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Abstract

The problem of cost-efficient operation of data center networks used to deliver
file sharing services is studied. The aggregate costs are split into server-load-
related and link-load-related shares. Thus, the problem of interest is formulated
as one of joint data placement and flow control, and mixed integer-linear pro-
gramming is used to compute the optimal solution. The high complexity of
the latter motivated us to design two additional sets of strategies, based on
data coding and heuristics, respectively. With coding, a distributed algorithm
for the problem is developed. In the simulation experiments, carried out based
on actual data center information, network topology and link cost, as well as
electricity prices, the advantages of data coding, in particular in the context
of multicast, and the impact of different factors such as the network topology
and service popularity, on the total cost incurred by all considered strategies,
are examined. Network coding with multicast is shown to provide cost savings
in the order of 30-80%, depending on the specific context under consideration,
relative to the other optimization strategies and heuristic methods examined in
this work.

1. Introduction

A defining landmark of the present Internet are data center networks - global
distributed systems featuring multiple geographically dispersed data centers and
high speed data trunks between them. They are used to deliver a variety of
services to increasingly bigger client populations online. The two most recog-
nized characteristics of such systems are their sheer scale and power demand |[1].
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Therefore, cost efficient operation of data center networks is a necessity. There
are two types of cost that an Online Service Provider (OSP) operating a data
center network needs to bear. The first one is the data transport cost associated
with delivering the services to a multitude of demanding customers. The second
one is the operating cost of the data centers that is associated with their actual
location in the network. As the two cost items are interrelated, optimizing the
network operation solely based on one, may lead to very inefficient performance
relative to the case when the aggregate cost is taken into consideration. At the
same time, the OSP needs to ensure that the services delivered over the network
maintain their corresponding performance requirements at the end user. Tra-
ditionally, network traffic engineering to date has exclusively focused on load
balancing across multiple internal paths in transit ISP networks [2]. Ounly in the
domain of multihominﬁ, we have witnessed interest in minimizing the trans-
port cost of the customer [3] or the average latency of its data flows, for a given
cost constraint [4]. Other studies try to minimize the network operational costs
or the average latency by caching the files at different locations of the network
[5, 16, 17, 18, 19]. The most closely related work is |10] that studies the joint data
center placement and flow control in online service provider networks, with the
goal of minimizing the overall operational cost of such networks, for the given
performance guarantees associated with each service. Relative to [10], various
unicast and multicast scenarios where the data is network-coded and the server
load is taken into consideration are examined.

The work in [11] studies the problem of joint request mapping
and response routing for cloud services running on geographically
distributed data centers. The objective is to minimize the total costs
(electricity and bandwidth costs) of serving clients’ requests. Relative
to [11], this work targets different types of cloud applications (i.e.
file sharing), which do not have strict delay requirements. Moreover,
various unicast and multicast scenarios are considered in this paper.

The work in [12] targets online services, such as search and instant
messaging, that have strict delay requirements, and tries to find a
curve, where each point in the curve represents a trade-off between
the performance metric, which is Round Trip Time (RTT), and the
operational costs of the Online Service Provider (OSP). Relative to
[12], this paper considers file sharing services, which do not have strict
delay requirements. Moreover, the work in [12] does not consider the
operational costs of data centers.

The work in [13] proposes a two-stage optimization problem. The
first stage is an admission control stage, where requests are selec-
tively admitted to maximize the revenue collected by the Cloud Data
Center (CDC) provider. The revenue of a request is modeled as a
utility function that depends on the average response time. Given
the admitted requests from the first stage, the second stage decides

5A customer is connected to the Internet via multiple ISPs.



which data center will satisfy the request and which path is chosen to
deliver the response in order to minimize the total energy and band-
width cost. Relative to [13], this work targets different types of cloud
applications (file sharing) that do not have strict delay requirements.
Moreover, the authors in [13] consider that the bandwidth cost of
different links belonging to the same Internet Service Provider is the
same, while this work considers that the cost of traversing a link
depends on the bandwidth and the length of the link.

Other related work includes [14] that considers incorporating renewable en-
ergy sources as prospective suppliers of electricity for data center networks and
the demand markets that therefore need to be stimulated, in order for the former
to become a viable alternative in this context. |15, [16] study the advantages
of network coding versus data replication in distributed content distribution
systems.

