
 
 

Abstract—In this paper we have shown that by taking 
advantage of the acoustic particle velocity, in addition to the 
acoustic pressure, multichannel reception can be accomplished in 
underwater channels. Theoretical formulation and Monte Carlo 
simulations are provided for a vector sensor equalizer that 
measures the pressure and the velocity at a single point in space. 
These results demonstrate the usefulness of a compact vector 
sensor as a multichannel equalizer. 

Keywords—Underwater communication, acoustic vector sensor, 
acoustic communication, multichannel equalization, acoustic 
particle velocity. 

I. INTRODUCTION 

A vector sensor is capable of measuring important non-scalar 
components of the acoustic field such as the particle velocity, 
which cannot be obtained by a single scalar pressure sensor. In 
the past few decades, extensive research has been conducted on 
the theory and design of vector sensors (see, for example, 
[1]-[3]). They have been mainly used for underwater target 
localization and SONAR applications. 

On the other hand, underwater acoustic communication 
systems have been relying on scalar sensors only, which 
measure the pressure of the acoustic field. The novel idea of this 
paper is to take advantage of the vector components of the 
acoustic field, such as the particle velocity, sensed by a vector 
sensor at the receiver, for detecting the transmitted data. The 
small size of such receivers is due to the fact that a vector sensor 
measures the scalar and vector components of the acoustic field 
in a single point in space, therefore can serve as a compact 
multichannel receiver. This is different from the existing 
multichannel underwater receivers [4]-[7], which are composed 
of spatially separated pressure-only sensors, which may result 
in large-size arrays. 

The rest of this paper is organized as follows. An overview of 
different types of vector sensors and their current applications 
are provided in Section II. Basic system equations for the 
proposed vector sensor receiver are derived in Section III, 
whereas multichannel equalization using a vector sensor is 
formulated in Section IV. Sections V and VI include simulation 
set up and results, and concluding remarks are provided in 
Section VII. 

II. AN OVERVIEW OF VECTOR SENSORS 

A. Current Applications of Vector Sensors 
The development of vector sensors dates back to 30’s [8]. 

Since late 60’s, the Navy has been using vector sensors in 
systems such as Directional Frequency Analysis and Recording 
(DIFAR) and Directional Command Activated Sonobuoy 
System (DICASS) [9] [10]. In the past few decades, a large 
volume of research has been conducted on theory, performance 
evaluation, and design of vector sensors, mainly used in 
SONAR systems (see, for example, [1] and [2]). Examples 
include accurate azimuth and elevation estimation of a source 
[3] [11], avoiding the left-right ambiguity of linear towed arrays 
of scalar sensors, significant acoustic noise reduction due to the 
highly directive beam pattern [12] [13], etc. All these 
advantages are due to the directional information that vector 
sensors provide, by measuring the three orthogonal components 
of velocity, for example, as well as the pressure component, at a 
single point. 

B. Different Types of Vector Sensors 
In general, there are two types of vector sensors: inertial and 

gradient [14]. Inertial sensors truly measure the velocity or 
acceleration by responding to the acoustic particle motion, 
whereas gradient sensors employ a finite-difference 
approximation to estimate the gradients of the acoustic field 
such as velocity and acceleration. Each sensor type has its own 
advantages and disadvantages. Inertial sensors offer a broad 
dynamic range, but proper supporting and packaging of the 
sensor without affecting its response to the motion is an issue. 
Furthermore, since they do not distinguish between acoustic 
waves and non-acoustic motion sources such as support 
structure vibrations, they must be properly shielded from such 
disturbances. Making accurate yet small inertial sensors at high 
frequencies could be challenging as well. On the other hand, 
gradient sensors can be manufactured in smaller sizes and thus 
are more suitable for high frequencies. However, the 
finite-difference approximation which is the basis of operation 
of these sensors limits their operating dynamic range. 
Moreover, the individual elements of a gradient sensor are 
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required to have low self-noise and should be well calibrated 
and matched. 

