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1. I/TRODUCTIO/ 

A vector sensor measures important non-scalar components of the acoustic field such as 

particle velocity and acceleration, which cannot be measured by a single scalar pressure sensor 

[1]. They have been used for SONAR and target localization [1]-[8], to accurately estimate the 

azimuth and elevation of a source [1] [7], to avoid the left-right ambiguity in linear towed arrays 

of scalar sensors, and to reduce acoustic noise due to their directive beam pattern [8]. 

Application of vector sensors as multichannel underwater equalizers is recently studied [9] [10]. 

In general, there are two types of vector sensors: inertial and gradient. Inertial sensors truly 

measure the velocity or acceleration by responding to the acoustic particle motion, whereas 

gradient sensors employ a finite-difference approximation to estimate the gradients of the 

acoustic field such as velocity and acceleration. Each sensor type has its own merits and 

limitations [11]. Depending on the application, system cost, required precision, etc., one can 

choose the proper sensor type and technology. 

In multipath channels, a vector sensor receives the signal through multiple paths. This 

introduces different levels of correlation in an array of vector sensors. Characterization of these 

correlations in terms of the physical parameters of the channel are needed for proper system 

design, to achieve the required performance in the presence of correlations [12]-[14]. 

Furthermore, closed-form parametric expressions for the signal correlations serve as useful tools 

to estimate some important physical parameters of the channel such as angle spread, mean angle 

of arrival, etc. [15]-[17]. 

In what follows, basic formulas and definitions for signals in a vector sensor array are 

provided in Section 2. Then statistical models for pressure and velocity channels are developed 

in Section 3. General correlation functions for a vector sensor array are derived in Section 4, 

assuming an arbitrary angle of arrival distribution. For a Gaussian angle of arrival distribution, 

closed-form expressions are derived in Section 5 for various correlation functions of interest in 

vector sensor arrays. Comparison with experimental data is carried out in Section 6 and 

concluding remarks are provided in Section 7. 
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2. BASIC DEFI/ITIO/S I/ A VECTOR SE/SOR ARRAY 

Consider a vector sensor system implemented in a shallow water channel, as shown in Fig. 

1. In the two-dimensional y-z (range-depth) plane, there is one pressure transmitter at the far 

filed, called Tx and shown by a black dot. We also have two receive vector sensors, represented 

by two black squares, at 0y =  and the depths 1 1andz z z L= + , with L  as the element spacing. 

The two receive sensors are called 1Rx  and 2Rx , respectively. The array is located at the depth 

z D= , measured with respect to the center of the array. Each vector sensor measures the 

pressure, as well as the y and z components of the particle velocity, all in a single co-located 

point. This means that there are two pressure channels 1p  and 2p , as well as four pressure-

equivalent velocity channels 1
yp , 1

zp , 2
yp  and 2

zp , all measured in Pascal ( 2Newton/m ). In Fig. 1 

the pressure channels are represented by straight dashed lines, whereas the pressure-equivalent 

velocity channels are shown by curved dashed lines. To define 1
yp , 1

zp , 2
yp  and 2

zp , we need to 

define the velocity channels 1
yv , 1

zv , 2
yv  and 2

zv , in m/s. According to the linearized momentum 

equation [18], the y and z components of the velocity at locations 1z  and 1z L+  of the receive 

side and at the frequency 0f  can be written as 

              1 1 2 2
1 1 2 2

0 0 0 0 0 0 0 0

1 1 1 1
, , ,y z y z

p p p p
v v v v

j y j z j y j zρ ω ρ ω ρ ω ρ ω
∂ ∂ ∂ ∂

= − = − = − = −
∂ ∂ ∂ ∂

. (1) 

In the above equations, also known as the Euler’s equation, 0ρ  is the density of the fluid in 

3kg/m , 2 1j = − , and 0 02 fω π=  is the frequency in rad/s. Eq. (1) simply states that the velocity 

in a certain direction is proportional to the spatial pressure gradient in that direction [18] [19]. To 

simplify the notation, similar to [18], we multiply the velocity channels in (1) with 0cρ− , the 

negative of the acoustic impedance of the fluid, where c is the speed of sound in m/s. This gives 

the associated pressure-equivalent velocity channels as 

1 0 1 1 0 1 2 0 2 2 0 2, , , andy y z z y y z zp cv p cv p cv p cvρ ρ ρ ρ= − = − = − = − . With λ  as the wavelength in m and 