To illustrate the benefits of our approach, assume that our data center is
distributed over three sites that can be accessed over the Internet. Assume that
they are located in Tokyo, Dublin, and Seattle (these cities could be changed to
any other three)@]. Fig. 0 represents our system model in which a distribution
center decides the allocation of service requests to data centers. Assume that
the three sites are powered via solar energy. However, if solar energy is not
available and the data center is running, then it will use brown energy. In a
typical summer day, it is fairly reasonable to assume that at any given time the
solar energy will be available at two of the sites, and not available at the third
one. Assume that a file of 2GB, is to be available at any given time through
the three sites. Assume for simplicity that each site can store only 1GB. The
objective here is to minimize the use of brown energy. Assume that the available
space for this file at each site is 1GB. One approach to distribute this file over
the data centers is to keep the first half of the file (A) on one site, say Tokyo, the
second half of the file (B) on the second site, say Dublin, and to replicate either
the first half of the file (A) or the second half (B) at Seattle. In this way, the
total brown energy consumption would be % x BEFE, where BEFE is the brown
energy expenditure during a day per GB of data. That is because, assuming we
chose A to be at Seattle, the Dublin site that contains B has to be powered all
of the time, and in % of the time it uses brown energy. With coding, instead of
storing either A or B at Seattle, a coded packet A ® B is stored, where ® is the
bitwise XOR operation. Therefore, at any given time accessing any two of the
sites is sufficient to retrieve the whole file. Therefore, the brown energy use in
this case will be zero. Fig. 2 represents our approach. The same example can
be used to minimize the total energy use when a multi-electricity environment
is present, in which each site is powered by a different provider, and the cost
of electricity at these sites is different and changing over time. In this case, the
site where the cost of electricity is the maximum among the different sites is

6This is a fairly realistic example, see for example Microsoft’s Azure cloud that is dis-
tributed over three continents.
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Figure 2: A representation of the example discussed above. Squares represent data centers.
When using coding, accessing any two data centers can recover the whole file, which reduces
brown energy consumption.

put to sleep [17, [18, [19, 20], and the other sites are turned on, if coding is

used.

In order to do that without coding, the whole file must be stored in the

three sites which is expensive. The same approach can be used to minimize the
energy used to cool the data centers, as it will change over time depending on
the temperature, the pressure, and other factors.

The main contributions of our paper can be summarized as follows:

Multiple formulations of the problem under consideration are derived
that examine the impact of network coding, multicast, deterministic and
stochastic settings, and decentralized operation.

Network coding is demonstrated to reduce the overall system cost and the
problem’s complexity (NP-complete to polynomial).

In the multi-cast case, the problem can be solved in polynomial time with
very good performance, if network coding is performed in the intermediate
nodes.

A distributed algorithm for the problem with network coding is developed
and its convergence to optimality is proved.

The reduction of overall cost under network coding is shown through simu-
lations, and the effect of different factors on the overall cost of all schemes
are investigated.

The rest of the paper is organized as follows. First, some preliminaries are
covered in Section Then, the first formulation of the problem under con-
sideration is presented in Section Bl Next, multiple extensions of the problem



under consideration are designed that include network coding, multicast, and
step power consumption in Section @l A distributed algorithm for the network
coding formulation based on the proximal method and the Lagrange multiplier
method is presented in Section[5l Heuristic algorithms that compute the optimal
solution at lower complexity are designed in Section Experimental evalua-
tion of the various optimization scenarios and algorithms under consideration
is carried out in Section[7l Finally, the paper is concluded in Section Bl

2. Preliminaries

The network is modeled as a directed graph G = (V, E), where V is the set
of nodes, and F is the set of edges that represent the links between the nodes.
The nodes can represent the data centers, the routers, or the host nodes. Let
Sy represent the size of the k-th file to be stored in distributed storage across
the data centers, and let Hy represent the sending rate of the k-th file, which is
assumed to be equal to the receiving rate. Each client can request a file or not.
For that I;; is used, such that if I;; = 1, this means that the k-th file is being
requested by the i-th node. Otherwise I;z = 0. Let P, be a binary variable
that is equal to one, if node i stores block j for file k, and is zero, otherwise. Let
RF represent the number of data blocks affiliated with file k stored at node i
that represents one of the data centers, D; the total amount of storage allocated
at node i, and symbol d; the total traffic load at node . The total amount of
flow at link [ is represented by f;, and X lik is used to represent the rate of flow
at link [ for the k-th file destined for node 4. Let IF(u) represent the set of
previous hop nodes of node u on the shortest path from the location of the k-th
file to node i, and let OF(u) represent the set of next-hop nodes of node u on
the shortest path from the location of the k-th file to node i. Table [Tl compiles
the major symbols used in the paper.

