Low-Complexity Optimal Estimation of MIMO

ISI Channels with Binary Training Sequences

Shuangquan Wandiudent Member, IEEE, and Ali Abdi, Member, IEEE

Abstract

In this letter, a novel low-complexity optimal channel esdtor using uncorrelategeriodic com-
plementary sets of binary sequences is proposed for nmeHiplut multiple-output (MIMO) intersymbol
interference (ISI) channels. The estimator is optimal siit@ttains the minimum possible CrémRao
lower bound (CRLB). Moreover, it can be implemented withywésw complexity via ASIC/FPGA,

which makes it suitable and ready for practical MIMO systems

Index Terms
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. INTRODUCTION

For quasi-static or slowly-varying fading channels, tragabased channel estimation has been widely
used [1]. Some information theoretical guidelines for tir@gnsequence design over MIMO intersymbol
interference (ISH channels are given in [2]. However, the sequences given]imggy result in high
peak-to-average power ratios (PAPR), which normally shdnéldavoided in practice.

To overcome the above PAPR difficulty, an optimal trainingdosbshannel estimator was proposed in
[3] using uncorrelatedperiodic complementary sets of binary sequences, where the gudadi fetween
data and training symbols are padded with zeros. Neveahethe approach of [3] is not applicable to
systems where the guard period is filled in with some known syswduch as cyclic prefix (CP) of training

sequences, shown in Fig. 1, e.g., the midamble in TD-SCDMA p,3G standard proposed by China.
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We use ISI and frequency-selective interchangeably in this letter.



In order to address channel estimation in such systems,ignidtier, we propose to use uncorrelated
periodic> complementary sets of binary sequences for optimal trgint the end, comparison with
existing binary training sequences such as ZCZ sequendé$ #Ild impulse sequences [2] are provided
as well.

Notation: (-)' is reserved for the matrix transposg)~' for the matrix inverse,-)" for the ma-
trix Hermitian, tr[-] for the trace of a matrixdiag(oy, o2, - ,0,) denotes the diagonal matrix with
01,09, ,0, ON the main diagonalec(-) stacks all the columns of its matrix argument into one tall
column vector,[A],, , is the (m,n)" element of the matrixA, E[-] is the mathematical expectation,
(-) is the sample averagd,, denotes then x m identity matrix, 1,,,x,, iS anm x n matrix whose
entries are 1f€[m,n] implies thatt is an integer such that < t < n, ® represents the Kronecker
product, [x] is the smallest integer not less than|z| is the largest integer not greater than|| - || »
denotes the Frobenius norin)y is the modulugV operatorII,, is the forward shift permutation matrix
of orderm [7, pp. 27], andAIT!, shifts the matrixA, which hasm columns, cyclically to the right
by [ columns. We also havey for mod N circular convolution and: for linear convolution. Unless
otherwise mentioned, lower-case bold letters represemtvextors, whereas upper-case bold letters are

used for matrices.

Il. SYSTEM AND CHANNEL MODELS

We consider a frequency-selective block fading MIMO chanhet H = [Hy, H;,--- ,H;] be the

L + 1 tap discrete-time channel impulse responsz(a )(CIR) of t(h)e Olifvequency-selective channel with
hl,l l e hl,NT l

Nr transmitters andVi receivers, wherdl; = Do : ,1 € [0,L]. In addition, we assume
that elements ol are independent Gaussiar?lvfélrggd‘rh h\}vgfjivél(all)e with zero meahgeach subchannel
Wy, o, = [P, (0), By (1), -+ o, ()] has unit power, i.e.3°F o E [|n, », (1)|?] = 1. Moreover,
the I*! taps of all the subchannels have the same pawei.e., E [|hy, », (1)|?] = 01,1€[0, L], ¥n,, ns.
It follows that "% ,0;=1. We also defineCy, = E {hﬁr’mh;”m} as the covariance matrix among the
L+ 1 taps between the!® Tx andn!® Rx antennas, given b€y, = diag(og, o1, -+ ,01), ¥n,, ns. With
h = vec(H), we haveCy, = E(hh'] = Cs®1Iy, ;.