02 / /k cπ λ ω= =  as the wavenumber in rad/m, we finally obtain 

                              1 1 2 2
1 1 2 2

1 1 1 1
, , ,y z y z

p p p p
p p p p

jk y jk z jk y jk z

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂
. (2) 
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Each vector sensor in Fig. 1 provides three output signals. For example, 1Rx  generates one 

pressure signal 1r  and two pressure-equivalent velocity signals 1
yr  and 1

zr , measured in the y and 

z directions, respectively. If s represent the transmitted signal, then the received signals can be 

written as 

                                            

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

, ,

, ,

, .

y y y y y y

z z z z z z

r p s n r p s n

r p s n r p s n

r p s n r p s n

= ⊕ + = ⊕ +

= ⊕ + = ⊕ +

= ⊕ + = ⊕ +

 (3) 

In the above equation ⊕  is convolution and each n stands for noise in a particular channel of a 

specific vector sensor. In the rest of the paper we concentrate on the characterization and analysis 

of the six channels 1p , 2p , 1
yp , 1

zp , 2
yp  and 2

zp . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A vector sensor system with one pressure transmitter and two vector sensor receivers. 

Each vector sensor measures the pressure, as well as the y and z component of the acoustic 

particle velocity, all in a single point. 

3. STATISTICAL REPRESE/TATIO/ OF PRESSURE A/D VELOCITY CHA//ELS 

An important multipath underwater channel is the shallow water acoustic channel. It is 
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introduces scattering, reflection loss, and attenuation by sediments, whereas the sea surface is a 

rough surface that generates scattering and reflection loss and attenuation by turbidity and 

bubbles [20]. When compared with deep waters, shallow waters are more complex, due to the 

many interactions of acoustic waves with boundaries, which result in a significant amount of 

multipath propagation. 

In this paper we develop a statistical framework, which concentrates on channel 

characterization using probabilistic models for the random components of the propagation 

environment. In this way, the statistical behavior of the channel can be imitated, and convenient 

closed-form expressions for the correlation functions of interest can be derived. These vector 

sensor parametric correlation expressions allow engineers to design, simulate, and asses a variety 

of design schemes under different channel conditions. 

In what follows we provide proper statistical representations for pressure and velocity 

channels in shallow waters. These channel representations will be used in Section 4, to calculate 

different types of channel correlations. 

3.1. Pressure-Related Channel Functions 

In this subsection we define and focus on the three pressure channel functions ( , )χ γ τ , ( )p τ  

and ( )P f , over the angle-delay, delay-space and frequency-space domains, respectively. 

Fig. 2 shows the system of Fig. 1, as well as the geometrical details of the received rays in a 

shallow water channel, with two vector sensor receivers. Two-dimensional propagation of plane 

waves in the y-z (range-depth) plane is assumed, in a time-invariant environment with 0D  as the 

water depth. All the angles are measured with respect to the positive direction of y, 

counterclockwise. We model the rough sea bottom and its surface as collections of b#  and s#  

scatterers, respectively, such that 1b# ≫  and 1s# ≫ . In Fig. 2, the i-th bottom scatterer is 

represented by b
iS , 1,2,..., bi #= , whereas s

mS  denotes the m-th surface scatterer, 1,2,..., sm #= . 

Rays scattered from the bottom and the surface are shown by solid thick and solid thin lines, 

respectively. The rays scattered from b
iS  hit 1Rx  and 2Rx  at the angle-of-arrivals (AOAs) ,1

b
iγ  

and ,2
b
iγ , respectively. The traveled distances are labeled by ,1

b
iξ  and ,2

b
iξ , respectively. Similarly, 
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the scattered rays from s
mS  impinge 1Rx  and 2Rx  at the AOAs ,1

s
mγ  and ,2

s
mγ , respectively, with 

,1
s
mξ  and ,2

s
mξ  as the traveled distances shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Geometrical representation of the received rays at the two vector sensors in a shallow 

water multipath channel. 