3. Basic Formulation

First, a basic formulation of the problem is considered, where the file demand
across the nodes of the network is deterministic, and no network coding is
applied on the data affiliated with any file. In this case, C; represents the
cost associated with the traffic load that the data center servers need to meet.
Cs represents the cost associated with the amount of storage allocated at each
server. Finally, C3 is the cost of transporting data between data centers and
consumers. As explained earlier, we are interested in minimizing the overall
cost of operating the network, which formally can be described as

Jnin, > [Cr(di) + Co(Di)] + Y Cs(f) (1)
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where X lik and Pfk represent our variables of control. Constraint (2]) represents
the flow conservation at each node at the block level. Constraint (B]) states that
the flow rate of a file destined for a certain node on a certain link is equal to
the sum of the rates of the individual blocks of that file that are destined for
the same node and use the same link. Constraint ([ states that the amount of
storage for a file at a certain data center equals the number of stored blocks,
while constraint (Bl) states that the storage at each data center is equal to the
aggregated storage of all files to be stored at that data center. Constraint (@)
states that the flow at each link is equal to the aggregated flow of all files that use
that link. Constraint () states that the traffic at each data center is equal to the
aggregated flows that enter or exit that data center. To solve this optimization
problem, the popular optimization software package CPLEX [21] is used.

Note that the basic formulation presented above is a mixed inte-
ger linear program (MILP) which is generally very complex to solve.
This high complexity motivated us to design two additional sets of
strategies. The first set is based on Network Coding, which reduces
the basic formulation to a Linear Program (LP) that can be solved
in polynomial time, and achieves a lower cost than that achieved
through solving the MILP formulation. The second set of strategies
is based on heuristics, which are very simple to solve but at the ex-
pense of higher cost. The decision making can be realized using a
centralized controller, such as the centralized controller used in Soft-
ware Defined Networking [22, 23, [24]. Moreover, a distributed way
of solving the network coding case is presented such that the deci-
sion making is distributed among the data centers and the Internet
Service Providers.



4. Extensions

In the following, multiple extensions of the basic problem formulated in
Section [3] are considered that may correspond to various variations of the sce-
nario considered by () to (@) that may arise in practice. First, an extension
where the individual blocks of the file are coded is considered; however, they
are delivered over unicast connections to the clients. Then, a scenario where
intermediate nodes (routers) mix the files associated with different flows using
network coding is considered, to improve throughput. Hence, all files are de-
livered in a multicast fashion. Next, a scenario where the data is not coded at
all, and each file is either fully stored at a data center or not at all is examined.
Furthermore, a scenario is studied where operating a data center comprises a
load-independent cost factor that arises whenever the data center needs to be
powered on [25]. Finally, a dynamic scenario where the operation of the data
center network is considered over a period of time is studied. Specifically, a fixed
data assignment setup is studied, where the data allocation at different network
nodes will not change over time, as opposed to the demand. To conserve space,
in the following subsections, only the differences of each scenario relative to the
basic problem, in terms of formulation are highlighted.

4.1. Formulation with Network Coding (unicast)
The constraints (2) to (@) are replaced with the following constraint:

S X = > X{* = Hiliglu—iSk — HyRE Vu, ik (8)

leIF (u) 1Ok (u)
Constraint (8) represents the flow conservation at each node, where receiving
any Sy linearly independent blocks is sufficient to retrieve the whole file. It

has been shown in [26] that with a moderate finite field size, typically 16, the
different coded blocks will be linearly independent with a very high probability.

