
C|=#(K1), N |= #(Ka)

K1 K2
Cl=C=N,C|=C=N
K KL
C|=#(HF N), N |= #(= N)

C and N know the public key of P, as well as their own
keys. In addition, P knows his own keys, and the public keys
of C"'and N. C and N trust P to correctly sign certificates
giving the public keys of them. Also, C' and N believe the
random numbers that they generate are fresh, secure. Last but

not least, C' and N assume that the message containing the
public key of each other is fresh.

E. Formalization of the security goals

The security goals of the proposed protocol can be formal-
ized as:
Goal 1: C and N trust each other’s public keys.

C |E£§L N, N |E£§ c
Only if C' and N believe in the public keys of each other,
then the two random numbers K; and K, can be securely
exchanged.
Goal 2: C' and N both get the session key if they maintain
the same hardware and software state.
C(U')==C(U) and N(U') == N(U)

Ken
C =N

F. Formal proof

1) Proof of goal 1: -- the assumption: C ‘E& P, and
the protocol step 1: C' < {I»i? N} Ky according to rule (1):

Cl=P |~ N (1)

the assumption: C' |= #(lni? N), and equation (1),
according to rule (2):

Cl=P|=5 N (2)

the assumption: C' |= (P \:>I»i? N), and equation (2),
according to rule (3):
C ‘E& N
Similarly, we can prove that: NV |E£$ C Therefore, Goal 1 is
verified.
2) Proof of Goal 2: - C sealed its private key K !
himself (i.e., C' <1 { K }sear), according to rule (5):
cU) ==

(U)
CaK! ®)

The assumption: C |E»5> C, the protocol step 4: C' <
{K3}k, and equation(3), according to rule (5):
cU)==C(U)

C <Ky (4)
C generates K, and equation (4).
C(U") == C(U) -
C < (Ken =K ® Ks)
Similarly, we can prove that:
N(U') == N(U) .

N « (Kcn :Kl@Kg)

Consequently, based on equation (5) and equation (6), we
can conclude that:

C(U")==C(U) and N(U') == N(U)
oy
Therefore, Goal 2 is verified.

V. COMPARATIVE SECURITY ANALYSIS

We discuss here the security features of our protocol and
compare them to those of the Kerberos-based Hadoop. Table
I summarizes the results of the comparison.

As we can see from Table I, Kerberos-based Hadoop relies
on passwords to authenticate various entities. This makes
Kerberos-based Hadoop vulnerable to all password weak-
nesses. For example, loss of password leads to the inability
to authenticate and hence denial of access to resources. In
TPM-based Hadoop, only the ownership of a TPM relies on
passwords, a process that is done only few times.

In Kerberos-based Hadoop, the default lifetime of the initial
authentication credentials (i.e., Kerberos related tickets) is 24
hours. The three types of tokens for subsequent authentications
must be renewed once every 24 hours for up to 7 days, and
they can also be cancelled explicitly (e.g., a job token could
be cancelled after the completion of the corresponding job).
If these authentication credentials are lost, the attacker will
be able to access the system/services for a long time. While

TABLE I: Comparison of TPM-based Hadoop and Kerberos-
based Hadoop

Kerberos-based Hadoop

TPM-based Hadoop

Password is required to authenticate
users. Lost of passwords leads to de-
nial of access to resources.

Authentication credentials lifetime:
Kerberos TGT = 24 hours. Tokens
must be renewed once every 24 hours
for up to 7 days or could be cancelled
explicitly

Kerberos lacks of machine/platform
integrity verification.

An online Key Distribution Center
(KDC) is required. And Kerberos has
a single point failure problem.

Ownership of TPM relies on pass-
words. Lost of passwords will result
in sealed/encrypted data inaccessible.

Session keys’ lifetime could be set
to a long period of time by integrat-
ing the Fingerprint verification mech-
anism. The attestation interval could
be adjusted according to the user’s
specific security requirements.

TPM enables hardware/software con-
figuration integrity verification. It
provides protection against injections
of malware/spyware.

TPM only requires one-time certifi-
cation of its AIK, then uses AIK to
certify all TPM keys. This reduces the

usage of trust third party.

for TPM-based Hadoop, by introducing periodical Fingerprint
verification mechanism, the session keys’ lifetime could be set
to a long period of time and we could adjust the attestation
interval to ensure the security requirements of the user.