Let τ  and γ  represent the delay (travel time) and the AOA (measured with respect to the 

positive direction of y, counterclockwise). Then in the angle-delay domain, the impulse 

responses of the pressure subchannels 1Tx Rx−  and 2Tx Rx− , represented by 1( , )χ γ τ  and 

2 ( , )χ γ τ , respectively, can be written as 

                      

1/ 2
1 ,1 ,11

1/ 2
,1 ,11

( , ) ( / ) exp( ) ( ) ( )

((1 ) / ) exp( ) ( ) ( ),

b

s

#
b b b b b

b i i i ii

#
s s s s s

b m m m mm

# a j

# a j

χ γ τ ψ δ γ γ δ τ τ

ψ δ γ γ δ τ τ

=

=

= Λ − −

+ − Λ − −

∑
∑

 (4) 

                     

1/ 2
2 ,2 ,21

1/ 2
,2 ,21

( , ) ( / ) exp( ) ( ) ( )

((1 ) / ) exp( ) ( ) ( ).

b

s

#
b b b b b

b i i i ii

#
s s s s s

b m m m mm

# a j

# a j

χ γ τ ψ δ γ γ δ τ τ

ψ δ γ γ δ τ τ

=

=

= Λ − −

+ − Λ − −

∑
∑

 (5) 
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In eq. (4) and (5), (.)δ  is the Dirac delta, 0 and 0b s
i ma a> >  represent the amplitudes of the rays 

scattered from b
iS  and s

mS , respectively, whereas [0,2 ) and [0,2 )b s
i mψ π ψ π∈ ∈  stand for the 

associated phases. The four delay symbols in (4) and (5) represent the travel times from the 

bottom and surface scatterers to the two vector sensors. For example, ,1
b
iτ  denotes the travel time 

from b
iS  to 1Rx , and so on. As becomes clear in Appendix I, the factors 1/ 2( )b# −  and 1/ 2( )s# −  

are included in (4), (5) and the subsequent channel functions, for power normalization. Also 

0 1b≤ Λ ≤  represents the amount of the contribution of the bottom scatterers, as explained 

immediately after eq. (51) in Appendix I. A close to one value for bΛ  indicates that most of the 

received power is coming from the bottom. Of course the amount of the contribution of the 

surface is given by 1 b− Λ . 

A Dirac delta in the angle domain such as ( )δ γ γ− ɶ  corresponds to a plane wave with the 

AOA of γɶ , whose equation at an arbitrary point ( , )y z  is exp( [ cos( ) sin( )])jk y zγ γ+ɶ ɶ . For 

example, ,1( )b
iδ γ γ−  in (4) represents 

1
,1 ,1 1 ,10,

exp( [ cos( ) sin( )]) exp( sin( ))b b b
i i iy z z

jk y z jk zγ γ γ
= =

+ = . 

This is a plane wave emitted from the scatter b
iS  that impinges 1Rx , located at 10 andy z z= = , 

through the AOA of ,1
b
iγ . Using similar plane wave equations for the other angular delta 

functions in (4) and (5), the impulse responses of the pressure subchannels 1Tx Rx−  and 

2Tx Rx−  in the delay-space domain can be respectively written as 

1

1

1/ 2
1 ,1 ,1 ,11 0,

1/ 2
,1 ,1 ,11 0,

( ) ( / ) exp( )exp( [ cos( ) sin( )]) ( )

((1 ) / ) exp( )exp( [ cos( ) sin( )]) ( ) ,

b

s

#
b b b b b b

b i i i i ii y z z

#
s s s s s s

b m m m m mm y z z

p # a j jk y z

# a j jk y z

τ ψ γ γ δ τ τ

ψ γ γ δ τ τ

= = =

= = =

= Λ + −

+ − Λ + −

∑

∑
 (6) 

1

1

1/ 2
2 ,2 ,2 ,21 0,

1 / 2
,2 ,2 ,21 0,

( ) ( / ) exp( )exp( [ cos( ) sin( )]) ( )

((1 ) / ) exp( )exp( [ cos( ) sin( )]) ( ) .

b

s

#
b b b b b b

b i i i i ii y z z L

#
s s s s s s

b m m m m mm y z z L

p # a j jk y z

# a j jk y z

τ ψ γ γ δ τ τ

ψ γ γ δ τ τ

= = = +

= = = +

= Λ + −

+ − Λ + −

∑

∑

 (7) 