Recent progress in material science and manufacturing 
technologies for vector sensors is offering small size, low noise, 
and robust sensors (see [15] as an example). All these 
manufacturing advances certainly encourage the widespread 
use of vector sensors in many more underwater naval and 
civilian applications, including the vector sensor 
communication system proposed and developed in this paper. 
However, the proposed ideas, to take advantage of the vector 
components of the field at the receiver, are not restricted to a 
particular sensor type. Of course the noise properties, input 
dynamic range, bandwidth, sensitivity, and other characteristics 
of a vector sensor affect the reception performance, but the 
principles, models, and concepts developed in this paper remain 
nearly the same. Depending on the application, system cost, 
required precision, etc., one can choose the proper sensor type 
and technology. 

III. SYSTEM EQUATIONS IN A VECTOR SENSOR RECEIVER 

In this section we derive basic system equations for data 
detection via a vector sensor. To demonstrate the basic concepts 
of how both the vector and scalar components of the acoustic 
field can be utilized for data reception, we consider a simple 
system in a two-dimensional (2D) depth-range underwater 
channel. As shown in Fig. 1, there is one transmit pressure 
sensor, shown by a black dot, whereas for reception we use a 
vector sensor, shown by a black square, which measures the 
pressure and the y and z components of the particle velocity. 
This is basically a 1 3×  single-input multiple-output (SIMO) 
system. With more pressure transmitters, one can have a 
multiple-input multiple-output (MIMO) system, which is not 
included here due to space limitations. 

A. Pressure and Velocity Channels and Noises 
There are three channels in Fig. 1: the pressure channel p , 

represented by a straight dashed line, and two 
pressure-equivalent velocity channels zp  and yp , shown by 

curved dashed lines. To define zp  and yp , we need to define 
the two velocity channels zv  and yv , the vertical and 
horizontal components of the particle velocity, respectively. 
According to the linearized momentum equation [12], the z and 
y component of the velocity at the frequency 0f  are given by 
         1 1

0 0 0 0( ) / , ( ) /z yv j p z v j p yρ ω ρ ω− −= − ∂ ∂ = − ∂ ∂ . (1) 

In the above equations, 0ρ  is the density of the fluid, 2 1j = −  
and 0 02 fω π= . Eq. (1) simply states that the velocity in a 
certain direction is proportional to the spatial pressure gradient 
in that direction [12]. To simplify the notation, similar to [12], 
the velocity channels in (1) are multiplied by 0cρ− , the 
negative of the acoustic impedance of the fluid, where c is the 
speed of sound. This gives the associated pressure-equivalent 
velocity channels as 0

z zp c vρ= −  and 0
y yp c vρ= − . With λ  

as the wavelength and 02 / /k cπ λ ω= =  as the wavenumber, 
we finally obtain 
               1 1( ) / , ( ) /z yp jk p z p jk p y− −= ∂ ∂ = ∂ ∂ . (2) 

The additive ambient noise pressure at the receiver is shown 
by n  in Fig. 1. At the same location, the z and y components of 
the ambient noise velocity, sensed by the vector sensor, are 

1
0 0( ) /z j n zη ρ ω −= − ∂ ∂  and 1

0 0( ) /y j n yη ρ ω −= − ∂ ∂ , 
respectively, derived in the same manner as (1). So, the vertical 
and horizontal pressure-equivalent ambient noise velocities are 

1 1
0 0( ) / and ( ) / ,z z y yn c jk n z n c jk n yρ η ρ η− −= − = ∂ ∂ = − = ∂ ∂

respectively, which resemble (2). 