TPM-based Hadoop provides integrity verification of the
platform on each Hadoop entity through remote attestation, a
feature that is not provided by Kerberos-based Hadoop. The
TPM authenticates the hardware and the software configura-
tions. This feature enables the detection of any tamper in hard-
ware or software configurations, including malware/spyware
installations. The authentication credentials exchanged are not
only encrypted with the public keys of the parties, but also
bound to specific hardware and software configurations in each
party. This setup ensures that not only the right party can
access the credentials, but also that the credentials can only be
accessed under specific hardware and software configurations.
This guards against both user and machine masquerading. For
example, in the session establishment between the NameNode
and a DataNode, K7 is encrypted with the public key of the
NameNode. K; can be decrypted only by the NameNode
with certain hardware and software configurations, because
the decryption key is bound to the corresponding PCR values.

Finally, Kerberos-based Hadoop requires a frequently
queried on-line KDC, which presents a run time single point
of failure. The entities (e.g., DataNodes) in Hadoop have to
request/renew the security tokens via the KDC every 24 hours
or every completion of a job. In contrast, the PCA in our
approach is rarely used. The PCA is only needed to certify
the AIKs of each entity. Once the AIKs are certified, they can
be used to sign all kinds of keys generated by the clients’
TPM without referring back to the PCA.

VI. IMPLEMENTATION
A. Implementation of the Authentication Protocol

To efficiently manage the complex communication flows,
Hadoop utilizes RPC-Dynamic Proxy that creates a simple
interface between one client and one server [36].

We divide the implementation of our authentication protocol
into three sub-tasks.

Task 1: Includes the exchange of two random numbers
K; and K, between the client and the server. In general,
multiple “calls” (i.e., different HDFS/MapReduce commands
or operations) may occur within one RPC connection, and
we use the first call in each RPC connection to exchange
K, and K. For sending K; from the client to the server,
we create a new variable Call.connection.K; in the RPC
connection header field, and then use Write RPC Header()
function in Client.Java to forward it to the server. The
server then reads K, in ReadAndProcess() function. For
sending K> from the server to client, we also create a new
variable C'all.connection. K5 and conditionally (i.e., if K5 has
never been sent) forward it to the client via SetupResponse()
function in Server.java. The client then decodes K> in
ReceiveResponse() function.

Note that both K; and K are encrypted using the corre-
sponding receiver’s public binding key and decrypted via their
sealed private binding key which is bound to a certain platform

configuration.
Task 2: Includes the dynamic protection of the
Session_Key = K; @ Ko using TPM seal and unseal

operations. After securely exchanging the two random
numbers K; and K5y, each of the client and the server
generates its own copy of the Session_Key. Right after
the generation of the Session_Key, a java runtime process
is invoked to execute a shell script (i.e., seal.sh) that
immediately seals the Session_Key using jTPM commands
via jTSS java interface. Whenever there is a need to use the
Session_Key, the client/server invokes another java runtime
process to conduct a shell script (i.e., unseal.sh) to unseal
the Session_Key for encryption or decryption of the data.
Fig. 6 illustrates the flow of seal and unseal operations within
the various TPM-based Hadoop implementation layers.

Task 3: Includes the management and synchroniza-
tion of the security credentials (e.g., Session_Key ,
Sealed_Session_Key and Unsealed_Session_Key). In or-
der to efficiently and securely manage the communication
credentials, we build a management and synchronization
mechanism for the TPM-based Hadoop. Firstly, we distin-
guish the Session_Key by the users (e.g., hdfs, mapred)
in the same platform. Since Hadoop utilizes RPC dynamic
proxy to simplify the communication, the RPC connections
of the same user could share the same Session_Key. This
mechanism greatly reduces the number of seal/unseal oper-
ations while maintaining the same security level. Secondly,
since many RPC connections share the same Session_Key,
synchronization issues arise (i.e., simultaneous accesses to
the same Session_Key). To handle such issues, we create
a file called session_key_list that records the IDs of all the
Session_Keys that currently exist. The client/server checks
the list before creating or using the Session_Key, and locks
the corresponding Session_Key while using it. Thirdly, we
define different access control policy and lifetime for differ-
ent security credentials. The Session_Key has the shortest
lifetime (i.e., deleted right after sealing it) and could only be
accessed by the user who created it and the TPM owner who
seals it. The Sealed_Session_Key holds the longest lifetime
(its lifetime could be adjusted according to the user’s security