A typical frame structure for the signal transmitted by th Tx antenna of a MIMO system is
shown in Fig. 1, where the vectsy,, contains the training sequence of length, CP,, = [sp, (N; —

L),--- ,sp,(Ns — 1)], the cyclic prefix ofs,,, is used to separate data and training symbols,ng,

2The periodicity is due to the presence of the CP.



which denoted. 0's, is used to avoid the interframe interference [2]. The irexxktraining signal onVi

Rx antennas, after discarding those polluted by the dataalifel, can be written as in the matrix form

[8]
Y =/7/NrHS +E, 1)

whereS, the Np(L + 1) x N; training matrix, is given by

s= |7 | 7 ®)

[s(Ns—L) s(Ns—L+1) -+ s(Ns—L—1)]
in which s(n) = [s1(n),s2(n), - ,sn,(n)]", and Y = [y(0),y(1),--- ,y(N;—1)], in which y(n) =
[y1(n),y2(n), -, yn, (n)]". The complex noise matrix in (1) is definedBs-[e(0),e(1),--- ,e(N:—1)],
wheree(n) = [e1(n), ea(n),--- ,en, (n)]". Note thats(n), y(n) ande(n), ¥n, are column vectors,,, (n)
is the training symbol transmitted by thé® Tx antenna at time, y,, (n) is the signal received by the
nth Rx antenna at time, e, (n) is the additive noise componentgn, (n), and finally~ is the expected

signal-to-noise ratio (SNR) on each Rx antenna.

[Il. OPTIMAL TRAINING SEQUENCES
A. Criterion for Optimal Training

For channel estimation, we assume the elements of the \alditise matriXE are spatio-temporally
white Gaussian, and independent of the element#HofFollowing the terminology of [9], the best
estimator for the random chanr#l is the minimum mean square error (MMSE) estimator, presented b
the following proposition.

Proposition 1: For the system model in (1), the MMSE estimatorkfis given by
~ -1
H= yleTYST(ssTﬂ—lNTc; ® INT) , 3)
with the following total mean square error (TMSE)

g = ’)’_1NRNT tr

—1
(SST—i—fy_lNTCgl@INT) } . (4)

3To obtain a meaningful estimate, we ne¥d(L + 1) < N..



Note thats coincides with the Bayesian CREBThis proposition can be easily proved by using Theorem
11.1 of [9], combined with the definition ofy, and the equalitwec(AZB) = (B" ® A)vec(Z), upon
rewriting (1) asvec(Y) = /7/Nr(S"T @ I, )vec(H) + vec(E).

From (4), we can conclude that the Bayesian CRLB depends ondinéng symbol matrixS, when the
number of Tx and Rx antennas, SNR, and the fading covariana&n@t are fixed. Under the Tx power
constraint of training symbols, minimization efthroughS is achieved by the following proposition.

Proposition 2: If each training sequence has unit power, iﬁ.,zﬁf;f)l |5, (n)|* = 1, ¥ny, the mini-

mum Bayesian CRLB is obtained if and only if the training setwes satisfy

SS" = NIy, (p+1)- (5)
The semi-unitary condition in (5) is derived in [2] and [8]. ¢@neral, it is hard to find such training
sequences to satisfy (5) [8, pp. 179], since it requires #ilathe training sequences have perfect
periodic autocorrelations and cross-correlations withitemporal shifts. However, by using uncorrelated
complementary sequences, we can handle this problem.tlriffae use more than one, say, two training

sequences [3], each of lengiti per frame per Tx antenhathe optimality condition in (5) reduces to
SaSh + SpSh = 2NIn, (141), (6)

by pluggingS = [S4, Sg] into (5).

The new condition in (6) implies theé, and Sp need to be uncorrelated complementary in terms
of periodic correlations, which is the property owned by thecorrelatedperiodic complementary sets
binary sequences. Therefore we can use them for optimairtgaiin what follows, a brief description

for them is given first, then the optimal training sequencescanstructed accordingly.