Based on the definition of the spatial Fourier transform [21], 1( )p τ  and 2 ( )p τ  can be considered 

as the spatial Fourier transforms of 1( , )χ γ τ  and 2 ( , )χ γ τ , respectively, with respect to γ . The 

terms y and z in (6) and (7) are intentionally maintained, as in the sequel we need to calculate the 

spatial gradients of the pressure with respect to y and z, to obtain the velocities. 
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By taking the Fourier transform of (6) and (7) with respect to τ , we respectively obtain the 

complex baseband transfer functions of the pressure subchannels 1Tx Rx−  and 2Tx Rx−  in the 

frequency-space domain 

1

1

1/ 2
1 ,1 ,1 ,11 0,

1/ 2
,1 ,1 ,11 0,

( ) ( / ) exp( )exp( [ cos( ) sin( )])exp( )

((1 ) / ) exp( )exp( [ cos( ) sin( )])exp( ) ,

b

s

#
b b b b b b

b i i i i ii y z z

#
s s s s s s

b m m m m mm y z z

P f # a j jk y z j

# a j jk y z j

ψ γ γ ωτ

ψ γ γ ωτ

= = =

= = =

= Λ + −

+ − Λ + −

∑

∑

 (8) 

1

1

1/ 2
2 ,2 ,2 ,21 0,

1/ 2
,2 ,2 ,21 0,

( ) ( / ) exp( )exp( [ cos( ) sin( )])exp( )

((1 ) / ) exp( )exp( [ cos( ) sin( )])exp( ) ,

b

s

#
b b b b b b

b i i i i ii y z z L

#
s s s s s s

b m m m m mm y z z L

P f # a j jk y z j

# a j jk y z j

ψ γ γ ωτ

ψ γ γ ωτ

= = = +

= = = +

= Λ + −

+ − Λ + −

∑

∑

 (9) 

where 2 fω π=  is used to simplify the notation. 

3.2. Velocity-Related Channel Functions 

Following the definition of the pressure-equivalent velocity in (2), the velocity channels of 

interest in the delay-space and frequency-space domains can be written as 

                               1 1( ) ( ) ( ), ( ) ( ) ( ), 1,2,y z
l l l lp jk p p jk p lτ τ τ τ− − ′= = =ɺ  (10) 

                             1 1( ) ( ) ( ), ( ) ( ) ( ), 1,2,y z
l l l lP f jk P f P f jk P f l− − ′= = =ɺ  (11) 

where ( ) and ( ), 1,2l lp P f lτ = , are given in (6)-(9). Furthermore, dot and prime denote the 

partial spatial derivatives / and /y z∂ ∂ ∂ ∂ , respectively, of the spatial complex plane waves in (6)

-(9). Clearly for 1,2l = , ( ) and ( )y z
l lp pτ τ  are the pressure-equivalent impulse responses of the 

velocity subchannels in the y and z directions, respectively. Moreover, ( ) and ( )y z
l lP f P f  

represent the pressure-equivalent transfer functions of the velocity subchannels in the y and z 

directions, respectively, with 1,2l = . 

4. CORRELATIO/ FU/CTIO/S I/ VECTOR SE/SORS 

In a given shallow water channel, obviously the numerical values of all the amplitudes, 

phases, AOAs and delays in (6)-(9) are complicated functions of environmental characteristics 

such as the irregular shape of the sea bottom and its layers/losses, volume microstructures, etc. 

Due to the uncertainty and complexity in exact determination of all these variables, we model 
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them as random variables. More specifically, we assume all the amplitudes { } and { }b s
i i m ma a  are 

positive uncorrelated random variables, uncorrelated with the phases { } and { }b s
i i m mψ ψ . In 

addition, all the phases { } and { }b s
i i m mψ ψ  are uncorrelated, uniformly distributed over [0,2 )π . 

The statistical properties of the AOAs and delays will be discussed later. Overall, all the pressure 

and velocity channel functions in (6)-(11) are random processes in space, frequency and delay 

domains. In what follows, first we derive a closed-form expression for the pressure frequency-

space correlation. Then we show how other correlations of interest can be calculated from the 

pressure frequency-space correlation. 