TABLE II: Access control policy and lifetime for different
security credentials

Session Sealed Unsealed TPM Session
Key Sessi Sessi Sealing Key
Key Key Key List
Lifetime Shortest Longest ~ Medium Permanent Permanent
Access All TPM User TPM All
Control Users Owner Owner Users

requirements) and could only be accessed by the owner of the
TPM (i.e., the one who knows the password of the TPM).
The Unsealed_Session_Key keeps the medium lifetime
(depends on the user’s security requirements) and could only
be accessed by the user of the corresponding Session_Key.
Furthermore, the sealing key (i.e., used for seal/unseal opera-
tions) is well protected by the TPM and can only be accessed
by the owner of TPM. In addition, the session_key_list only
contains the IDs of the Session_Keys, thus knowing the
contents of the session_key_list will not help the attacker to
obtain the Session_Key. Table II shows the access control
and lifetime for different security credentials.

B. Heartbeat Protocol Implementation

As mentioned in section 3.3, in order to offload the work
of the TPM on the NameNode, we introduce the periodic Fin-
gerprint checking mechanism based on the heartbeat protocol

in Hadoop.
We introduce a new variable PCR_signed (the
attestation PCR value signed by the AIK) in the

DataNodeCommand array of the DataNode.java and the
NameNode.java. The DataNode will periodically exchange
the DataNodeCommand array with the NameNode via
heartbeat protocol. After receiving the attestation data, the
FSNamesystem.java running on the NameNode verifies
the signature and the PCR values’ using the Fingerprint
pool (which contains all the clients’ PCR values). Finally, a
response is generated. For example, if the attestation failed,
a penalty may be applied (e.g., shut down the corresponding
DataNode).

The PCR wvalues are periodically updated through
ReadPCR() function in DataNode.java via a runtime pro-
cess (i.e., Fxtend PC R.sh). The shell script extends the PCR
value using previous PCR value and the new measurements
produced by measurements.sml, as shown in Fig. 7.

VII. PERFORMANCE EVALUATION

A. Test-bed Design and Configuration

To evaluate the security guarantees and the runtime over-
head of our authentication protocol, we compare three different
Hadoop implementations, namely, baseline Hadoop (no secu-
rity), Kerberos-based Hadoop and TPM-based Hadoop (our
protocol). For Kerberos, we use krb5.x86_64 [37]. For TPM,
we use Software-based TPM Emulator because we target the
public cloud which relies on virtualized environment. Addi-
tionally, according to IBM’s introduction of software TPM,
an application that can be developed using the software TPM
will run using a hardware TPM without changes[38]. On the
other hand, using hardware-based TPMs is easier and provides
better performance, therefore, the performance results obtained

TABLE III: One time overhead of the proposed system design

binding key binding key AIK AIK binding key Sum
creation loading creation loading certification
"355.8ms “27.1ms “108.4ms 24.1ms “17.0ms "532.4ms

here will be better if hardware-based TPMs were used. To
incorporate TPM with Hadoop project, we modify the source
code of Hadoop using ant within eclipse [39] and use TAIK
jTSS (TCG Software Stack for the Java (tm) Platform [40])
and TAIK jTpmTools (GJTT) as the communication interface
between Hadoop and TPM. The detailed test-bed configuration
is listed below:

1) Hadoop Deployment: We configure Hadoop in a test-
bed environment that involves Ubuntu 10.04 LTE operating
system, 2GB memory, 60 GB hard disk, Java version = Oracle
Java-1.7.0_67. There are two DataNodes, two TaskTrackers,
one NameNode and one JobTracker in the Hadoop system.

2) Hadoop Deployment with Kerberos: For Hadoop se-
curity design with Kerberos, we choose krb5-server.x86_64,
krb5-workstation.x86_64, and krb5-devel.x86_64.

3) Hadoop Deployment with TPM: Hadoop deployment
here involves two parts: (1) virtual TPM configuration
and jTSS communication interface configuration; (2)Hadoop
source code modification environment setup. We use software-
based ETH Zurich virtual TPM [41]. The virtual TPM provides
all the functionalities of the hardware TPM. However, the
virtual TPM is slower than the hardware TPM and, hence, the
overhead results presented for our protocol are upper bounds.
The runtime overhead of our protocol is expected to be lower
when hardware TPM is used.