B. Input-Output System Equations 
According to Fig. 1, the received pressure signal at Rx in 

response to the signal s transmitted from Tx can be written as 
r p s n= ⊕ + , where ⊕  stands for convolution in time. We 
also define the z and y components of the pressure-equivalent 
received velocity signals as 1( ) /zr jk r z−= ∂ ∂  and 

1( ) /yr jk r y−= ∂ ∂ , respectively. Based on (2) and by taking the 
spatial gradient of r  with respect to z and y we easily obtain the 
key system equations 
        , ,y y y z z zr p s n r p s n r p s n= ⊕ + = ⊕ + = ⊕ + . (3) 

It is noteworthy that the three output signals , andy zr r r  are 
measured at a single point in space. 

C. Pressure and Velocity Noise Correlations 
We define the spatial pressure noise correlation between the 

two locations ( , )y zy z+ +  and ( , )y z  as 
*( , ) [ ( , ) ( , )]n y z y zq E n y z n y z= + + , where * is the 

complex conjugate and andy z  are real numbers. Using the 
correlation properties of a differentiator in p. 326 of [16], at the 
location ( , )y z  one can show * 1[ { } ] ( ) /y

n yE n n jk q−= ∂ ∂ , 
* 1 * 2 2[ { } ] ( ) / and [ { } ] / ,z z y

n z n z yE n n jk q E n n k q− −= ∂ ∂ = − ∂ ∂ ∂
all calculated for ( , ) (0,0)y z = . For an isotropic noise field in 
the y-z plane we have 2 2 1/ 2

0( , ) ( ( ) )n y z y zq J k= +  [17], with 
(.)mJ  as the m-order Bessel function of the first kind. Using the 

properties of the Bessel functions and their derivatives [18], it is easy 
to verify that * * *[ { } ] [ { } ] [ { } ] 0y z z yE n n E n n E n n= = = , i.e., all the 
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Fig. 1. A 1×3 vector sensor communication system, with one pressure 
transmitter and one vector sensor receiver. The vector sensor measures the 
pressure, as well as the y and z components of the acoustic particle velocity, all
in a single point at the receive side. The system equations are given in (3). 



 
 

noise terms in (3) are uncorrelated. 
The above noise correlations may be derived using the 

general formulas of [19]. However, we have derived them from 
the first principles, to make it transparent to the readers under 
what conditions the noise terms in (3) are uncorrelated. 

D. Pressure and Velocity Average Powers 
1) Noise Powers: Using the statistical properties of a 

differentiator in p. 326 of [16], the powers of the y and z 
components of the pressure-equivalent noise velocity at ( , )y z  
can be obtained as 2 2 2 2[| | ] /y y

n n yE n k q−Ω = = − ∂ ∂  and 
2 2 2 2[| | ] /z z

n n zE n k q−Ω = = − ∂ ∂ , respectively, both calculated at 
( , ) (0,0)y z = . Based on the nq  of the 2D isotropic noise 
model described previously, one can show 1/ 2y z

n nΩ = Ω = . 
Note that the noise pressure power in this model is 

2[| | ] (0,0) 1n nE n qΩ = = = . This means y z
n n nΩ = Ω + Ω , 

consistent with [19]. 
2) Channel Powers: The ambient noise is a superposition of 

several components coming from different angle of arrivals 
(AOAs) [17]. In multipath environments such as shallow 
waters, the channel is also a superposition of multiple 
subchannels. Based on this analogy between n and p, as well as 
their spatial gradients, one can obtain y z

p p pΩ = Ω + Ω , where 
2[| | ]p E pΩ = , 2[| | ]y y

p E pΩ =  and 2[| | ]z z
p E pΩ = . The 

rigorous proof is not provided due to space limitations. In the 
2D isotropic noise model the distribution of AOA is uniform 
over [0, 2 )π  [17], which yields / 2y z

n n nΩ = Ω = Ω . However, 
this is not necessarily the case in multipath channels such as 
shallow waters, which means y

pΩ  and z
pΩ  could be different. 

