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Abstract— Signaling networks in human cells convey signals 

from the cell membrane to specific target molecules via 

biochemical interactions, to control a variety of cellular 

functions. We have modeled signaling networks as 

communication channels where molecules communicate with 

each other to transfer signals. We have defined and computed the 

fundamental parameters of transmission error probability and 

signaling capacity in signaling networks. This systematic 

approach can be used to understand how cell signaling errors 

and malfunctioning molecules may contribute to the development 

of complex human disorders with unknown molecular bases.   
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I. INTRODUCTION  

Over the past few decades, molecular biologists have 
discovered numerous human proteins and their molecular 
interactions. The human proteome map [1] includes thousands 
of proteins, many of them interacting with each other via 
different post-translational activatory and inhibitory 
modifications such as phosphorylation, methylation and 
ubiquitination. It is now well established that the dysfunction 
of one or more molecules within the molecular networks can 
contribute to the development of different diseases. The major 
challenge is to figure out which molecules in such large 
interconnected networks are more important for the 
development of a certain disease, and how much each molecule 
contributes to the pathology. For example, schizophrenia is a 
complex trait disorder and in recent years several signaling 
proteins, such as DISC1 (disrupted in schizophrenia 1) and 
NRG1 (neuregulin 1) and AKT1 have been consistently 
reported to be associated with increased risk of schizophrenia 
in several different populations around the world [2]. However 
we do not know how much each one of these molecules 
contribute to the disease development and which molecules are 
the most critical ones. 

In this paper, a complex disorder is viewed as the outcome 
of miscommunication in signaling networks with dysfunctional 
molecules. So, we propose to use communication engineering 
concepts, models and methods to model complex trait 
disorders, by quantifying the function of different molecules 
that are known to be associated with the disorder, to find out 
which molecules are the most critical ones for the development 
of pathology. Our approach can also identify previously 
unknown critical molecules and their contributions to the 
disease development. In this model, a molecule is considered 
critically important if its dysfunction disrupts the expected 
function of the intracellular communication network. 

In order to proceed with the molecular communication 
approach, we need to choose a modeling framework for 
molecular networks. In large networks with so many 
molecules, we often do not have enough information on 
mechanistic details and kinetic parameters, therefore, 
differential equation-based models are not feasible for the 
analyses of such large networks. Instead, logical network 
models such as binary (Boolean) are appropriate as they can be 
constructed with minimal amount of information about the 
molecules and their interactions, and yet they can provide 
useful biologically-relevant predictions that can be verified 
experimentally [3]. The efficacy of such logical models are 
described with details in some recent review and research 
articles [4]-[13]. 

In this paper we use a ternary logic framework to study 
communication among molecules in signaling networks, which 
complements our prior study using a binary framework [14].  

The rest of this paper is organized as follows: In Section II 
we summarize the approach that we developed in [14] to model 
signaling networks as communication channels, where 
molecules were considered to follow a binary activity model. 
Section III is devoted to a ternary activity model for molecules, 
to study how a more complex activity model may affect 
signaling network communication parameters such as 
transmission error probability and signaling capacity. 
Transmission error probability and signaling capacity are 
defined and computed in Section  IV, and are used to find 
critical molecule in signaling networks. Some concluding 
remarks are provided in Section V. 

II. SIGNALING NETWORKS AS  COMMUNICATION CHANNELS 

Here we summarize the model that we developed in our 
prior study [14], to lay the foundation for a more complex 
model we have introduced in the present study. 

To model a signaling network as a communication channel, 
the first step is to specify input(s) and output(s), as well as 
intermediate molecules in the network. After that we need to 
specify the types of interactions among the molecules within 
the network, using molecular biology data. In the next step we 
should determine binary (active/inactive) logic equations that 
show how each molecule is regulated by its upstream and the 
other molecules in the network.  These equations allow to 
calculate transition probability channel matrix M for the 
network, where each element of the matrix specifies the 
probability of the outputs to be 0 or 1, inactive or active, 
conditioned on the 0 or 1 states of the inputs. As an example of 
this modeling approach, consider caspase3 signaling network 
in Fig. 1, where there are three inputs molecules, i.e., insulin, 
EGF and TNF, 17 intermediate molecules, and one output 



molecule, i.e., caspase3. Communication channel model for the 
normal caspase3 signaling network is shown in Fig. 2, where 
all the molecules in the network are functioning normally. 

 

Fig. 1. The Caspase3 signaling network. 

 

Fig. 2. Transition probability channel matrix of a binary communication 

channel model for the normal caspase3 signaling network. 