B. Runtime Overhead Analysis

It is important to emphasize that developing a new se-
cure authentication protocol, even though is important, is
not enough unless it is feasible and practical. Therefore, we
have to keep the performance penalty and cost of the added
security features within acceptable bounds. In this section,
we thoroughly analyze the runtime overhead of our protocol
and compare it with the baseline and the Kerberos-based
authentication protocols.

The cost of cryptographic processes that prevent replay
attacks and ensure data integrity and confidentiality over
various communication paths is the same for both TPM-based
protocol and Kerberos-based protocol. On the other hand,
each protocol has a different overhead that does not exist in
the other. The TPM-based protocol incurs a one-time TPM
setup overhead that takes place when the TPM in each entity
of Hadoop generates the binding keys, AIK, in addition to
obtaining certificates for these keys. This is a lightweight
overhead and does not create big impact on the day-to-
day operations of Hadoop as it is a pre-configuration one
time overhead. Table III shows the pre-configuration runtimes
for TPM-based Hadoop under our system configurations. On
the other hand, Kerberos-based Hadoop has pre-configuration
overhead to perform KDC registration (e.g., adding principal
to the KDC database) and to acquire and renew TGT (Ticket
Granting Ticket).

The runtime overhead of TPM-based Hadoop is mainly due
to: (1) the seal operation to encrypt the Session_Key, (2)

the unseal operation to retrieve the Session_Key whenever
required, and (3) the extend and read PCR operation of
the heartbeat protocol. The number of seal/unseal operations
depends on the life cycle of the Unsealed_Session_Key
(identical to Session_Key which is deleted right after the
seal operation). The life cycle of the Unsealed_Session_Key
depends on the verification interval value of the Fingerprint
process.

The overall runtime overhead of TPM-based Hadoop (T)
can modelled as:

T = function(Ns x T's, Nu x Tu, Np x Tp,To)

Here, Ns is the number of seal operations; T's is the time
cost for one seal operation; Nwu is the number of unseal
operations; T'u is the time cost for one unseal operation; Np
is the number of extend and read PCR operations; T'p is the
time cost for one extend and read PCR operation; T'o is the
other extra time costs (e.g., verification of PCR signature or
exchange of two random numbers, which incurs negligible
time cost compared to the above TPM operations).

1) Overall Runtime Overhead for Different MapReduce
Applications: In this experiment, we measure the overall run-
time of five different MapReduce applications to compare the
overhead of the two secure Hadoop implementations relative
to the baseline (none secure) implementation of Hadoop. The
first two applications are HDFS write and HDFS read, both
of which belong to Hadoop TestDFSIO benchmark. These
two test cases focus on testing Hadoop 1O performance. The
third test case is PI example, which calculates the value of 7
in a distributed way. It has moderate computation workload
and low communication traffic. Another test case is TeraSort
benchmark, a sorting application that collectively tests the
HDFS and MapReduce layers. The last test case is WordCount
example, which has moderate communication traffic and small
computation load.

Fig. 8 presents the results of this experiment. For Kerberos-
based Hadoop, the runtime overhead is about 20% relative to
the baseline Hadoop. For the TPM-based Hadoop, the runtime
overhead is about 42% for the HDFS write/read and about 25%
for the other 3 applications. The relatively high overhead in
HDFS write/read is due to the heavy load created by these
applications on DataNodes.

2) Runtime Overhead under Different Workloads: In this
experiment, we use the matrix multiplication MapReduce job
produced by John Norstad, Northwestern University [42] to
test the impact of varying workloads on the overall run-
time overhead of the three Hadoop implementations under
investigation. We vary the matrix size to generate different
workloads. We select three dense matrices with different
sizes (i.e., 250x250, 500x500 and 1000x1000). We run the
experiment 10 times for each matrix size and compute the
average runtime over all the runs. Fig. 9 shows the results.
The figure shows that the TPM-based Hadoop has an extra
overhead of about 6.1% over that of Kerberos-base Hadoop
due to the TPM operations. The runtime overhead decreases
as the workload increases for both Kerberos and TPM-based
Hadoop. This trend in the overhead is mainly because of the
quadruple increase of the original computational time which

makes the approximately linear TPM and Kerberos operations
relatively smaller.