E. Signal-to-Noise Ratios 
To define the average signal-to-noise ratio (SNR) per channel 

in BER plots of Section VI, let [ (0)... ( 1)]Tp p M= −p , 
[ (0)... ( 1)] and [ (0)... ( 1)]y y y T z z z Tp p M p p M= − = −p p  be 

the taps of the pressure, y- and z-velocity IRs, respectively. 
Then the pressure, y- and z-velocity SNRs are /p p nζ = Ω Ω , 

/y y y
p p nζ = Ω Ω  and /z z z

p p nζ = Ω Ω , respectively, such that 
†

pΩ = p p , †( )y y y
pΩ = p p  and †( )z z z

pΩ = p p . By definition, 
the average SNR per channel for the vector sensor receiver is 

( ) / 3y z
p p pζ ζ ζ ζ= + + . Also p is normalized such that 1pΩ = . 

Based on Subsection III.D, this implies that 1y z
p pΩ + Ω =  in our 

simulations. Since / 2y z
n n nΩ = Ω = Ω  in a 2D isotropic noise 

model, we finally obtain 1/ nζ = Ω , which is the same as the 
SNR of a unit-power pressure channel pζ . 

IV. VECTOR SENSOR AS A MULTICHANNEL EQUALIZER 

In this section we use the basic zero forcing equalizer. Of 
course there are different types of equalizers [20] [21] and we 
are not suggesting the zero forcing algorithm as the best 
possible equalization method. However, since here our 
emphasis is not on equalizer design, we just use a simple 
equalizer to verify the concept. The idea is just to demonstrate 
the feasibility of multichannel intersymbol-interference (ISI) 

removal using a compact vector sensor. Here the system 
equation is 

1 1 1
2 2 2
3 3 3

, where , , and .
     

= + = = =     
     

R H N
R HS N R R H H N N

R H N
 (4) 

In (4) 0 1[ ... ]T
Ks s −=S  includes K transmitted symbols and T  is 

the transpose. With M as the number of channel taps, the same 
for all l, 1, 2,3l = , [ (0)... ( 2)]T

l l lr r K M= + −R  and 
[ (0)... ( 2)]T

l l ln n K M= + −N  are the l-th ( 1) 1K M+ − ×  
received signal and noise vectors, respectively. Also the l-th 
( 1)K M K+ − ×  banded channel matrix is given by 

                  
(0)

(0)
( 1)

( 1)

l
l

l
l

l

h
h

h M
h M

 
 = − − 

H . (5) 

Note that for a vector sensor receiver, the channel indices 1, 2 
and 3 in (4) represent the pressure, pressure-equivalent 
horizontal velocity and pressure-equivalent vertical velocity, 
respectively. So, based on (3), for an arbitrary discrete time 
index t we have 1( ) ( )r t r t= , 2 ( ) ( )yr t r t= , 3 ( ) ( )zr t r t= , 

1( ) ( )h t p t= , 2 ( ) ( )yh t p t= , 3 ( ) ( )zh t p t= , 1 ( ) ( )n t n t= , 
2 ( ) ( )yn t n t=  and 3 ( ) ( )zn t n t= . Assuming perfect channel 

knowledge at the receiver, the zero forcing equalizer is 
                               † 1ˆ ( )−=S H H †H R ,                               (6) 

with Ŝ  as the estimate of S and †  as the transpose conjugate. 
The simulations of Section VI show the performance of (6). 

Since it is difficult to obtain perfect channel estimates at the 
receiver, in this paper we also study the impact of imperfect 
channel estimate on the vector sensor equalizer performance. 
We model the effect of channel estimation error using an 
additive Gaussian perturbation term 

               

ˆ /(1 ) 1/(1 ) ,

ˆ (1 ) 1 (1 ) ,

ˆ (1 ) 1 (1 ) ,

p p p

y y y y y y
p p p

z z z z z z
p p p

ζ ζ ζ

ζ ζ ζ

ζ ζ ζ

= + + +

= + + +

= + + +

p p e

p p e

p p e

                 (7) 

where ˆ ˆ ˆ, , andy zp p p  are imperfect estimates of , , andy zp p p , 
respectively. Moreover, , , andy ze e e  are 1M ×  Gaussian 
random vectors that represent channel estimation errors. Note 
that for each equation in (7), when the corresponding SNR is 
small, i.e., pζ , y

pζ  or z
pζ , the estimation error term becomes 

dominant, as expected. On the other hand, when SNRs are large, 
we reasonably get ˆ ˆ ˆ, , andy y z z≈ ≈ ≈p p p p p p . 