B. Uncorrelated Periodic Complementary Sets of Sequences

Let a; = [ai0, @i, - ,ai,(N_l)] be a sequence afl’s, and iy, o, (k) = Zj.\f:‘ol Wi (j4k) |k| <
N-1, is theperiodic auto-correlation o;. A set of sequence@i}fj, each withN elements, iperiodic

complementary if and only iizf;ol Ya,.a; (k) = 0,k # 0 [12]. If another set of sequence{bi}?’;(} is

periodic complementary angjf;(} Ya; b, (k) = 0,|k| < N—1, whereyy, p, (k) = Ejyz‘ol i jbi (k) 1R <

N-—1, then we call{bi}ﬁ.’;ol a mate Of{ai}f:_ol, and vice versa. A collection gferiodic complementary

“The concept of CRLB for random parameter estimation was introduc¢ti0in and named Bayesian CRLB later, say, in
[11].

®Now the condition in footnote 3 can be written &% (L + 1) < 2N.



sets of sequencea;}’"), {b;}7,, ---, {z:}?_, are mutually uncorrelated if every two periodic
complementary sets of sequences in the collection are méteach other [13].

Since theaperiodic complementary paifag, a;} is alsoperiodic complementary [12], the recursive
method used to construct aperiodic complementary pair [3][14] can be utilized to generatgedodic

complementary pair, i.e.,

(m) (m—1) (m—1)
a =a +a,
e me M) (7)
Nk =%k~ (k-d,,)
with aéo,l = ago,l = Ok, Wheredy = 1,6, = 0,k # 0, and {dy,ds, - ,dp} is any permutation of
{20,21, ... 2M-11 " After M iterations, we get a pair of complementary sequenrgeanda;, each of
length N = 2V,

C. Construction of Optimal Training Sequences

Based on property 3) in [154, anda; are also complementary, wheteis the reverse of the sequence
b, i.e.,?k = by_1_k, k€ [0, N—1]. Moreover, according to Theorem 11 in [16h;, —ao} is the mate of
{ap,a; }. Forp = 2, two uncorrelated sets of complementary sequences camieeaged by the procedure
described above, which are not enough when we gve- 2. However, we can use different shifts of the
two sequences for different antennas. One possible tgaawsignment for all the Tx antennas is given in
Table |, whereN, = 2[ Ny /2| and thell's represent the shifts. Based on Table |, we have the midambl
which containss,,, 4 ands,, g, shown in Fig. 2, wher€P,, 4 = [s,, A(N —L),--- ,sp, a(N —1)] and
CPp, B =[sn, B(N—L),---,sn, B(IN—1)]. Of course the training symbols will interfere with the data
However, the interference can be mitigated after chanrtghason using the known training symbols.

As a simple example, foVy = 4, N = 4, and L = 1 (two taps in each subchannel), Table | is
reproduced in Table Il, usingy = [+ + +—] anda; = [+ + —+], where “+” and “—" denotes “1”
and “—1”", respectively.ay anda; can be obtained from (7) by; = 1 andd, = 2. Based on the training

symbols in Table IIS,, v € {A, B}, can be generated according to (2). Theref®re [S4, Sp] is given



by

= [+ -]
tt—t |+
+ =t |+
g_ | —tHr| -+ |
— |+ (8)
ttt— | -+
4+ =t | -+t
=t [ -t
-
Sa Si

From (8), it is easy to check th&S" = 2NTy, 1) = 8ls.
D. MIMO IS Channel Estimator

For the two training sequences of Fig. 2, (1) can be rewrit®fiYa, Y] = /7/NrH[Sa, Sg] +
[E, Eg]. Based on (2) and Table |, it is easy to chéS) + SpS} = 2Ny, 141y, Which satisfies (6)
and demonstrates the optimality of the training symbolgmiin Table I. Furthermore, (3) reduces to
H= (ZVE{A,B}YVSI) {(ZN\/NTTILHJF Jngl)_l@INT], whose elements are

By (1) = —2WVIT
T 2N’}/O'Z—I-NT

> Y.S,

G{A B} ] Nl Np 414

: (9)

wheren, € [1, Ng], n: € [1, Np], andl € [0, L].

IV. FAST IMPLEMENTATION OF THE CHANNEL ESTIMATOR

In order to take the advantages of the filter structure in [3, a@nvert the circular convolution into
the linear one and propose a similar efficient implementatietailed as follows.