3) Communication Overhead: To test the communication
overhead, we choose the Sleep example in Hadoop. In the
Sleep example, all tasks do nothing but wait for an assigned
amount of time. The purpose of this test scenario is to
eliminate the computational overhead by making it the same
among all implementations. According to previous non-HDFS
applications’ experiments, the TPM-based Hadoop has an
average of 6.7% extra overhead than Kerberos-based Hadoop.
After eliminating this difference, the estimated communication
overhead (TPM-based Hadoop compared to the Kerberos-
based Hadoop) is summarized in Fig. 10. The communication
overhead increases as the number of Map tasks increases. This
is due to the increase in the number of TPM operations for
the additional RPC sessions that deliver Map tasks. TPM has
an average of 13.4% communication overhead over Kerberos.
This extra communication overhead includes the exchange of
the random numbers for session key establishment and the
Fingerprint verification operations.

4) Variable Session Key Lifetime and Heartbeat Inter-
val Values: As mentioned in Section III-D, the number of
NameNode side TPM operations decreases significantly as
we replace the TPM seal and unseal operations with the
Fingerprint verification that is carried out outside the TPM.

Fig. 11 presents the runtime overhead for different session
key lifetimes without the Fingerprint verification mechanism.
Shorter session key lifetime achieves better security guarantees
at the cost of higher runtime overhead. The overhead is mainly
due to the unseal operations to retrieve the session key. On
the other hand, the Fingerprint verification helps to offload
the NameNode’s TPM while maintaining the same security
guarantees by carefully adjusting the attestation interval value
which is based on the heartbeat rate. Fig. 12 shows the runtime
overhead relative to the baseline Hadoop for the PI example
for various attestation intervals. Intuitively, the figure shows
that the higher the attestation interval, the lower the overhead.
Also, the higher the lifetime of the session key, the lower
the overhead. The former trend is due to the lower number of
Fingerprint operations with high attestation intervals; while the
latter trend is due to lower number of seal/unseal operations
with high session key lifetime. Therefore, by turning the
session key lifetime and the attestation interval, we can control
the tradeoff between the overhead and security in TPM-based
Hadoop.

VIII. RELATED WORK

In early 2013, Project Rhino was launched by Intel as
an open source project with a goal to improve the security
capabilities of Hadoop. The group proposes Task HADOOP-
9392 (Token-Based Authentication and Single Sign-On) which
intends to support tokens for many authentication mechanisms
such as Lightweight Directory Access Protocol (LDAP), Ker-
beros, X.509 Certificate authentication, SQL authentication,
and Security Assertion Markup Language (SAML) [43]. The
project mainly focuses on how to extend the current authenti-
cation framework to a standard interface for supporting differ-
ent types of authentication protocols. Nevertheless, all these

B Kerberos-based Hadoop)
P>TPM-based Hadoop

25%

B Kerberos—based Hadoop|
$ TPM-based Hadoop

to baseline

40%r 20%
4
30% ' 15%

20%f E/E\E—E/E'

10%

overhead

5%

n
1=}
R

-
N
2

-
]
R

N
2

I0read 10 write Pl Sort WordCount
MapReduce benchmarks

250x250

Runtime overhead relative to baseline

Fig. 8: The runtime overhead relative to
the baseline Hadoop on 5 different types

of MapReduce applications. workloads.

Runtime overhead relative to baseline

5 3 2 1
Session key lifetime (Minutes)

Fig. 11: Runtime overhead of TPM-based Hadoop relative to
baseline with variable session key lifetime.

-9-Kerberos
<& Session Key Lifetime = 5 mins|
Session Key Lifetime = 3 mins|

@
3
&

Session Key Lifetime = 2 mins|
P-Session Key Lifetime = 1 min

N
2
2

N
—_—

w
8
*

Relative runtime overhead
8
3

g
2

3 6 9 15 30 60 No attestation
Attestation interval (Second)
Fig. 12: Runtime overhead of TPM-based Hadoop relative to
the baseline with variable Fingerprint attestation intervals for
various session key lifetimes

authentication protocols, including Kerberos, are software-
based methods that are vulnerable to privileged user manip-
ulations. An insider or possibly an outsider could indirectly
collect users’ credentials through, for example, the installation
of malware/spyware tools on the machines they have access
to in a way that is transparent to the victims. Rhino design
trades off flexibility with complexity. Overall, it enhances the
flexibility of the authentication mechanisms at the cost of
increasing the complexity of the system.