To model a pathological (abnormal) signaling network, two 
assumptions are made [14]. First, a dysfunctional molecule 
remains active, 1, or inactive, 0, with an equal probability of  
1/2, regardless of the activity states of the molecules that 
regulate the dysfunctional molecule. Second, the probability of 
each molecule to be dysfunctional is  , except for a dominant 
molecule whose dysfunctionality probability is k , 1k  , 
where k is the dominance factor. This means the 
dysfunctionality probability of the dominant molecule is k 
times greater than other molecules. For k  , this model 
simplifies to the pathological network model introduced in our 
previous publication [3].  

 

 
Fig. 3. Transition probability channel matrix of a binary communication 

channel model for a pathological caspase3 signaling network, where all 
molecules are equally likely to be dysfunctional. 

Based on these assumptions and using the network binary 
logic equations, transition probability channel matrices for the 
pathological signaling network model can be derived as 
functions of k, where matrix entries depend on the molecule 

which is considered to be dominant [14]. Transition probability 
channel matrix M for a pathological caspase3 signaling 
network where all molecules are equally likely to be 
dysfunctional, 1k  , is shown in Fig. 3. 

III. COMMUNICATION CHANNEL REPRESENTATAION OF A 

TERNARY SIGNALING NETWORK MODEL 

Here we expand the binary model of the previous section to 
a ternary model. In a ternary model each molecule can be 
either active, 1, inactive, 0, or partially active, 1/2. One 
possible definition for ternary logic functions AND, OR and 
NOT are provided in Table 1 of [15]. Ternary logic equations 
for the caspase3 network are derived and presented in TABLE 
I, where “max” and “min” stand for maximum and minimum, 
respectively. Using TABLE I we derive the transition 
probability channel matrix M for the normal caspase3 network, 
which is shown in Fig. 4.  

TABLE I.  TERNARY LOGIC EQUATIONS FOR THE CASPASE3 SIGNALING 

NETWORK 

Molecule Ternary logic equation 

AKT AKT= max(EGFR,insulin) 

caspase8 caspase8= min((1-cFLIPL) ,max(ComplexII,ERK)) 

cFLIPL cFLIPL=NFκB 

ComplexI ComplexI=TNF 

ComplexII ComplexII= max(TNF,ComplexI) 

EGFR EGFR=EGF 

ERK ERK=MEK 

IKK IKK=ComplexI 

IRS1 IRS1=Insulin 

JNK1 JNK1=MKK7 

MEK MEK= max(EGFR,IRS1) 

MEKK1ASK1 MEKK1ASK1=ComplexI 

MK2 MK2=p38 

MKK3 MKK3=MEKK1ASK1 

MKK7 MKK7=MEKK1ASK1 

NFκB NFκB=IKK 

p38 p38=MKK3 

caspase3 caspase3= min((1-AKT),max(caspase8,JNK1,MK2)) 

 
To model a pathological signaling network, we assume that 

a dysfunctional molecule remains active, 1, partially active, 
1/2, or inactive, 0, with equal probability of 1/3, regardless of 
its input signals. We also assume that the probability of each 
molecule to be dysfunctional is  , except for a dominant 
molecule whose dysfunctionality probability is k , 1k  , 
where k is the dominance factor. This means the 
dysfunctionality probability of the dominant molecule is k 
times greater than other molecules. A pathological network 
model based on different assumptions is introduced in [16]. 

Using the total probability theorem, each element of 
transition probability channels matrix M, P(output(s) | 



input(s)), for a pathological network model can be calculated 
as follows: 
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Fig. 4. Transition probability channel matrix of a ternary communication 

channel model for the normal caspase3 signaling network. 

Here 0
iD  represents the event that X i  is dysfunctional such 

that its activity level is locked at X 0i  , where X i  is the i-th 
intermediate molecule in the network and n is the total number 
of intermediate molecules. Similarly, 1/2

iD  and 1
iD  denote the 

events that X i  is dysfunctional and locked at X 1/ 2i   and 
X 1i  , respectively. Moreover we have: 
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where (X is dysfunc)i ip P . 

To study the pathological behavior of the caspase3 network 
in Fig. 1, elements of the associated transition probability 
channels matrix M, (caspase3 | EGF,insulin,TNF)P , can be 
calculated by combining Equations (1)-(4):  
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Fig. 5. Transition probability channel matrix of a ternary communication 

channel model for the pathological caspase3 signaling network, when 
AKT is the dominant dysfunctional molecule. 

 
Fig. 6. Transition probability channel matrix of a ternary communication 

channel model for the pathological caspase3 signaling network, when 

EGFR is the dominant dysfunctional molecule. 