From (9), it is clear that the computations for all tié§; Rx antennas take the same procedure.
Therefore, in what follows we focus on the implementation lué thannel estimator on théﬂf1 Rx
antenna. First we define two row vectdss, , of length N, = [Ny/2|(L + 1) and h,,, . of length
N, = | Np/2](L + 1). These row vectors include the CIRs of all the subchannelsdgst the odd- and

even-numbered Tx antennas and ttj_é Rx antenna, respectively, as follows

hnr,o = |:hnr,1 hnr,?) T hn,.,Q[NT/21—1:| ’
(10)

h, .= [hn,‘,Q hy, 4 - hn,,,,QLNT/QJ} ;



whereh,, ., = [hn, 1, (0) hnpopn, (1) -+ hp, n (L)], as defined previously. Moreover, we define four
circulant matrices

Co,4 = circ(ag, N,), Cj 4 = circ(ag, Ne),
(11)
Co.p = circ(ay, N,), Cip= circ(—ag, N,),

with circ(c), ¢ = [co,c1,- -+ , cn—1], @S @nn x n circulant matrix, whoséi, j)*™ element isc(;_; , and
circ(c, m) includes the firsin rows ofcirc(c) such thatn < n. Based on Table | and (9)-(11), estimators

for the channel coefficients specified in (10) can be written as

flnmo = (Zye{A,B}YM,VC—g,u>(I(NT/2T ® Q) )

- (12)
hn”e = (ZVG{A7B}yTL7-,VC—{,V)(ILNT/2J ® Q) )

wherey,, . =[yn, (0),Yn, (1), -, yn, ,(N-1)], ve{A,B},

Q = diag(f) andf is a1l x (L+1) row vector, and defined &s= [QJ”V‘;VJZ]EVT, QZQ%T ) TN Ziv?VT]-

Since(I[NT/ﬂ ® Q) and (ILNT/2J ® Q) in (12) serve as scaling factors only for channel estimatin
ignore them in the following discussion. Let us focus the fiesttar-matrix multiplication in (12), where
the k*" element of the resulting row vector can be Writteljﬁ,sr,7ACaA]1,k+1 = ijz‘ol [Yn,,A(7)a0, (k)]
= SN Myn, a((k =1 —n)x)@on), k € [0,N, — 1], which implies thatym,ACE’A is the circular
convolution ofy,, 4 anday, i.e.,ynhACEA = yn, A®yag. With the same reasoning we g;e,;r,BCEB =
Yn,,B ®N ai, Yn,,.,ACIA =¥Yn,.,A®N a; and Yn,,-,BCT,B = ¥n,.B ®N (—ap).

We define two new row vectorg, 4 andy,, g, each of lengthV+ N, —1, asy,, » = [yn, (0),- -,
Yo (N = 1), 90,0(0), Yo (No = 2)], -4, (1) = Y, 0 ((n)x), Wherev € {4, B} andn €
[0,N + N, —2]. Usingy,, 4 andy,, g, we can convert four circular convolutions of (12) into kme
convolutions. For exampléy,, 4C) 4l1k+1 = Yn_o lin, AN +k—1—n) @], k € [0, N, — 1], and
hence all the elements gfn”ACEA can be computed by the linear convolution3of 4 and ay, i.e.,
Y, A * ag.

Based on the linear convolutions and according to [3, Sec.(3d) can be implemented using the
efficient filter structure shown in Fig. 3 on thé" Rx antenna, where “Rep” generatgs, , fromy,, .,
“@” is the complex adder,®” represents the complex multiplier with one real input amg @omplex
input, “z—P” is the delay unit of lengthD, {dy,ds,--- ,dy} is defined in Sec. IlI-B, “Ext 1” discards
the first N — 1 values, keeps the nexXt, elements and throws away the rest, whereas “Ext 2" discards
the first N — 1 values, keeps the next. elements and discards the rest. “MUX” multiplexes inputs in
groups of L + 1 elements, with the first group coming from the upper brarghs 1,«n,. ® f is the

o~

scaling vector, derived fron® according to (12), and,, = Hnml, e ,hn,,_,NT} is the estimated CIR.