In [30], the author proposes a TPM-based Kerberos proto-
col. The proposed protocol is able to issue tickets bound to
the client platform through integrating PCA functionality into
the Kerberos authentication server (AS) and remote attestation
functionality into the Ticket-Granting Server (TGS). However,
the proposed mechanism does not provide any attestation for
Hadoop’s internal components. Nothing can prevent malicious
Hadoop insiders from tampering with internal Hadoop com-
ponents. In this paper, we use TPM functionalities to perform
authentication directly inside Hadoop and eliminate the need
for any trusted-third-party.

500x500
Matrix size

Fig. 9: The runtime overhead relative
to the baseline Hadoop under different

Relative communication overhead

1000x1000 0

10 20 4

Number of Map tasks per job

Fig. 10: Estimated communication over-

head of TPM-based Hadoop relative to
Kerberos-based Hadoop.

In [44], the authors propose a Trusted MapReduce (TMR)
framework that integrates MapReduce systems with the TCG
(i.e., Trusted Computing Group) trusted computing infras-
tructure. They present an attestation protocol between the
JobTracker and the TaskTracker to ensure the integrity of each
party in the MapReduce framework. However, they mainly
focus on the integrity verification of the Hadoop MapReduce
framework without addressing the authentication issues of
Hadoop’s HDFS and Clients. Therefore, the authors do not
provide a general authentication framework for the whole
Hadoop ecosystem.

In [45], the authors present a design of a trusted cloud
computing platform (TCCP) based on TPM technologies. The
proposed design guarantees confidential execution of guest
VMs, and allows users to attest to the laaS provider to
determine if the service is secure before they launch their VMs.
Nevertheless, they do not provide details about how their de-
sign will be implemented and no performance evaluations are
provided. Also, they fail to provide a complete authentication
framework among all the components of Hadoop.

IX. CONCLUSION

In this paper, we design and implement a TPM-based
authentication protocol for Hadoop that provides strong mu-
tual authentication between any internally interacting Hadoop
entities, in addition to mutually authenticating with external
clients. The bind and seal operations supported by the TPM
protect against malicious insiders since insiders cannot change
the machine state without affecting the PCR values. Further-
more, our protocol alleviates the use of the trusted third party
by using the AIK certification. Moreover, we compare the
security features and overhead of our protocol with the state-
of-the-art protocols and show that our protocol provides better
security guarantees with acceptable overhead.

In the future work, we will tighten the security requirements
of the NameNode by removing the assumption of partial trust.

REFERENCES

[1] I. Khalil, Z. Dou, and A. Khreishah, “TPM-based authentication mech-
anism for apache hadoop,” in In I0th International Conference on
Security and Privacy in Communication Networks (SecureComm), 2014.

[2] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,”
Future Generation computer systems, vol. 28, no. 3, pp. 583-592, 2012.

[3] Health Information Trust Alliance (HITRUST), “U.S. Healthcare Data
Breach Trends,” https://hitrustalliance.net/breach-reports/.

[4] G. White, “Trends in Hardware Authentication,” Lawrence Livermore
National Laboratory (LLNL), Livermore, CA, Tech. Rep., 2015.

[5]

[6]

[7]

[8]

[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]
(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
(31]
[32]
[33]
[34]

[35]

[36]
[37]

[38]

S. A. Chaudhry, M. S. Farash, H. Naqvi, S. Kumari, and M. K. Khan,
“An enhanced privacy preserving remote user authentication scheme
with provable security,” Security and Communication Networks, 2015.
H. Li, Y. Dai, L. Tian, and H. Yang, “Identity-based authentication
for cloud computing,” in [EEE International Conference on Cloud
Computing. Springer, 2009, pp. 157-166.

C. Technology, “Advanced Authentication Methods: Software
vs.Hardware,” http://www3.ca.com/ /media/Files/whitepapers/ebook-
advanced-authenticaiton-methods.PDF.