The vectors , , andy ze e e  are independent, and elements of 
each vector are independent and identically distributed 
zero-mean complex Gaussian random variables with standard 
deviations / , / , and /y y z z

p p p p p pM M Mσ σ σ= Ω = Ω = Ω , 
respectively. Note that these choices for the standard deviations 
guarantee that the powers of the true channel coefficient vectors 
and their estimates are the same, i.e., †ˆ ˆ ˆ[ ]p pEΩ = = Ωp p , 

†ˆ ˆ ˆ[( ) ]y y y y
p pEΩ = = Ωp p  and †ˆ ˆ ˆ[( ) ]z z z z

p pEΩ = = Ωp p . 
In the presence of channel estimation error, the zero forcing 



 
 

equalizer can be written as 
                             † 1

ChEstErr
ˆ ˆ ˆ( )−=S H H †Ĥ R ,                             (8) 

where ChEstErrŜ  is the estimate of S, when H is not perfectly 
estimated, and 1 2 3

ˆ ˆ ˆ ˆ[ ]T T T T=H H H H . Performance of (6) and (8) 
are also compared in Section VI via simulation. 

V. SIMULATION SET UP AND PARAMETERS 

In this paper we basically simulate and compare the 
performance of the vector sensor equalizer in (6) and (8) with a 
vertical three-element pressure-only uniform linear array 
(ULA), as well as a single pressure sensor receiver that perform 
zero forcing equalization (with and without perfect channel 
estimate). 

The ULA equations and equalizers are the same as (4), (6) 
and (8), where the three channels represent three vertically 
separated pressure channels. The noise vectors 1 2 3, andN N N  
in both receivers are considered to be complex Gaussians with 
white temporal auto- and cross-correlations. For the isotropic 
noise model discussed in Subsection III.C, the noise vectors 

1 2 3, andN N N  are uncorrelated in the vector sensor receiver. 
For the pressure-only ULA with the element spacing of λ , 
there are some small pressure correlations of 0 ( ) 0.22J kλ =  
and 0 (2 ) 0.15J kλ =  for the separations of λ  and 2λ , 
respectively, that are not included in the simulations. 

With an S vector that includes 200K =  equal-probable 1±  
symbols, and the noise vector and channel matrix N and H 
generated as described above, the received vector R is 
calculated using (4). Then S is estimated using (6) and (8), and 
the bit error rate (BER) curves are plotted, as shown in Section 
VI. The parameters chosen to generate channel IRs are the same 
as [23] and are listed in Table I. Other receiver depths are 
considered in [24]. The sound speed profile we used was 
measured during the underwater communication experiments 
conducted on May 10, 2002, in waters off San Diego, CA [23], 
and is shown in Fig. 2. 

VI. SIMULATION RESULTS AND PERFORMANCE COMPARISON 

According to Table I, there are four propagation scenarios 
- Scenario 1: 5 km range and coarse silt bottom, 
- Scenario 2: 10 km range and coarse silt bottom, 
- Scenario 3: 5 km range and very fine sand bottom, 
- Scenario 4: 10 km range and very fine sand bottom. 
In the following subsections first we show channel impulse 
responses and frequency responses for these four scenarios. 
Then we study the delay spread and the horizontal to vertical 
velocity power ratio versus range and depth, for different 
bottom types. Afterwards, we present BER and eigenvalue 
curves for the above four scenarios, which demonstrate the 
performance of the proposed vector sensor receiver, as well as a 
pressure-only array receiver and a single pressure sensor 
receiver. At the end the impact of channel estimation error is 
discussed. 

