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Low-Complexity Optimal Estimation of MIMO

ISI Channels with Binary Training Sequences
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Abstract

In this letter, a novel low-complexity optimal channel estimator using uncorrelatedperiodic com-

plementary sets of binary sequences is proposed for multiple-input multiple-output (MIMO) intersymbol

interference (ISI) channels. The estimator is optimal since it attains the minimum possible Cramér-Rao

lower bound (CRLB). Moreover, it can be implemented with very low complexity via ASIC/FPGA,

which makes it suitable and ready for practical MIMO systems.

Index Terms

MIMO, Uncorrelated Complementary Sets, ISI, Channel Estimation, Frequency-Selective Channel.

I. I NTRODUCTION

For quasi-static or slowly-varying fading channels, training-based channel estimation has been widely

used [1]. Some information theoretical guidelines for training sequence design over MIMO intersymbol

interference (ISI)1 channels are given in [2]. However, the sequences given in [2] may result in high

peak-to-average power ratios (PAPR), which normally shouldbe avoided in practice.

To overcome the above PAPR difficulty, an optimal training-based channel estimator was proposed in

[3] using uncorrelatedaperiodic complementary sets of binary sequences, where the guard period between

data and training symbols are padded with zeros. Nevertheless, the approach of [3] is not applicable to

systems where the guard period is filled in with some known symbols such as cyclic prefix (CP) of training

sequences, shown in Fig. 1, e.g., the midamble in TD-SCDMA [4], the 3G standard proposed by China.
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ali.abdi@njit.edu).

1We use ISI and frequency-selective interchangeably in this letter.
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In order to address channel estimation in such systems, in this letter, we propose to use uncorrelated

periodic2 complementary sets of binary sequences for optimal training. At the end, comparison with

existing binary training sequences such as ZCZ sequences [5][6] and impulse sequences [2] are provided

as well.

Notation: (·)⊤ is reserved for the matrix transpose,(·)−1 for the matrix inverse,(·)† for the ma-

trix Hermitian, tr[·] for the trace of a matrix,diag(σ1, σ2, · · · , σn) denotes the diagonal matrix with

σ1, σ2, · · · , σn on the main diagonal,vec(·) stacks all the columns of its matrix argument into one tall

column vector,[A]m,n is the (m,n)th element of the matrixA, E[·] is the mathematical expectation,

(·) is the sample average,Im denotes them × m identity matrix, 1m×n is anm × n matrix whose

entries are 1,t∈[m,n] implies thatt is an integer such thatm ≤ t ≤ n, ⊗ represents the Kronecker

product,⌈x⌉ is the smallest integer not less thanx, ⌊x⌋ is the largest integer not greater thanx, ‖ · ‖F
denotes the Frobenius norm,(·)N is the modulusN operator,Πm is the forward shift permutation matrix

of orderm [7, pp. 27], andAΠl
m shifts the matrixA, which hasm columns, cyclically to the right

by l columns. We also have⊛N for mod N circular convolution and∗ for linear convolution. Unless

otherwise mentioned, lower-case bold letters represent row vectors, whereas upper-case bold letters are

used for matrices.

II. SYSTEM AND CHANNEL MODELS

We consider a frequency-selective block fading MIMO channel. Let H = [H0,H1, · · · ,HL] be the

L+ 1 tap discrete-time channel impulse response (CIR) of the MIMO frequency-selective channel with

NT transmitters andNR receivers, whereHl =




h1,1(l) ··· h1,NT

(l)

...
...

...
hNR,1(l) ··· hNR,NT

(l)



, l ∈ [0, L]. In addition, we assume

that elements ofH are independent Gaussian random variable with zero mean, and each subchannel

hnr,nt
= [hnr,nt

(0), hnr,nt
(1), · · · , hnr,nt

(L)] has unit power, i.e.,
∑L

l=0 E
[
|hnr,nt

(l)|2
]
= 1. Moreover,

the lth taps of all the subchannels have the same powerσl, i.e., E
[
|hnr,nt

(l)|2
]
= σl, l∈[0, L],∀nr, nt.