Using Equation (5) we have calculated 
(caspase3 | EGF,insulin,TNF)P  depending on which molecule 

is dominant, for all 27 possible inputs in the ternary model. The 
M matrix of the pathological caspase3 signaling network when 



AKT is the dominant dysfunctional molecule is given in Fig. 5, 
whereas Fig. 6 shows the M matrix when EGFR is the 
dominant dysfunctional molecule in the pathological network.  
Distinct M matrices for several other dominant dysfunctional 
molecules are not provided due to space limitation. 

IV. TRANSMISSION ERROR PROBABILITY AND SIGNALING 

CAPACITY OF PATHOLOGICAL NETWORKS 

Here we use transmission error probability and signaling 
capacity as two communication-related metrics to find critical 
molecules in signaling networks. 

The transmission error probability can be calculated using 
the total probability theorem as follow: 

 (incorrect output(s)|input(s)) (input(s))eP P P .  (6) 

For the caspase3 network we have: 

 
( (incorrect caspase3|EGF, insulin,TNF)
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  (7) 

Using the transition probability channel matrix in Fig. 4 , and 
since in our model all the 27 input combinations are assumed 
to be equally probable, Equation (7) can be written as: 
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Now we can use Equation (8) to find transmission error 
probability 

eP  depending on which molecule is dominant in the 
pathological network, by replacing the conditional probabilities 
in (8) with the corresponding elements of the M matrix. For 
example, using some elements of the M matrix in Fig. 5, 

eP  in 
(8) can be simplified to Equation (9), when AKT is the 
dominant dysfunctional molecule in the pathological network. 
Expressions for 

eP  versus k are given in Equations (10)-(16), 
when each of the rest of the molecules is dominant. 
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The above transmission error probabilities are graphed in Fig. 
7 versus k, and will be discussed at the end of this section. 
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Fig. 7. Transmission error probability versus the dominance factor k in a 

ternary model for the pathological caspase3 network. 
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Fig. 8. Signaling capacity versus the dominance factor k in a ternary model 

for the pathological caspase3 network. 

In addition to the transmission error probability, another 
important communication-related metric that we calculate for 
pathological signaling networks modeled as communication 
channels is the signaling capacities C. Depending on which 



molecule in the channel is the dominant dysfunctional 
molecule, we can calculate the associated signaling capacity 
using the transition probability channel matrix M. 

We have used the Arimoto algorithm [17] to numerically 
calculate the signaling capacities of the pathological caspase3 
signaling network, for various dominant dysfunctional 
molecules in the network. The results are graphed in Fig. 8 
versus the dominance factor k.  

Comparison of Fig. 7 and Fig. 8 reveal that AKT is a very 
important molecule in the caspase3 signaling network. 
According to Fig. 7, when AKT is the dominant dysfunctional 
molecule, transmission error probability rapidly increases with 
the dominance factor, and moreover, AKT exhibits the highest 
transmission error probability. Additionally, in Fig. 8 we 
observe when AKT is the dominant dysfunctional molecule, 
signaling capacity rapidly decreases with the dominance factor, 
and remains at the lowest level, compared to other molecules. 
These observations indicate the critical role of AKT in the 
network. On the other hand, few molecules play a less critical 
role in the network function. For example when MEKK1ASK1 
is dominant, transmission error probability is low and signaling 
capacity is relatively high, and both metrics are less sensitive to 
the changes in k. Interestingly, most of the molecules are not 
critical, i.e., when they are dominantly dysfunctional, 
transmission error probability is very low and signaling 
capacity is very high. Examples of such molecules include 
cFLIPL, IKK, NFκB, IRS1, JNK1, MK2, MKK3, MKK7, p38 
and ComplexII. 

With regard to the binary model [14] summarized in 
Section II and the ternary model developed in Section III, we 
observe the increased resolution power of the ternary model in 
specifying critical molecules, at the cost of being a more 
complex model than the binary model.  More specifically, in 
the binary model we have 4 different groups of molecules 
exhibiting 4 different transmission error probability curves (see 
Fig. 2a in [14]). However, according to Fig. 7 for the ternary 
model in the present paper, there are 8 different groups of 
molecules with 8 different transmission error probability 
curves. This indicates more precision in identifying the roles of 
different molecules in the network, at the cost of more complex 
model and method. For example EGFR and MEKK1ASK1 
have the same transmission error probability in the binary 
model (see Fig 2a in [14]), whereas they exhibit different 
transmission error probabilities in the ternary model (see Fig. 7 
in the present paper). We have made the same overall 
observation regarding the signaling capacity of binary and 
ternary network models (see Fig. 2b in [14] and Fig. 8 in the 
present paper). 