A. Impulse Response and Frequency Response 
The amplitudes of the complex impulse responses of the 

above four propagation scenarios are shown in Figs. 3a, 4a, 5a 
and 6a. Each figure includes the impulse responses of the 
pressure, horizontal velocity and vertical velocity channels, 
with powers pΩ , y

pΩ  and z
pΩ  defined in Subsection III.E, 

respectively. To obtain the velocity channel impulse responses 
yp  and zp  from the p channel impulse response generated by 

Bellhop [22], each spatial gradient in (2) is approximated by a 
finite difference. Therefore at location ( , )y z  we have 

( , ) / [ ( , 0.2 ) ( , )] /(0.2 )p y z z p y z p y zλ λ∂ ∂ ≈ + −  and 
( , ) / [ ( 0.2 , ) ( , )] /(0.2 )p y z y p y z p y zλ λ∂ ∂ ≈ + − . The number of 

channel taps and the powers of horizontal and vertical velocity 
channels in the simulations are given below 
- Scenario 1: 147, 0.42, 0.58y z

p pM = Ω = Ω = , 
- Scenario 2: 197, 0, 1y z

p pM = Ω = Ω = , 
- Scenario 3: 460, 0.39, 0.61y z

p pM = Ω = Ω = , 
- Scenario 4: 846, 0.03, 0.97y z

p pM = Ω = Ω = . 
Notice that in Scenarios 2 and 4, the power of the horizontal 
velocity channel is much smaller than the vertical velocity 
channel. This issue will be further investigated later in the 
paper. As mentioned in Subsection III.E, the pressure channel in 
simulations is normalized to have unit power, i.e., 1pΩ = , and 

TABLE I 
SIMULATION AND CHANNEL PARAMETERS 

Water Depth (m) 81.158 
Water Density (kg/m3) 1024 
Transmitter Depth (m) 25 
Transmit Take-off Angle (degree) -30 to 30 
Number of Beams 2001 
Bottom Types Coarse silt, Very fine sand 
Receiver Depth (m) 63 
Receiver Range (km) 5, 10 
Carrier Frequency (kHz) 12 
Sampling Frequency (kHz) 48 
Data Rate (kbps) 2.4 
Nominal Sound Speed (m/s) 1500 
Wavelength (m) 0.125 

 
Fig. 2. Sound speed versus the water depth. 



 
 

also 1y z
p pΩ + Ω = . 

The amplitudes of the Fourier transforms of the impulse 
responses of Figs. 3a, 4a, 5a and 6a are shown in Figs. 3b, 4b, 5b 
and 6b, respectively. Each figure includes the frequency 
responses of the pressure, horizontal velocity and vertical 
velocity channels. 

B. Delay Spread 
In this subsection we look at the root-mean-squared (RMS) 

delay spread rmsτ  [25] as a measure of the frequency selectivity 
of a channel. Typically a large delay spread indicates a highly 
frequency selective channel. The values of rmsτ  for the four 
scenarios are given in Table II. 

In Fig. 7, rmsτ  of p, yp  and zp  impulse responses are 
plotted versus range, at 20, 40, and 60 m depths, for the coarse 
silt bottom. Then by averaging over these three depths, an 
average curve versus range is obtained for each of the p, yp  
and zp  channels, as shown in Fig. 8 for the coarse silt bottom. 
Figs. 9 and 10 are similarly generated for the very fine sand 
bottom. 

According to Figs. 7 and 9, delay spread of the p channel do 
not noticeably change with depth, compared to the delay 
spreads of yp  and zp  channels. Also based on Fig. 10, the 
very fine sand bottom, the depth-averaged delay spreads of p 
and zp  channels are almost the same. However, for the coarse 
silt bottom in Fig. 8, one can see more variations among the 
depth-averaged delay spreads of all the channels. 