It follows that
∑L

l=0σl =1. We also defineCΣ = E

[
h⊤nr,nt

h⋆
nr,nt

]
as the covariance matrix among the

L+1 taps between thenth
t Tx andnth

r Rx antennas, given byCΣ = diag(σ0, σ1, · · · , σL),∀nr, nt. With

h = vec(H), we haveCh = E[hh†] = CΣ⊗INT NR
.

A typical frame structure for the signal transmitted by thenth
t Tx antenna of a MIMO system is

shown in Fig. 1, where the vectorsnt
contains the training sequence of lengthNs, CPnt

= [snt
(Ns −

L), · · · , snt
(Ns − 1)], the cyclic prefix ofsnt

, is used to separate data and training symbols, and01×L,

2The periodicity is due to the presence of the CP.
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which denotesL 0’s, is used to avoid the interframe interference [2]. The received training signal onNR

Rx antennas, after discarding those polluted by the data dueto ISI, can be written as in the matrix form

[8]

Y =
√
γ/NTHS + E, (1)

whereS, theNT (L+ 1)×Ns training matrix, is given by

S =





s(0) s(1) · · · s(Ns − 1)

s(Ns − 1) s(0)
... s(Ns − 2)

...
... ...

...

s(Ns−L) s(Ns−L+1) · · · s(Ns−L−1)





, (2)

in which s(n) = [s1(n), s2(n), · · · , sNT
(n)]⊤, and Y = [y(0),y(1), · · · ,y(Ns−1)], in which y(n) =

[y1(n), y2(n), · · · , yNR
(n)]⊤. The complex noise matrix in (1) is defined asE=[e(0), e(1), · · · , e(Ns−1)],

wheree(n) = [e1(n), e2(n), · · · , eNR
(n)]⊤. Note thats(n), y(n) ande(n), ∀n, are column vectors,snt

(n)

is the training symbol transmitted by thenth
t Tx antenna at timen, ynr

(n) is the signal received by the

nth
r Rx antenna at timen, enr

(n) is the additive noise component inynr
(n), and finallyγ is the expected

signal-to-noise ratio (SNR) on each Rx antenna.

III. O PTIMAL TRAINING SEQUENCES

A. Criterion for Optimal Training

For channel estimation, we assume the elements of the additive noise matrixE are spatio-temporally

white Gaussian, and independent of the elements ofH. Following the terminology of [9], the best

estimator for the random channelH is the minimum mean square error (MMSE) estimator, presented by

the following proposition.

Proposition 1: For the system model in (1), the MMSE estimator ofH is given by3

Ĥ =
√
γ−1NTYS⊤

(
SS⊤+γ−1NTC−1

Σ ⊗ INT

)−1
, (3)

with the following total mean square error (TMSE)

ε = γ−1NRNT tr

[(
SS⊤+γ−1NTC−1

Σ ⊗INT

)−1
]
. (4)

3To obtain a meaningful estimate, we needNT (L + 1) ≤ Ns.
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Note thatε coincides with the Bayesian CRLB4. This proposition can be easily proved by using Theorem

11.1 of [9], combined with the definition ofCh and the equalityvec(AZB) = (B⊤ ⊗A)vec(Z), upon

rewriting (1) asvec(Y) =
√
γ/NT (S⊤ ⊗ INR

)vec(H) + vec(E).

From (4), we can conclude that the Bayesian CRLB depends on the training symbol matrixS, when the

number of Tx and Rx antennas, SNR, and the fading covariance matrix CΣ are fixed. Under the Tx power

constraint of training symbols, minimization ofε throughS is achieved by the following proposition.