EGC stands for efficient Golay correlator and serves as thehmafilters of{ag, a; }, FGC denotes fast

Golay correlator and is functioned as the matched filtefzaf, —ag} [3].

V. COMPARISON WITHEXISTING SEQUENCES

By the following comparisons with ZCZ sequences [5][6] andtalsequences [2, Table I], we can
conclude that the proposed scheme outperforms them in trbmth low PAPR and low implementation

complexity.

A. Comparison with ZCZ Sequences

ZCZ sequences [5][6] satisfy (5), therefore, can be usedgtnmal training. Compared to the scenario
where each Tx antenna uses one ZCZ sequence per transmissia) dur scheme contains only an extra
guard period of lengtl, (see Fig. 2, where th2"d CP is used to separate the two training sequences).
However, this loss in spectrum efficiency is negligible, doghte large frame length.

Regarding to the hardware complexity, according to Fig. 3each Rx antenna, onlylog, N +2 @’s
[3] and one® are needed. However, for ZCZ sequences, they né€d@N — 1) @’s and oneg), since
Nr finite impulse response filters are required, each wWith= 2N coefficients. This is more complex
than the proposed scheme of Fig. 3.

The PAPR of a sequence = [z1, 23, - ,zy] is defined aPAPR(x) = 2szsv |zl Hence the

% 25:1 |x”|2
PAPR is1 for the training sequences given in Table | and ZCZ sequences.

B. Comparison with Impulse Sequences

Similar to the above comparison, when one compares our mettibdhe impulse sequences [2, Table
I], our scheme only needs an extra guard period of lerigth

Regarding to the complexity, the impulse sequences onlyimeene for scaling, which has less
complexity. However, the PAPR of the impulse sequenced7i§L+1), much greater than, and not

desired in practice.

VI. SIMULATION RESULTS AND CONCLUSION

In the simulation we také, = 7, Ny = 4, Ng = 4, andN = 16, 32, 64. Moreover, each subchannel has
the same exponential power delay profile such that %, 1 €0, L]. Fig. 4 shows the normalized
theoretical minimum Bayesian CRLB, given By, m%ﬁ derived from (4) and (5) with\; = 2NV,
normalized byNyNg. The simulated normalized TMSﬁﬁ—iHH%/m, is plotted as well, which

perfectly matches the minimum Bayesian CRLB.



The numerical results of ZCZ sequencé&32,4,4), G(64,4,8) and G(128,4, 16) [6], and impulse
sequences of lengthy, = 2N, N = 16, 32,64 [2], are also plotted in Fig. 4, where we can see that, for
all the considered cases, all of them attain the minimum BiayeCRLB since they satisfy the condition
in (5).
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TABLE |

ASSIGNMENT OFTRAINING SEQUENCES TOTX ANTENNAS

Tx Sn¢, A Sny,B
1 aop (a_l
2 a1 _<a_0
3 a Iy a Ikt
4 a Iy —ap &

Np—1 || agIr{Mr/21-De+D

ST /21~ D)

Nr | agdm{Mey21-ne+

ST /21— D@+

TABLE 1l

TRAINING EXAMPLE WITH Np =4, N =4 AND L = 1.

B

Sny,B
1| [+++=] | [+—=++]
2 || [++—+] | [+——-]
3 [+—++] | [+++-]
4 | ++4) | - -+
Midamble
P AN
TXTlt‘ Data [Cp’rlt Sp, = [snl (O)f“»sn[(NS 71)” Data lell

Fig. 1. A typical frame structure on the™ Tx antenna using midamble.

Midamble
A

Txnt Data CP?Lf.A

Snt.A = [snt.A (0) 3T

Sny.A (N

—1)]

CPy, |

Sn,.3 = [szt.u((])v"'vsnru(N —1)]

Data

01>< J

L

N

L

Fig. 2. The proposed entire frame structure on il Tx antenna.
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Fig. 3. The proposed fast hardware implementation of the channelastion then!® Rx antenna.
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Fig. 4. The normalized TMSE of the proposed estimator for diffefgfst (Note that/N = 16 is the minimum length of our
scheme for a meaningful estim&eand comparison with ZCZ and impulse sequences.