The Pressure Frequency-Space Correlation: We define this correlation as 

*
2 1( , ) [ ( ) ( )]PC f L E P f f P f∆ = + ∆ , where E and *  are mathematical expectation and complex 

conjugate, respectively. In Appendix I we have derived the following expression 

bottom
0

2

surface

( , ) ( )exp( [ cos( ) sin( )])exp( / sin( ))

(1 ) ( )exp( [ cos( ) sin( )])exp( / sin( )) , as  0.

b

s

b b b b b
P b y b

s s s s s
b y s y

C f L w jk L jT d

w jk L jT d

π

γ

π

γ π

γ ε γ γ ω γ γ

γ ε γ γ ω γ γ ε

=

=

∆ = Λ + − ∆

+ − Λ + ∆ →

∫

∫
 (12) 

In this equation 2 fω π∆ = ∆  and 0yε >  is a small displacement in the y direction, introduced in 

Appendix I. Moreover, andb sT T  are defined immediately after (47) in Appendix I. They denote 

the vertical travel times from the sea bottom to the array center, and from the sea surface to the 

array center, respectively. Eq. (12) is a frequency-space correlation model for the pressure field 

which holds for any AOA PDFs with small angle spreads that may be chosen for 

bottom surface( ) and ( )b sw wγ γ . In what follows first we use (12) to derive expressions for various 

spatial and frequency correlations, which hold for any AOA PDF with small angle spreads. Then 

in Section 5 we use a flexible parametric PDF for the AOA, to obtain easy-to-use and closed-

from expressions for correlations of practical interest. 

Now we provide the following two formulas derived from [22], needed in the sequel to 

calculate velocity-related correlations. Let ( , )y zβ  denote a random field in the two-dimensional 

range-depth plane. Also let *( ) [ ( , ) ( , )]C E y z y zβ β β= +ℓ ℓ  be the spatial correlation in the z 
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direction. Then the correlation functions of the derivative of ( , )y zβ  in the z direction, i.e., 

( , ) ( , ) /' y z y z zβ β= ∂ ∂  can be written as 

                                          [ ]*( , ){ ( , )} ( )E y z ' y z Cββ β+ = −∂ ∂ℓ ℓ ℓ , (13) 

                                         [ ]* 2 2( , ){ ( , )} ( )E ' y z ' y z Cββ β+ = −∂ ∂ℓ ℓ ℓ . (14) 

Similar results hold for the derivative of ( , )y zβ  in the y direction, i.e., ( , ) ( , ) /y z y z yβ β= ∂ ∂ɺ . 

4.1. Spatial Correlations for Two Vector Sensors at the Same Frequency 

(a) Pressure Correlation: At a fixed frequency with 0f∆ = , the spatial pressure correlation 

can be obtained from (12) as 

                     
2

0
(0, ) ( ) exp( [ cos( ) sin( )]) , as  0,P y yC L w jk L d

π

γ
γ ε γ γ γ ε

=
= + →∫  (15) 

where the overall AOA PDF ( )w γ  is defined as follows, to include both the bottom and surface 

AOAs 

                                              bottom surface( ) ( ) (1 ) ( )b bw w wγ γ γ= Λ + − Λ . (16) 

Of course bottom surface( ) 0 for 2 , whereas ( ) 0 for 0w wγ π γ π γ γ π= < < = < < . We keep (15) as it 

is, i.e., without replacing yε  by zero. This is because as we will see in the sequel, we need to 

take the derivative of (0, )PC L  with respect to yε  first, then replace yε  by zero. 

(b) Pressure-Velocity Correlations: First we look at the z-component of the velocity. Here 

we are interested in * 1 *
2 1 2 1[ ( ){ ( )} ] ( ) [ ( ){ ( )} ]zE P f P f jk E P f P f− ′= − , where 1 ( )zP f  is replaced 

according to (11). On the other hand, similar to (13), one has 

* *
2 1 2 1[ ( ){ ( )} ] [ ( ) ( )]/ (0, ) /PE P f P f E P f P f L C L L′ = −∂ ∂ = −∂ ∂ . Therefore 

2
* 1

2 1
0

[ ( ){ ( )} ] ( ) (0, ) / ( )sin( )exp( [ cos( ) sin( )]) , as  0,z
P y yE P f P f jk C L L w jk L d