Proposition 2: If each training sequence has unit power, i.e.,1
Ns

∑Ns−1
n=0 |snt

(n)|2 = 1, ∀nt, the mini-

mum Bayesian CRLB is obtained if and only if the training sequences satisfy

SS⊤ = NsINT (L+1). (5)

The semi-unitary condition in (5) is derived in [2] and [8]. Ingeneral, it is hard to find such training

sequences to satisfy (5) [8, pp. 179], since it requires thatall the training sequences have perfect

periodic autocorrelations and cross-correlations withinL temporal shifts. However, by using uncorrelated

complementary sequences, we can handle this problem. In fact, if we use more than one, say, two training

sequences [3], each of lengthN per frame per Tx antenna5, the optimality condition in (5) reduces to

SAS⊤A + SBS⊤B = 2NINT (L+1), (6)

by pluggingS = [SA,SB] into (5).

The new condition in (6) implies thatSA and SB need to be uncorrelated complementary in terms

of periodic correlations, which is the property owned by theuncorrelatedperiodic complementary sets

binary sequences. Therefore we can use them for optimal training. In what follows, a brief description

for them is given first, then the optimal training sequences are constructed accordingly.

B. Uncorrelated Periodic Complementary Sets of Sequences

Let ai = [ai,0, ai,1, · · · , ai,(N−1)] be a sequence of±1’s, andψai,ai
(k) =

∑N−1
j=0 ai,jai,(j+k)N

, |k| ≤
N−1, is theperiodic auto-correlation ofai. A set of sequences{ai}p−1

i=0 , each withN elements, isperiodic

complementary if and only if
∑p−1

i=0 ψai,ai
(k) = 0, k 6= 0 [12]. If another set of sequences{bi}p−1

i=0 is

periodic complementary and
∑p−1

i=0 ψai,bi
(k) = 0, |k|≤N−1, whereψai,bi

(k) =
∑N−1

j=0 ai,jbi,(j+k)N
, |k|≤

N−1, then we call{bi}p−1
i=0 a mate of{ai}p−1

i=0 , and vice versa. A collection ofperiodic complementary

4The concept of CRLB for random parameter estimation was introduced in[10], and named Bayesian CRLB later, say, in

[11].

5Now the condition in footnote 3 can be written asNT (L + 1) ≤ 2N .
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sets of sequences{ai}p−1
i=0 , {bi}p−1

i=0 , · · · , {zi}p−1
i=0 are mutually uncorrelated if every two periodic

complementary sets of sequences in the collection are matesof each other [13].

Since theaperiodic complementary pair{a0,a1} is alsoperiodic complementary [12], the recursive

method used to construct anaperiodic complementary pair [3][14] can be utilized to generate aperiodic

complementary pair, i.e.,

a
(m)
0,k = a

(m−1)
0,k + a

(m−1)
1,(k−dm)

a
(m)
1,k = a

(m−1)
0,k − a(m−1)

1,(k−dm)

, m ∈ [1,M ], (7)

with a
(0)
0,k = a

(0)
1,k = δk, where δ0 = 1, δk = 0, k 6= 0, and {d1, d2, · · · , dM} is any permutation of

{20, 21, · · · , 2M−1}. After M iterations, we get a pair of complementary sequencesa0 anda1, each of

lengthN = 2M .

C. Construction of Optimal Training Sequences

Based on property 3) in [15],a0 and←−a1 are also complementary, where
←−
b is the reverse of the sequence

b, i.e.,
←−
b k = bN−1−k, k∈ [0, N−1]. Moreover, according to Theorem 11 in [16],{a1,−←−a0} is the mate of

{a0,
←−a1}. Forp = 2, two uncorrelated sets of complementary sequences can be generated by the procedure

described above, which are not enough when we haveNT > 2. However, we can use different shifts of the

two sequences for different antennas. One possible training assignment for all the Tx antennas is given in

Table I, whereŇT = 2⌈NT /2⌉ and theΠ’s represent the shifts. Based on Table I, we have the midamble,

which containssnt,A andsnt,B, shown in Fig. 2, whereCPnt,A = [snt,A(N −L), · · · , snt,A(N − 1)] and

CPnt,B = [snt,B(N −L), · · · , snt,B(N − 1)]. Of course the training symbols will interfere with the data.