4.2. Formulation with Network Coding (Multicast)

Relative to unicast, constraints (@) to (7)) are replaced with:

Xk <zF o VI, VE Vi (9)
Nozi<pn W (10)
k

Z[ Soozb+ Y Zﬂ:di Vi (11)
k lel*(i) leOk (1)

Constraints (@) to () support multicasting through data coding at intermedi-
ate nodes, as in [27]. Here, Z is a slack variable.



4.8. No Coding, file stored entirely or not at all

Here, a formulation without coding is presented, where the file is either
entirely stored at a data center or not at all. The notation is kept the same as
in the deterministic case, except the definition of R¥, where R¥ = 1, if node i
has all the blocks of file k, and R¥ = 0, otherwise. Then, constraints (@) to (5]
are replaced with:

SOXF = N X{* = HyLiply=iS — HyRESy, Yu, i, k (12)
leIF (u) 10k (u)
> RIS, =D; Vi (13)
k

Constraint (I2)) represents the flow conservation law for node ¢. Constraint (I3])
states that the file is either stored entirely or not at all.

4.4. Step Power Consumption

Let a; = 1, if data center 7 is turned on, and a; = 0, otherwise. Let b;
represent the baseline power consumption of an operating data center. Then,
the objective function is changed to:

min_ [Z[C’l(di) + C2(D;) + abs) + Z Cs(f1)]
1

ik pi
X% P

and a new constraint is added:
st fi <a;Cp Vil € I(i),0() (14)

where Cj represents the link [ capacity. Constraint (I4) states that if a data
center is off, then we do not use the links associated with that data center.

4.5. Static Data Assignment

Here, we are interested in minimizing the operating cost over a horizon of
time, for static data placement. That is,

min Z Z [C1(t,di(t)) + Ca(t, D;)] + ch(tvfl(t))]
1

sz PJ
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In this formulation, the variables related to storage at a data center (Pi]}c, Rf, D;)

do not change with time, since the data allocation needs to be fixed. All other

variables are related to the traffic flow, which can change over time depending

on the time-changing demand.

4.6. Stochastic Case Formulation without Network Coding

In the stochastic case, there is a set S = {go, Sy, .. .} of states that the de-
mand can exhibit as it evolves dynamically. Let P denote the stochastic matrix
that describes the transition between demand states. Let T = {to,1,...,t7-1}
denotes the set of time instances at which we are interested in solving the prob-

lem. We are interested in minimizing the average cost of all states, where the
cost of a state S is given by C(S) = 3, [C1(ds) + C2(Ds)] + >, Cs(f1).

T-1
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where constraint (2I]) represents the flow conservation constraint, and con-
straint (27]) ensures that at least ax fraction of the users are getting their re-
quested services.

4.7. Stochastic Case Formulation with Network Coding
Replace constraints (21)-(23) with the following

> - Y ke
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Secs

5. Distributed Algorithm for Network Coding Case

In this section, an adaptive and distributed algorithm for the network coding
case of our problem is developed. This is motivated by the following reasons:

e The linear program of the network coding case is a convex program

e Using the dual approach |28, 29], the dual program is separable [30].
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The challenge in this method is that the objective function is a linear function
and hence is not strictly convex. This may cause the algorithm to oscillate. To
alleviate this challenge, the proximal method [30] is used to convert the objective
function to a strictly convex function. This is done by introducing the auxiliary
variables cil-, D;, fl, and changing the objective function to the following:

mlnz (C1(d;))+C2(D —I—ZCg 1) +Z Ji (d; d +Z Ji (D; D Z (fi— fl)

where 7;, 9;, and ; are positive constants.
The Lagrange cost for the network coding case formulation can be written
as follows:

=
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The distributed algorithm is presented in Algorithm[Il Note that 3;, Bi, s B
are the step sizes of the gradient projection method. The proof of the al-
gorithm’s convergence to the optimal solution is presented in Theo-
rem [1]

Theorem 1. Algorithm [l converges to the optimal solution of the formulation
presented in Section [{-1], if the step sizes satisfy the following conditions(the
subscripts of the step sizes are dropped as these conditions have to be met for
all step sizes):

e 3>0.
e lim;,o3(t) =0.
o 322, B(t) = co.