Trusted Platform Module (TPM): Built-in Authentication,
http://www.trustedcomputinggroup.org/solutions/authentication.

S. Bagchi, N. Shroff, I. Khalil, R. Panta, M. Krasniewski, and J. Krog-
meier, ‘“Protocol for secure and energy-efficient reprogramming of
wireless multi-hop sensor networks,” 2012, US Patent 8,107,397.

I. Khalil and S. Bagchi, “SECOS: Key management for scalable and
energy efficient crypto on sensors,” Proc. IEEE Dependable Systems
and Networks (DSN), 2003.

0. O’Malley, K. Zhang, S. Radia, R. Marti, and C. Harrell, “Hadoop
security design,” Yahoo, Inc., Tech. Rep, 2009.

Spear Phishing: Real Life Examples,
http://resources.infosecinstitute.com/spear-phishing-real-life-examples/.
K. Smith, “Big Data Security: The Evolution of Hadoop’s Security
Model,” http://www.infoq.com/articles/HadoopSecurityModel.
Kerberos, http://web.mit.edu/rhel-doc/5/RHEL-5-manual/Deployment
_Guide-en-US/ch—kerberos.html.

Apache Hadoop, http://hadoop.apache.org.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), IEEE 26th Symposium on, 2010, pp. 1-10.

Hadoop Security Analysis, http://www.tuicool.com/articles/ NFf6be.

Trusted Platform Module, http://en.wikipedia.org/wiki/Trusted_Platform_Mc ‘ Q

I. Corporation, “Trusted platform module quick reference guide,” 2007.
R. Ng, “Trusted platform module tpm fundamental,” Infineon Technolo-
gies Asia Pacific Pte Ltd, 2008.

R. Perez, R. Sailer, L. van Doorn et al., “vTPM: virtualizing the trusted
platform module,” in USENIX, 2006.

B. Danev, R. J. Masti, G. O. Karame, and S. Capkun, “Enabling secure
vm-vtpm migration in private clouds,” in Proceedings of the 27th Annual
Computer Security Applications Conference. ACM, 2011, pp. 187-196.
R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and
implementation of a tcg-based integrity measurement architecture.” in
USENIX Security Symposium, vol. 13, 2004, pp. 223-238.

I. Khalil, A. Khreishah, S. Bouktif, and A. Ahmad, “Security concerns in
cloud computing,” in Information Technology: New Generations (ITNG),
2013 Tenth International Conference on. 1EEE, 2013, pp. 411-416.
I. Khalil, A. Khreishah, and M. Azeem, “Cloud computing security: a
survey,” Computers, vol. 3, no. 1, pp. 1-35, 2014.

R. Panta, S. Bagchi, and I. Khalil, “Efficient wireless reprogramming
through reduced bandwidth usage and opportunistic sleeping,” Ad Hoc
Networks, vol. 7, no. 1, pp. 42-62, 2009.

S. Bouktif, F. Ahmed, I. Khalil, and G. Antoniol, “A novel composite
model approach to improve software quality prediction,” Information
and Software Technology, vol. 52, no. 12, pp. 1298-1311, 2010.

J. Shi, M. Taifi, A. Khreishah, and J. Wu, “Sustainable GPU computing
at scale,” in Computational Science and Engineering (CSE), 2011 IEEE
14th International Conference on. 1EEE, 2011, pp. 263-272.

E. R. Sparks and E. R. Sparks, “A security assessment of trusted platform
modules computer science technical report,” Tech. Rep., 2007.

A. Leicher, N. Kuntze, and A. U. Schmidt, “Implementation of a trusted
ticket system,” in Emerging Challenges for Security, Privacy and Trust.
Springer, 2009, pp. 152-163.

T. T. C. Group, “Virtualized trusted platform architecture specification,
version 1.0, revision 0.26,” 2011.

S. Sriniwas, “An introduction to hdfs federation,” 2011.

M. S. Ridout, “An improved threshold approximation for local vote
decision fusion,” IEEE Transactions on Signal Processing, 2013.

N. Katenka, E. Levina, and G. Michailidis, “Local vote decision fusion
for target detection in wireless sensor networks,” IEEE Transactions on
Signal Processing, vol. 56, no. 1, pp. 329-338, 2008.