π

γ
γ γ ε γ γ γ ε−

=
= ∂ ∂ = + →∫

 (17) 

where the integral in (17) is coming from (15). An interesting observation can be made when 

( )w γ  is even-symmetric with respect to the y axis (symmetry of the AOAs from the bottom and 

the surface with respect to the horizontal axis y). Then with 0L =  in (17) we obtain 

*
1 1[ ( ){ ( )} ] 0zE P f P f = , i.e., the co-located pressure and the z-component of the velocity are 

uncorrelated. 
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Now we focus on the y-component of the velocity. The correlation of interest is 

* 1 *
2 1 2 1[ ( ){ ( )} ] ( ) [ ( ){ ( )} ]yE P f P f jk E P f P f−= − ɺ , where 1 ( )yP f  is replaced according to (11). Note 

that according to the representations for 2 1( ) and ( )P f P f  in (49) and (48), respectively, the 

location of the second vector sensor can be thought of as 1( , ) ( , ), as 0y yy z z Lε ε= + → , whereas 

the first vector sensor is located at 1( , ) (0, )y z z= . So, using the analogous of (13) in the y 

direction we obtain * *
2 1 2 1[ ( ){ ( )} ] [ ( ) ( )]/ as 0y yE P f P f E P f P f ε ε= −∂ ∂ →ɺ  

(0, ) / as 0P y yC L ε ε= −∂ ∂ → . Differentiation of (15) with respect to yε  results in 

         

* 1
2 1

2

0

[ ( ){ ( )} ] ( ) (0, ) / as 0,

( )cos( )exp( [ cos( ) sin( )]) , as 0.

y
P y y

y y

E P f P f jk C L

w jk L d
π

γ

ε ε

γ γ ε γ γ γ ε

−

=

= ∂ ∂ →

= + →∫
 (18) 

If ( )w γ  is even-symmetric around the z axis, then with 0L =  in (18) we obtain 

*
1 1[ ( ){ ( )} ] 0yE P f P f = , i.e., the co-located pressure and the y-component of the velocity become 

uncorrelated. 

(c) Velocity Correlations: Here we start with the z-component of the velocity. We are 

going to calculate * 2 *
2 1 2 1[ ( ){ ( )} ] [ ( ){ ( )} ]z zE P f P f k E P f P f− ′ ′= , where 2 ( )zP f  and 1 ( )zP f  are 

replaced according to (11). On the other hand, similar to (14), one can write 

* 2 * 2 2 2
2 1 2 1[ ( ){ ( )} ] [ ( ) ( )]/ (0, ) /PE P f P f E P f P f L C L L′ ′ = −∂ ∂ = −∂ ∂ . Hence 

2
* 2 2 2 2

2 1
0

[ ( ){ ( )} ] (0, ) / ( )sin ( )exp( [ cos( ) sin( )]) , as  0,z z
P y yE P f P f k C L L w jk L d

π

γ
γ γ ε γ γ γ ε−

=
= − ∂ ∂ = + →∫

 (19) 

where (15) is used to write the integral in (19). 

Let us now concentrate on the y-component of the velocity. In this case the correlation is 

* 2 *
2 1 2 1[ ( ){ ( )} ] [ ( ){ ( )} ]y yE P f P f k E P f P f−= ɺ ɺ , in which 2 ( )yP f  and 1 ( )yP f  are replaced using to 

(11). As mentioned before (18), the second and the first vector sensors are located at 

1( , ) ( , ), as 0y yy z z Lε ε= + → , and 1( , ) (0, )y z z= , respectively. Thus, by using the equivalent of 

(14) in the y direction we obtain 

* 2 * 2 2 2
2 1 2 1[ ( ){ ( )} ] [ ( ) ( )]/ as 0 (0, ) / as 0y y P y yE P f P f E P f P f C Lε ε ε ε= −∂ ∂ → = −∂ ∂ →ɺ ɺ . Taking the 

second derivative of (15) with respect to yε  results in 
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* 2 2 2
2 1

2
2

0

[ ( ){ ( )} ] (0, ) / as 0,

( )cos ( )exp( [ cos( ) sin( )]) , as 0.

y y
P y y

y y

E P f P f k C L

w jk L d
π

γ

ε ε

γ γ ε γ γ γ ε

−

=

= − ∂ ∂ →

= + →∫
 (20) 