However, the interference can be mitigated after channel estimation using the known training symbols.

As a simple example, forNT = 4, N = 4, andL = 1 (two taps in each subchannel), Table I is

reproduced in Table II, usinga0 = [+ + +−] anda1 = [+ + −+], where “+” and “−” denotes “+1”

and “−1”, respectively.a0 anda1 can be obtained from (7) byd1 = 1 andd2 = 2. Based on the training

symbols in Table II,Sν , ν ∈ {A,B}, can be generated according to (2). ThereforeS = [SA,SB] is given
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by

S =





+ + +− +−++

+ +−+ +−−−
+−++ + + +−
−+ ++ −−+−
−+ ++ + +−+

+ + +− −+−−
+ +−+ −+ ++

+−++ −−−+





.

︸ ︷︷ ︸
SA

︸ ︷︷ ︸
SB

(8)

From (8), it is easy to check thatSS⊤ = 2NINT (L+1) = 8I8.
D. MIMO ISI Channel Estimator

For the two training sequences of Fig. 2, (1) can be rewritten as [YA,YB] =
√
γ/NTH[SA,SB]+

[EA,EB]. Based on (2) and Table I, it is easy to checkSAS⊤A +SBS⊤B = 2NINT (L+1), which satisfies (6)

and demonstrates the optimality of the training symbols given in Table I. Furthermore, (3) reduces to

Ĥ=
(∑

ν∈{A,B}YνS
⊤
ν

)[(
2N

√
γ

NT
IL+1+

√
NT

γ C−1
Σ

)−1
⊗INT

]
, whose elements are

ĥnr,nt
(l) =

σl
√
γNT

2Nγσl +NT




∑

ν∈{A,B}
YνS

⊤
ν





nr,lNT +nt

, (9)

wherenr ∈ [1, NR], nt ∈ [1, NT ], and l ∈ [0, L].

IV. FAST IMPLEMENTATION OF THE CHANNEL ESTIMATOR

In order to take the advantages of the filter structure in [3], we convert the circular convolution into

the linear one and propose a similar efficient implementation, detailed as follows.

From (9), it is clear that the computations for all theNR Rx antennas take the same procedure.

Therefore, in what follows we focus on the implementation of the channel estimator on thenth
r Rx

antenna. First we define two row vectorshnr,o of length No = ⌈NT/2⌉(L + 1) and hnr,e of length

Ne = ⌊NT/2⌋(L+ 1). These row vectors include the CIRs of all the subchannels between the odd- and

even-numbered Tx antennas and thenth
r Rx antenna, respectively, as follows

hnr,o =
[
hnr,1 hnr,3 · · · hnr,2⌈NT/2⌉−1

]
,

hnr,e =
[
hnr,2 hnr,4 · · · hnr,2⌊NT/2⌋

]
,

(10)
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where hnr,nt
= [hnr,nt

(0) hnr,nt
(1) · · · hnr,nt

(L)], as defined previously. Moreover, we define four

circulant matrices

C0,A = circ(a0, No), C1,A = circ(a1, Ne),

C0,B = circ(←−a1, No), C1,B = circ(−←−a0, Ne),

(11)

with circ(c), c = [c0, c1, · · · , cn−1], as ann× n circulant matrix, whose(i, j)th element isc(j−i)n
, and

circ(c,m) includes the firstm rows ofcirc(c) such thatm ≤ n. Based on Table I and (9)-(11), estimators

for the channel coefficients specified in (10) can be written as

ĥnr,o =
(∑

ν∈{A,B}ynr,νC
⊤
0,ν

)(
I⌈NT/2⌉ ⊗Q

)
,

ĥnr,e =
(∑

ν∈{A,B}ynr,νC
⊤
1,ν

)(
I⌊NT/2⌋ ⊗Q

)
,

(12)

whereynr,ν =[ynr,ν(0), ynr,ν(1), · · · , ynr,ν(N−1)], ν∈{A,B},
Q = diag(f) andf is a1×(L+1) row vector, and defined asf = [ σ0

√
γNT

2Nγσ0+NT
, σ1

√
γNT

2Nγσ1+NT
, · · · , σL

√
γNT

2NγσL+NT
].