Proof. The proof is similar to what is presented in [31] O

11



Algorithm 1 Distributed Algorithm
Initialize all Lagrange multipliers to 0.
At the t¢-th iteration, perform the following steps sequentially for m =
0,1,....,.M
Data center ¢ updates the values of A;(t,m + 1), A;(t,m + 1) as follows:
Ai(t,m +1) = [Xi(t,m) + Bi[35,, Rf (t,m) — Di(t )] "
Ntm + 1) = [Nm) 4+ BT, ke Xt Em) +
w +
> icon ) Xi F(t,m)] — di(t,m)]]

Link [ updates the value of A\;(¢,m + 1) as follows:
Nlt,m+1) = Da(t;m) + B[S S X{*(tm) = fit,m)]] "

Relay node u updates the value of AF.(t,m —I—_l) as follows: _
Asi(t,m + 1) = N5 (tm) + BL[ieor ) X" (6 m) = X pr X{F(t,m) +
Hy i Lu=iSy, — HeRE(t,m)]]
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Note that the variables in the algorithm can be updated using local infor-
mation.

6. Heuristic Algorithms

The basic formulation mentioned in Section [3lis a mixed integer linear pro-
gram, which is NP hard. Network coding reduces the problem’s complexity to
that of a linear program which can be solved in polynomial time. In the follow-
ing, a number of heuristic techniques for computing a data placement and flow
control solution at lower complexity are introduced.

First, some necessary notation is provided below. In particular:

e A: An adjacency matrix, where a value in the i-th row and j-th column
represents the cost of traversing the direct link between nodes i and j.

e IW: Shortest path cost matrix: It comprises the cost of the shortest path
between nodes ¢ and j in the network, where the shortest paths are com-
puted according to Dijkstra’s algorithm.

S =(S1,...,5u): Number of blocks in each file, we have M files.
e N: Number of data centers.

e (C: Number of clients.

I — 1 if client ¢ is requesting file k
ik 0 otherwise

6.1. No Coding, One Duplication
Input: W, I
for k=1to M
Initialize B,, to an all zero N x 1 array
foru=1to N
B,=0
fori=1to C
if I, =1
B, = B, + W(u,1)
end if
end for
end for
Find u = argmin(B,)
Store file k on server u
end for

Each file is stored at the server that is closest to the demanding nodes (the
server with the minimum B,,). Specifically, for each file, the aggregated link cost
on all shortest paths from each server to all clients that requested the file is com-
puted. The file is then stored at the server with the minimum cost. The total

13



cost then is computed as the sum of the storage and traffic costs on the chosen
servers and the cost of the links on the shortest path from the servers to the de-
manding clients, over all files. The complexity of this algorithm arises from the
loops and the calculation of the shortest paths, which is O(M % N*C+ (N +C)3).

6.2. No Coding, 2 Duplications
Input: W, I
fork=1to M
Initialize matrix BJ to an all zero N x N matrix
foru=1to N -1
forj=u+1to N

fori=1to C
if I;, =1
B} = BJ + min(W (u, i), W(j,1))
end if
end for
end for
end for

Find u, j that gives the minimum B}
Store file k on servers u, j
end for

Each file is stored at the two servers that are closest to the demanding nodes.
Specifically, for each file, two servers are taken at a time and the aggregated
link cost on the shortest path from each client to the closest of the two servers
is computed. The file is stored on both servers that have the minimum aggre-
gated cost, and each client will get the file from the closest of the two servers.
The total cost is computed as in section A. The complexity of this algorithm is
O(M * N?2xC + (N + C)3)

6.3. No Coding, File Division
Input: W, I, m
Divide each file into m divisions, m < N
fork=1to M
Initialize B, to an all zero N x 1 array
foru=1to N
B,=0
fori=1to C
if I;; =1
B, = B, + W(u,1)
end if
end for
end for

14



Sort B, in Ascending Order

Get servers u in the first m elements of B,,

Store each division of file kK on m servers
end for

Each file will be divided into m divisions, and each division will be stored on
one of the m servers closest to the demanding nodes. Here, the aggregated link
cost on the shortest path from each server to the demanding clients is computed,
as in Section A, but instead of storing the whole file on the closest server, the
file is divided into m divisions and each part is stored at one of the m closest
servers. The complexity of this algorithm is O(M * N = C + (N + C)3)

7. Evaluation

In Section [7.7] the performance of the following schemes are stud-
ied, via simulation experiments.

e Extensions presented in Sections 4.1, 4.2, 4.3.
e Heuristics algorithms presented in Section [6l
e ADMM as adopted from [11].

e SweetSpot as adopted from [12].