C. Horizontal to Vertical Velocity Power Ratio 
The ratio /y z

p pΩ Ω  is plotted versus the receiver range in Figs. 
11 and 12, for coarse silt and very fine sand bottoms, 
respectively. For each bottom type, first /y z

p pΩ Ω  is presented at 
three different depths which are 20, 40 and 60 m. Then by 
averaging over these three depths, a single average curve versus 
range is obtained for each bottom. According to Fig. 12, for the 
very fine sand bottom we have / 1y z

p pΩ Ω < , for ranges up to 14 
km. For the coarse silt bottom, however, /y z

p pΩ Ω  can take 
large values at certain depths and ranges, as shown in Fig. 11. 

D. Bit Error Rate 
The BER curves versus the average SNR per channel ζ , 

defined in Subsection III.E, are shown in Figs. 3c, 4c, 5c and 6c, 
for Scenarios 1-4, respectively. Each figure includes the BERs 
of a vector sensor receiver, a three-element pressure-only array 
receiver with element spacing λ  and a single pressure sensor 

receiver. As expected, the performance of the single pressure 
sensor receiver is much worse than the other two receivers. The 
performance of the vector sensor receiver is slightly better than 
the pressure-only array. According to the summary of SNRs 
provided in Table III, the difference in performance ranges from 
0.3 dB to 2.4 dB, among all the four scenarios. By changing the 
simulation scenario, for example the bottom type, frequency of 
operation, or inclusion of the flow noise and non-acoustic 
disturbances which are particularly important for inertial 
(motion) vector sensors, one may observe a worse performance 
for the vector sensor equalizer, compared to the pressure-only 
array equalizer. However, it is anticipated that the vector sensor 
and pressure-only array equalizers still will provide comparable 
performance, much superior to a single pressure sensor. 

One simple way of explaining the performance of these three 
zero forcing equalizers is to look at the condition number of 

†H H  in (6). By definition, the condition number of a matrix is 
the ratio of its largest singular value to the smallest one, and a 
large condition number implies that the matrix is nearly 
singular. This corresponds to more noise enhancement in the 
zero forcing equalizer, due to the inverse of †H H . Based on the 
condition numbers provided in Table III, calculated in Matlab®, 
one can see a better equalizer typically has a smaller condition 
number, as expected. For Scenario 3, however, vector sensor 
has a better performance in terms of BER, but with the higher 
condition number. To clarify this, one needs to look at the entire 
spectrum of the eigenvalues. 

In Figs. 3d, 4d, 5d and 6d, the eigenvalues of †H H  are 
plotted for all the propagation scenarios and receivers, 
normalized such that the largest eigenvalue for each scenario 
and receiver is 1. As one can see, the eigenvalues of the vector 
sensor receiver are larger than those of other receivers. In 
Scenario 3, however, there are few small eigenvalues, nearly the 
same as other small eigenvalues. This is one possible 
explanation for the similar BER performance of the vector 
sensor and pressure-only array equalizers in Scenario 3. 

E. Effect of Imperfect Channel Estimates 

TABLE III 
A SUMMARY OF THE REQUIRED SNRS FOR SPECIFIC BERS 

SNR per chann. (dB)  
Equalizer Cond. 

no. BER=10-3 BER=10-2 
Vector sensor 99 4.6 2.1 
Pressure-only array 126 7 4.3 Scen. 1 
Single pressure sensor 174 14 9.7 
Vector sensor 16 5.2 2.7 
Pressure-only array 292 6.7 4.2 Scen. 2 
Single pressure sensor 297 9.2 6.8 
Vector sensor 83 4.3 1.8 
Pressure-only array 57 4.6 2.2 Scen. 3 
Single pressure sensor 58 9.8 7.4 
Vector sensor 12 2.5 0 
Pressure-only array 23 4 1.4 Scen. 4 
Single pressure sensor 25 8.6 6 

TABLE II 
RMS DELAY SPREADS (msec.) IN FOUR PROPAGATION SCENARIOS 

 Pressure 
channel 

Horizontal 
velocity channel 

Vertical  
velocity 
channel 

Scenario 1 7.7 0.26 6.8 
Scenario 2 14.8 12.9 11.4 
Scenario 3 48.1 0.28 44.1 
Scenario 4 90.3 4.3 68.3 



 
 

In Fig. 13 we present the BERs for Scenario 1, with and 
without perfect channel estimates. As expected, equalization 
without exact knowledge of the channel matrix H results in a 
loss in SNR for all types of receivers. For example, at BER = 
10-2, the SNR loss for the vector sensor receiver is 3 dB. 