Since
(
I⌈NT/2⌉ ⊗Q

)
and

(
I⌊NT/2⌋ ⊗Q

)
in (12) serve as scaling factors only for channel estimation, we

ignore them in the following discussion. Let us focus the first vector-matrix multiplication in (12), where

thekth element of the resulting row vector can be written as[ynr,AC⊤
0,A]1,k+1 =

∑N−1
j=0 [ynr,A(j)a0,(j−k)N

]

=
∑N−1

n=0 [ynr,A((k − 1 − n)N )←−a 0,n], k ∈ [0, No − 1], which implies thatynr,AC⊤
0,A is the circular

convolution ofynr,A and←−a0, i.e.,ynr,AC⊤
0,A = ynr,A⊛N

←−a0. With the same reasoning we getynr,BC⊤
0,B =

ynr,B ⊛N a1, ynr,AC⊤
1,A = ynr,A ⊛N

←−a1 andynr,BC⊤
1,B = ynr,B ⊛N (−a0).

We define two new row vectors̆ynr,A andy̆nr,B, each of lengthN +No−1, asy̆nr,ν = [ynr,ν(0), · · · ,
ynr,ν(N − 1), ynr,ν(0), · · · , ynr,ν(No − 2)], i.e., y̆nr,ν(n) = ynr,ν((n)N ), whereν ∈ {A,B} and n ∈
[0, N + No − 2]. Using y̆nr,A and y̆nr,B, we can convert four circular convolutions of (12) into linear

convolutions. For example,[ynr,AC⊤
0,A]1,k+1 =

∑N−1
n=0 [y̆nr,A(N + k− 1− n)←−a 0,n], k ∈ [0, No − 1], and

hence all the elements ofynr,AC⊤
0,A can be computed by the linear convolution ofy̆nr,A and←−a0, i.e.,

y̆nr,A ∗←−a0.

Based on the linear convolutions and according to [3, Sec. V],(12) can be implemented using the

efficient filter structure shown in Fig. 3 on thenth
r Rx antenna, where “Rep” generatesy̆nr,ν from ynr,ν ,

“
⊕

” is the complex adder, “
⊗

” represents the complex multiplier with one real input and one complex

input, “z−D” is the delay unit of lengthD, {d1, d2, · · · , dM} is defined in Sec. III-B, “Ext 1” discards

the firstN − 1 values, keeps the nextNo elements and throws away the rest, whereas “Ext 2” discards

the firstN − 1 values, keeps the nextNe elements and discards the rest. “MUX” multiplexes inputs in

groups ofL + 1 elements, with the first group coming from the upper branch,q = 11×NT
⊗ f is the

scaling vector, derived fromQ according to (12), and̂hnr
=

[
ĥnr,1, · · · , ĥnr,NT

]
is the estimated CIR.



8

EGC stands for efficient Golay correlator and serves as the matched filters of{a0,a1}, FGC denotes fast

Golay correlator and is functioned as the matched filter of{←−a1,−←−a0} [3].

V. COMPARISON WITH EXISTING SEQUENCES

By the following comparisons with ZCZ sequences [5][6] and delta sequences [2, Table I], we can

conclude that the proposed scheme outperforms them in termsof both low PAPR and low implementation

complexity.

A. Comparison with ZCZ Sequences

ZCZ sequences [5][6] satisfy (5), therefore, can be used for optimal training. Compared to the scenario

where each Tx antenna uses one ZCZ sequence per transmission frame, our scheme contains only an extra

guard period of lengthL (see Fig. 2, where the2nd CP is used to separate the two training sequences).