In particular, the effect of file popularity, the ratio of storage cost
to transmission cost, the variance in storage cost, and the network
topology, on the resulting energy cost of each scheme are investigated.
In Section[7.2] the same simulations are repeated when the power step
as presented in Section [4.4] is taken into account.

As proved in Theorem [I] in Section [B, the distributed algorithm
presented in Algorithm [1] in Section [B] converges to the optimal solu-
tion of the network coding case presented in Section 4.1l Therefore,
the simulation results for the network coding is representative of both
the network coding extension presented in Section [4.1] and the dis-
tributed algorithm.

Note that in order to perform an evaluation of real systems, differ-
ent clusters at geographically distributed locations need to be setup,
and configuring a single cluster will not solve the problem. Therefore,trace-
driven simulations are performed. All of the works targeting geo-
graphically distributed data centers perform trace-driven simulations
such as [11, 12, [13].

7.1. Results for the Basic Formulation
7.1.1. Setup

The number of files considered in the simulations was 16, where each com-
prises a number of blocks ranging between 10 and 30, with a size of 1 GB per

15



block. The electricity prices for 3 Google data centers located in TX, GA, and
CA were adopted from @] The electricity prices for the rest of the data cen-
ters were taken as a weighted average depending on the distance from all three
Google data centers. Power consumption in a data center was calculated as
follows: A simple web search, which is around 35kB, consumes 0.0003 kWh
including the power consumption from the cooling units ﬂﬁ] Along with the
block size and the electricity price, the power consumption cost is easily found.
As for the link costs, $1 buys 2.7 GB bandwidth over a link of 100 kilometers
as adopted from ﬂ@] The traffic cost at each data center was taken as $0.12
per GB per month, as adopted from ﬂﬁ]

7.1.2. Topology Effect

The simulations are run for two different topologies. The first is the US
backbone topology shown in Fig. Bl as reproduced from @] In this topology,
the numbers in the circles represent the node IDs, while the numbers on the links
represent their length in kilometers. The nodes with ID in {1,5,9,11,14,17,19,23}
were picked as data centers. The rest of the nodes were considered as clients.
The second topology is a random topology, where the nodes have coordinates
drawn from a uniform distribution, and a link is established if the distance
between two nodes is less than a certain threshold. The nodes representing the
data centers are the same as those for the US backbone topology.

¥T
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Figure 3: US Backbone Topology.

Table 2lsummarizes the results of the simulation after normalizing them with
the corresponding results for network coding under multicast. In particular, the
table shows the aggregate cost increase in % incurred by a scheme, relative to
network coding under multicast. From the results, it is observed that network
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topology and the location of data centers in the network affect the total energy
cost incurred by all schemes.

7.1.3. Popularity Effect

Here, the impact of the popularity of each file among the requesting clients
on the total cost is studied. The US backbone topology was chosen for this
simulation. The topology was divided into 4 regions, East, Central, Mountain,
and Pacific. Two different popularity schemes named Unary and Power Set
were simulated. In Unary popularity, each file is considered to be popular in
one region only. In Power Set popularity, some files were considered popular
in one region, some in two regions, some in three regions, and the rest in all
four regions. A file that is popular in a region has an 80% probability of being
demanded, while unpopular files in a region have a 30% demand probability.

Table Bl summarizes our simulation findings. As in Table [2 the results
represent the additional aggregate cost incurred by all schemes, with respect to
network coding under multicast, in order to assess the benefits of the latter. It is
seen that Coding performs better than the other schemes under consideration.
It is also noted that the cost under Power Set popularity is higher than that
under Unary popularity. That is because under Unary popularity, the demand
for a file is concentrated in one region, and the related transmission cost will
be lower, than when satisfying demands that are distributed over the whole
network.