VII. SUMMARY AND CONCLUSION 

In this paper we have introduced and developed the concept 
of data detection and equalization in underwater 
communication channels using acoustic vector sensors. These 
sensors measure the acoustic pressure, as well as the 
components of the acoustic particle velocity. Basic system 
equations for such a receiver are derived and channel 
equalization using these sensors is formulated. Signal and noise 
power characteristics in such sensors are also investigated. Via 
extensive simulations under different propagation scenarios, the 
performance of a vector sensor equalizer is determined and 
compared with single and multiple pressure sensor receivers. 
The impact of channel estimation error on the receiver 
performance is also studied. The delay spreads of velocity 
channels are also investigated. 

The overall message of the paper is that in the cases 
considered, the proposed vector sensor equalizer and the 
pressure-only array equalizer both outperform a single pressure 
sensor equalizer. The advantage of a vector sensor receiver is its 
smaller size, compared to pressure-only arrays. 

The focus of this paper was mainly on the communication 
aspects of a vector sensor receiver. Those channel modeling and 
propagation issues of acoustic velocity channels that affect the 
system performance will be discussed in another paper. 
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Fig. 3a. The amplitude of the impulse responses in Scenario 1. 

Fig. 3b. The amplitude of the frequency responses in Scenario 1. 

Fig. 3c. BER performance of equalizers in Scenario 1. 

Fig. 3d. Normalized eigenvalues of H†H in Scenario 1. 

Fig. 4a. The amplitude of the impulse responses in Scenario 2. 

Fig. 4b. The amplitude of the frequency responses in Scenario 2. 

Fig. 4c. BER performance of equalizers in Scenario 2. 

Fig. 4d. Normalized eigenvalues of H†H in Scenario 2. 



 
 

Fig. 5a. The amplitude of the impulse responses in Scenario 3. 

Fig. 5b. The amplitude of the frequency responses in Scenario 3. 

Fig. 5c. BER performance of equalizers in Scenario 3. 

Fig. 5d. Normalized eigenvalues of H†H in Scenario 3. 

Fig. 6a. The amplitude of the impulse responses in Scenario 4. 

Fig. 6b. The amplitude of the frequency responses in Scenario 4. 

Fig. 6c. BER performance of equalizers in Scenario 4. 

Fig. 6d. Normalized eigenvalues of H†H in Scenario 4. 



 
 

Fig. 7. Delay spread versus range for the coarse silt bottom at different depths. 
Top: pressure channel, Middle: horizontal velocity channel, Bottom: vertical 
velocity channel. 

Fig. 8. Depth-averaged delay spread versus range for the coarse silt bottom. 

Fig. 11. Horizontal to vertical velocity power ratio versus range for the coarse 
silt bottom. Top: different depths, Bottom: averaged over different depths. 

Fig. 9. Delay spread versus range for the very fine sand bottom at different 
depths. Top: pressure channel, Middle: horizontal velocity channel, Bottom: 
vertical velocity channel. 

Fig. 10. Depth-averaged delay spread versus range for very fine sand bottom. 

Fig. 12. Horizontal to vertical velocity power ratio versus range for the very fine 
sand bottom. Top: different depths, Bottom: averaged over different depths. 
 



 
 

Fig. 13. The impact of imperfect channel estimate on the performance of vector 
sensor and pressure-only equalizers in Scenario 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