V. CONCLUTION 

In this paper we have shown how signaling networks in 
human cells can be modeled as communication channels in 
which inputs and outputs are certain molecules such as ligands 
and transcription factors, respectively. We have shown how 
using binary and ternary activity models for molecules, one can 
study pathological/abnormal network behaviors, as well as 
signal transmission errors, when there are dysfunctional 
molecules in the network. We have observed that a ternary 

model is more complex to build and analyze. The ternary 
model, however, provides a higher resolution power especially 
for separation of molecules with similar error probabilities.  

The proposed approach has the potential to pinpoint those 
critical molecules that have causative effects in some complex 
human disorders. This is an important step for understanding 
the molecular basis of these disorders and finding therapeutics 
that target the activity of such critical molecules [18]. 

REFERENCES 

[1] H. Pearson, “Biologists initiate plan to map human proteome,” Nature, 
vol. 452, no. 7190, pp. 920-921, 2008. 

[2] E.S. Emamian, “AKT/GSK3 signaling pathway and schizophrenia,” 
Frontiers in Molecular Neuroscience, vol. 5, 2012.  

[3] A. Abdi, M. B. Tahoori and E. S. Emamian, “Fault diagnosis 
engineering of digital circuits can identify vulnerable molecules in 
complex cellular pathways,” Science Signaling, vol. 1, no. 42, pp. 48-61, 
2008. 

[4] R.S. Wang, A. Saadatpour and R. Albert, “Boolean modeling in systems 
biology: an overview of methodology and applications,” Phys. Biol., 
vol. 9, no. 5, 055001, 2012. 

[5] C. Chaouiya and E. Remy, “Logical Modelling of Regulatory Networks, 
Methods and Applications,” Bulletin of Mathematical Biology, vol. 75, 
no. 6, pp. 891-895, 2013. 

[6] C. Chaouiya, A. Naldi , D. Thieffry, “Logical modelling of gene 
regulatory networks with GINsim,” Methods Mol Biol, vol. 804, pp. 
463-479, 2012.  

[7] M.I. Davidich and S. Bornholdt, “Boolean Network Model Predicts 
Knockout Mutant Phenotypes of Fission Yeast,” PLoS ONE, vol. 8, no. 
9, e71786, 2013. 

[8] R. Schlatter, et al., “Integration of Boolean models exemplified on 
hepatocyte signal transduction,” Briefings in bioinformatics, vol. 13, pp. 
365-376, 2012. 

[9] G. Karlebach, “Inferring Boolean network states from partial 
information,” EURASIP J Bioinform Syst Biol, vol. 2013, no. 1, pp. 1-
13, 2013. 

[10] K. Kobayashi and K. Hiraishi, “Optimal Control of Gene Regulatory 
Networks with Effectiveness of Multiple Drugs: A Boolean Network 
Approach,” BioMed Research International, vol. 2013, 2013. 

[11] M.L. Wynn, N. Consul, S.D. Merajver and S. Schnell, “Logic-based 
models in systems biology: a predictive and parameter-free network 
analysis method,” Integr. Biol., vol. 4, no. 11, p. 1323-1337, 2012. 

[12] M.K. Morris, J. Saez-Rodriguez, P.K. Sorger and D.A. Lauffenburger, 
“Logic-Based Models for the Analysis of Cell Signaling Networks,” 
Biochemistry, vol. 49, no. 15, pp. 3216-3224, 2010. 

[13] R. Samaga and S. Klamt, “Modeling approaches for qualitative and 
semi-quantitative analysis of cellular signaling networks,” Cell 
Communication and Signaling, vol. 11, no. 1, p. 43, 2013. 

[14] I. Habibi, E.S. Emamian and A. Abdi, “Quantitative analysis of 
intracellular communication and signaling errors in signaling networks,” 
BMC Systems Biology, vol. 8, no. 1, 2014. 

[15] M. Mukaidono, “Regular ternary logic functions—Ternary logic 
functions suitable for treating ambiguity,” IEEE Trans. Comput., vol. C-
35, no. 2, pp. 179–183, Feb. 1986. 

[16] I. Habibi, E.S. Emamian and A. Abdi, “Advanced fault diagnosis 
methods in molecular networks,” PLoS One, vol. 9, e108830, 2014. 

[17] S. Arimoto, “An algorithm for calculating the capacity of an arbitrary 
discrete memoryless channel,” IEEE Trans. Inform. Theory, vol. 18, pp. 
14-20, Jan. 1972. 

[18] A. Abdi and E.S. Emamian, “Fault diagnosis engineering in molecular 
signaling networks: An overview and applications in target discovery,” 
Chemistry and Biodiversity, vol. 7, no. 5, pp. 1111-1123, 2010 (Summit 
on Systems Biology special issue). 

 

 