However, this loss in spectrum efficiency is negligible, due to the large frame length.

Regarding to the hardware complexity, according to Fig. 3, oneach Rx antenna, only4 log2N +2
⊕

’s

[3] and one
⊗

are needed. However, for ZCZ sequences, they needNT (2N − 1)
⊕

’s and one
⊗

, since

NT finite impulse response filters are required, each withNs = 2N coefficients. This is more complex

than the proposed scheme of Fig. 3.

The PAPR of a sequencex = [x1, x2, · · · , xN ] is defined asPAPR(x) = max1≤n≤N |xn|2
1

N

∑
N

n=1
|xn|2

. Hence the

PAPR is1 for the training sequences given in Table I and ZCZ sequences.

B. Comparison with Impulse Sequences

Similar to the above comparison, when one compares our methodwith the impulse sequences [2, Table

I], our scheme only needs an extra guard period of lengthL.

Regarding to the complexity, the impulse sequences only require one
⊗

for scaling, which has less

complexity. However, the PAPR of the impulse sequences isNT (L+1), much greater than1, and not

desired in practice.

VI. SIMULATION RESULTS AND CONCLUSION

In the simulation we takeL = 7, NT = 4, NR = 4, andN = 16, 32, 64. Moreover, each subchannel has

the same exponential power delay profile such thatσl =
(1−e−1)e−l

1−e−L−1 , l∈ [0, L]. Fig. 4 shows the normalized

theoretical minimum Bayesian CRLB, given by
∑L

l=0
NT σl

2Nγσl+NT
, derived from (4) and (5) withNs = 2N ,

normalized byNTNR. The simulated normalized TMSE,‖Ĥ−H‖2F /‖H‖2F , is plotted as well, which

perfectly matches the minimum Bayesian CRLB.
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The numerical results of ZCZ sequences,G(32, 4, 4), G(64, 4, 8) andG(128, 4, 16) [6], and impulse

sequences of lengthNs = 2N,N = 16, 32, 64 [2], are also plotted in Fig. 4, where we can see that, for

all the considered cases, all of them attain the minimum Bayesian CRLB since they satisfy the condition

in (5).
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TABLE I

ASSIGNMENT OFTRAINING SEQUENCES TOTX ANTENNAS

Tx snt,A snt,B

1 a0
←−
a1

2 a1 −
←−
a0

3 a0Π
L+1
N

←−
a1Π

L+1
N

4 a1Π
L+1
N −

←−
a0Π

L+1
N

...
...

...

ŇT − 1 a0Π
(⌈NT/2⌉−1)(L+1)
N

←−
a1Π

(⌈NT/2⌉−1)(L+1)
N

ŇT a1Π
(⌈NT/2⌉−1)(L+1)
N −

←−
a0Π

(⌈NT/2⌉−1)(L+1)
N

TABLE II

TRAINING EXAMPLE WITH NT = 4, N = 4 AND L = 1.

Tx snt,A snt,B

1 [+ + +−] [+−++]

2 [+ +−+] [+−−−]

3 [+−++] [+ + +−]

4 [−+ ++] [−−+−]

[ (0), , ( 1)]
t t t
n n n ss s NsTx

t
n CP

t
nData Data

Midamble

1 L
0

Fig. 1. A typical frame structure on thenth
t Tx antenna using midamble.

, , ,[ (0), , ( 1)]
A A A
t t t
n n ns s NsTx

t
n ,CP

A
t
nData Data

Midamble

, , ,[ (0), , ( 1)]
B B B
t t t
n n ns s Ns,CP

B
t
n

L N L N

1 L
0

Fig. 2. The proposed entire frame structure on then
th
t Tx antenna.
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Fig. 3. The proposed fast hardware implementation of the channel estimator on thenth
r Rx antenna.
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Fig. 4. The normalized TMSE of the proposed estimator for differentN ’s (Note thatN = 16 is the minimum length of our

scheme for a meaningful estimate5) and comparison with ZCZ and impulse sequences.