7.1.4. Ratio of Storage Cost to Transmission Cost Effect

To study the influence of the ratio of storage cost to transmission cost on
the performance of all schemes, this quantity was varied between 10, 50, and
100, in the case of the US backbone topology under the Power Set popularity.
The total cost of each scheme after normalizing with respect to network coding
under multicast when the ratio is equal to 10 is shown in Fig. @ When the ratio
is small and the transmission cost is comparable to the storage cost, All File
tends to duplicate a file near the demand locations instead of retrieving a part
of the file from a distant location as in Coding. When the ratio increases and
the storage cost becomes the dominant factor, Coding outperforms All File. It
is also shown in the figure that network coding under multicast can
achieve cost savings up to 90% and 93% when compared to ADMM
and SweetSpot, respectively. This is because ADMM and SweetSpot
schemes do not optimize for data placement, and the files are stored
at every data center. Thus as the storage cost increases, the cost of
ADMM and SweetSpot schemes also increases.

7.1.5. Storage Cost Variance Effect

In this simulation, instead of using the electricity prices, as explained in
the beginning of this section, three random sets of prices were generated that
have the same average value but differ in their variance. The variance was
changed between 20%, 50%, and 80% of the chosen average value. The topology
chosen for these experiments is the US backbone topology under the Power Set
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Figure 4: Storage Cost to Transmission Cost Ratio Effect.

popularity. The results, after normalizing with respect to the network coding
under multicast when the variance is 20%, are shown in Fig. When the
variance of the storage cost is low, the storage cost values for all servers are
close to each other, and the heterogeneous nature of the file demand becomes
the deciding factor. When the variance is high, the heterogeneity of the storage
cost becomes the dominant factor. In the middle, the storage cost heterogeneity
and the file demand heterogeneity compensate for each other, and a lower ratio
for the additional cost is observed. The figure also shows that the total
cost of ADMM and SweetSpot schemes can be up to 5 and 6 fold
respectively when compared to network coding under multicast. This
is because ADMM and SweetSpot schemes do not optimize for data
placement.

7.1.6. Number of Files Effect

In this simulation, the number of files that can be requested by the users
is changed. The topology chosen for these experiments is the US backbone
topology under the Power Set popularity. The results, after normalizing with
respect to the network coding under multicast are shown in Fig. It is seen
from the figure that as the number of files increases, the total cost increases.
The figure also shows that as the number of files increases, the benefits of using
network coding under multicast becomes more apparent, as the cost savings
over the All File scheme increase from 40%, when the number of files is low, to
52%, when the number of files is high. Moreover, network coding under
multicast can achieve cost savings of 75% and 83% over the ADMM
and SweetSpot schemes respectively when the number of files is low,
and 77% and 86% respectively when the number of files is high.
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7.1.7. Number of Data Centers Effect

In this simulation, the effect of changing the number of data centers in
the network is investigated. The topology used is the US backbone topology
under the power set popularity. Fig.[7shows the results for the simulation after
normalizing with respect to the network coding under multicast. It is shown that
there are points where a tradeoff between the storage cost and the transmission
cost can be observed. It is also observed that network coding can reduce
the cost between 25% to 90% when compared to the other schemes.

7.2. Results for the Power Step Formulation

7.2.1. Setup

The number of files considered in our simulations was 16, where each file
comprises a number of blocks ranging between 10 and 30, with a size of 1 GB
per block. Power consumption in a data center was calculated as follows: A
simple web search, which is around 35kB, consumes 0.0003 kWh including the
power consumption from the cooling units |33]. Along with the block size, the
power consumption is easily found. The power consumption for transmission is
assumed to be 0.2 kWh per 1 GB as adopted from [37]. The power consumed to
activate a server is assumed to be 70 Watts [38]. Thus, a data center containing
100 servers requires 7 KW to be activated. All the results presented in this
section are run using the US backbone topology under the power set popularity.

7.2.2. Ratio of Storage Power Consumption to Transmission Power Consump-
tion Effect

In this simulation, the ratio between the power consumption of data stor-

age and data transmission is varied. It is seen from Fig. 8 that when the power
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consumption of data storage is lower than the power consumption of data trans-
mission, All Files scheme consumes less power than the network coding under
unicast scheme. As the ratio increases, the power consumption of data stor-
age becomes the dominant factor and the network coding schemes consume less
power than the All Files scheme. It is also noted that the total power
consumption of ADMM and SweetSpot schemes can be up to 4 and
7 fold respectively when compared to network coding under multi-
cast scheme. This is because ADMM and SweetSpot schemes do not
optimize for data placement. Therefore, as the power consumption
required for storage increases, the power consumption of ADMM and
SweetSpot increases.