L. A. Klein, “A boolean algebra approach to multiple sensor voting
fusion,” IEEE transactions on Aerospace and Electronic systems, vol. 29,
no. 2, pp. 317-327, 1993.

HadoopRPC, https://wiki.apache.org/hadoop/HadoopRpc.

The KDC and related programs for Kerberos 5,
http://linuxsoft.cern.ch/cern/sle5X/x86_64/yum/updates/ repoview/krb5-
server.html.

Software TPM Introduction, http://ibmswtpm.sourceforge.net/.

[39] Eclipse, https://www.eclipse.org/.

[40] Trusted Computing for the Java(tm) Platform,
http://trustedjava.sourceforge.net/index.php?item=jtss/about.

[41] TPM emulator, http://tpm-emulator.berlios.de/designdoc.html.

[42] A MapReduce Algorithm for Matrix Multiplication,
http://www.norstad.org/matrix-multiply/.

[43] Project Rhino, https://issues.apache.org/jira/browse/HADO OP-9392.

[44] A. Ruan and A. Martin, “TMR: Towards a trusted mapreduce infras-
tructure,” in Services, IEEE Eighth World Congress on, 2012.

[45] N. Santos, K. Gummadi, and R. Rodrigues, “Towards trusted cloud
computing,” in Proceedings of the 2009 conference on Hot topics in
cloud computing, 2009.

Zuochao Dou received his B.S. degree in Electron-
ics in 2009 at Beijing University of Technology.
From 2009 to 2011, he studied at University of
Southern Denmark, concentrating on embedded con-
trol systems for his M.S degree. Then, he received
his second M.S. degree at University of Rochester
in 2013 majoring in communications and signal pro-
cessing. He is currently working towards his Ph.D.
degree in the area of cloud computing security and
network security with the guidance of Dr. Abdallah
Khreishah and Dr. Issa Khalil.

Issa Khalil received the B.Sc. and the M.Sc. degrees
from Jordan University of Science and Technology
in 1994 and 1996 and the PhD degree from Purdue
University, USA in 2006, all in Computer Engineer-
ing. Immediately thereafter he worked as a post-
doctoral researcher in the Dependable Computing
Systems Lab of Purdue University until he joined
the College of Information Technology (CIT) of the
A United Arab Emirates University (UAEU) in August
2007. In September 2011 Khalil was promoted to
associate professor and served as the department
chair of the Information Security Department in CIT. In June 2013, Khalil
joined the Cyber Security Group in Qatar Computing Research Institute
(QCRI), Hamad bin Khalifa University, a member of Qatar Foundation, as
a Senior Scientist. Khalil’s research interests span the areas of wireless and
wireline network security and privacy. He is especially interested in cloud
security, botnet detection and takedown, and security data analytics. Dr. Khalil
served as the technical program co-chair of the 6th International Conference
on Innovations in Information Technology and was appointed as a Technical
Program Committee member and reviewer for many international conferences
and journals. In June 2011, Khalil was granted the CIT outstanding professor
award for outstanding performance in research, teaching, and service.

Abdallah Khreishah received his Ph.D and M.S.
degrees in Electrical and Computer Engineering
from Purdue University in 2010 and 2006, respec-
tively. Prior to that, he received his B.S. degree
with honors from Jordan University of Science &
Technology in 2004. During 2009-2010, he worked
with NEESCOM. In Fall 2012, he joined the ECE
department of New Jersey Institute of Technology as
an Assistant Professor. His research spans the areas
of network coding, wireless networks, congestion
control, cloud computing, and network security.

Ala Al-Fugaha (S°00-M’04-SM’09) received his
M.S. and Ph.D. degrees in Electrical and Computer
Engineering from the University of Missouri, in
1999 and 2004, respectively. Currently, he is an

2 Associate Professor and director of NEST Research
@ N Lab at the Computer Science Department of Western
- Michigan University. His research interests include
intelligent network management and planning, QoS

h" b routing and performance analysis and evaluation

of software-defined networks and VANETs. He is

currently serving on the editorial board for John
Wiley’s Security and Communication Networks Journal, John Wiley’s Wire-
less Communications and Mobile Computing Journal, Industrial Networks
and Intelligent Systems Journal, and International Journal of Computing and
Digital Systems. He is a senior member of the IEEE and has served as
Technical Program Committee member and reviewer of many international
conferences and journals.