7.2.3. Storage Power Consumption Variance Effect

Here, the variance of the power consumption of data storage across the data
centers is varied. It is observed from Fig. [@ that when the variance is high, all
schemes tend to store the data in the data centers with low power consumption,
thus achieving a lower power consumption relative to the case of low power
consumption variance. Moreover, it is noted that the network coding under
multicast scheme achieves between 19% to 65% reduction in power consumption
over the All Files scheme. It is also shown in the figure that network
coding under multicast can achieve up to 80% and 81% reduction
in power consumption over the ADMM and SweetSpot schemes, as
ADMM and SweetSpot schemes do not optimize for data placement.
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7.2.4. Number of Files Effect

Fig. examines the impact of the number of files requested by the users.
It is shown that as the number of files increases, the total power consumption
increases. Moreover, it is observed that the power consumed by the network
coding under multicast scheme is 44% less than the power consumption of the
All File scheme, when the number of files is high. It is also observed from the
figure that network coding under multicast can achieve a reduction in
power consumption of 33% and 60% over the ADMM and SweetSpot
schemes respectively when the number of files is low, and 50% and
65% respectively when the number of files is high.

7.2.5. Number of Data Centers Effect

Fig. [ shows the results when the number of data centers is changed. From
the figure, it is noted that as the number of data centers increases, the total
power consumption decreases. This is because activating a data center closer
to the users consumes less power than transmitting lots of data over greater
distances. Moreover, it is observed that after a certain point, the benefit of ac-
tivating additional data centers diminishes, since there are already enough data
centers close to the users, and activating any additional data centers consumes
more power than transmitting the data over short distances. Finally, it is noted
that the network coding under multicast scheme can achieve between 30% to
90% reduction in power consumption over the All Files scheme, between 55%
to 66% reduction in power consumption over ADMM scheme, and be-
tween 58% to 75% reduction in power consumption over SweetSpot
scheme.
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8. Conclusion

From the simulations, it is shown that network coding, both under unicast

and multicast traffic, reduces the overall cost incurred by file storage and net-
work traffic. The effect of different factors on the overall cost of all schemes
is investigated. It is found that the location of data centers in the topology,
the file popularity, and the ratio of storage cost to transmission cost have the
biggest impact on the overall cost.
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Table 1: Major Symbols

Symbol

Definition

S:(Sl,--.,SM)

Number of blocks per file (M files in total)

Hy, Sending rate of the k-th file which is equal to the receiving rate
I { 1 if node ¢ is requesting file k
! 0 otherwise
Rk Storage amount allocated to file k£ at node ¢
fi Total flow amount on link [
d; Total traffic load of server ¢
D; Total storage amount allocated at server
Xk Flow amount allocated to file k destined for node ¢ on link !
pi 1 if node 7 has the j-th block for file &
ik 0 otherwise
ik 1 if the j-th block for file £ destined to node ¢ uses link !
Yi { 0 otherwise
IF(u) Set of previous-hop nodes for node u on the shortest path
from the location of the k-th file to node 4
OF (u) Set of next-hop nodes for node u on the shortest path
from the location of the k-th file to node 4
Cy(d;) Cost function of the total traffic load of server ¢
Cy(D;) Cost function of the total storage amount allocated at server 4
Cs(f1) Cost function of the total flow amount on link [
ZF Slack variable
S Set of states that the demand can exhibit
pfj The probability that node ¢ will request service j given state S
5

ij

| 1 if node i recieved full service j given state S
0 otherwise

T: {thtla' .- 7tT71}

Set of time instances at which we are interested in solving the problem

P Stochastic matrix
Table 2: Topology Effect on the Performance of All Schemes

Scheme US Backbone Topology | Random Topology

All File 48% 71%

Coding 35% 51%
Heuristic 1 45% 42%
Heuristic 2 86% 73%
Heuristic 3 50% 58%
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Table 3: Popularity Effect on the Performance of All Schemes

Scheme Power Set Popularity | Unary Popularity

All File 48% 34%

Coding 35% 16%
Heuristic 1 45% 32%
Heuristic 2 86% 89%
Heuristic 3 50% 34%
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