The (average) received powers via the pressure-equivalent velocity channels in the z and y 

directions are 2 2
1 1[| ( ) | ] and [| ( ) | ]z yE P f E P f , respectively. Using (19) and (20) with 0L = , and 

since 2 2sin ( ) 1 and cos ( ) 1γ γ< < , one can easily show 

                  2 2 2 2
1 1 1 1[| ( ) | ] 1, [| ( ) | ] 1, [| ( ) | ] [| ( ) | ] 1z y z yE P f E P f E P f E P f< < + = . (21) 

Therefore, the received powers via the two velocity channels are not equal. However, through 

both of them together we receive the same total power that a pressure sensor collects, as shown 

by the last equation in (21). Note that in this paper the power received by a pressure sensor is 

2
1[| ( ) | ] (0,0) 1PE P f C= = , obtained from (15). 

Finally, the correlation between the z and y components of the velocity is 

* 2 *
2 1 2 1[ ( ){ ( )} ] [ ( ){ ( )} ]z yE P f P f k E P f P f− ′= ɺ , with 2 1( ) and ( )z yP f P f  substituted according to (11). 

A straightforward generalization of (14) results in 

* 2 * 2
2 1 2 1[ ( ){ ( )} ] [ ( ) ( )]/ as 0 (0, ) / as 0y y P y yE P f P f E P f P f L C L Lε ε ε ε′ = −∂ ∂ ∂ → = −∂ ∂ ∂ →ɺ . By 

taking the derivatives of (15) with respect to L and yε  we obtain 

   

* 2 2
2 1

2

0

[ ( ){ ( )} ] (0, ) / as 0,

( )sin( )cos( )exp( [ cos( ) sin( )]) , as  0.

z y
P y y

y y

E P f P f k C L L

w jk L d
π

γ

ε ε

γ γ γ ε γ γ γ ε

−

=

= − ∂ ∂ ∂ →

= + →∫
 (22) 

With 0L = , there are two possibilities for which (22) becomes zero: ( )w γ  is even-symmetric 

with respect to the y axis, or ( )w γ  is even-symmetric around the z axis. In both cases the co-

located z and y components of the velocity are uncorrelated. 

4.2. Frequency-Space Correlations for Two Vector Sensors 

To investigate the frequency-space correlation between the channels of the two vector 

sensors of Fig. 1, one needs to replace 2 ( )P f  in equations (17)-(20) and (22) of Subsection 4.1 

with 2 ( )P f f+ ∆ . This provides us with the following equations for the frequency-space 

correlations between the two vector sensor receivers. 
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(a) Pressure-Velocity Correlations: 

                                     * 1
2 1[ ( ){ ( )} ] ( ) ( , ) / ,z

PE P f f P f jk C f L L−+ ∆ = ∂ ∆ ∂  (23) 

                            * 1
2 1[ ( ){ ( )} ] ( ) ( , ) / , as 0.y

P y yE P f f P f jk C f L ε ε−+ ∆ = ∂ ∆ ∂ →  (24) 

(b) Velocity Correlations: 

                                     * 2 2 2
2 1[ ( ){ ( )} ] ( , ) / ,z z

PE P f f P f k C f L L−+ ∆ = − ∂ ∆ ∂  (25) 

                            * 2 2 2
2 1[ ( ){ ( )} ] ( , ) / , as 0,y y

P y yE P f f P f k C f L ε ε−+ ∆ = − ∂ ∆ ∂ →  (26) 

                          * 2 2
2 1[ ( ){ ( )} ] ( , ) / , as 0.z y

P y yE P f f P f k C f L L ε ε−+ ∆ = − ∂ ∆ ∂ ∂ →  (27) 

For any given ( , )PC f L∆ , the above correlations can be easily calculated by taking the 

derivates. In what follows, one model for ( , )PC f L∆  is provided and different types of 

correlations are calculated. 

5. A CASE STUDY 

Here we consider the case where the two-element vector sensor array in Fig. 2 receives 

signal through two beams: one from the bottom with mean AOA bµ  and angle spread bσ , and 

the other one from the surface with mean AOA sµ  and angle spread sσ . When the angle spreads 

are small, one can model the AOAs with the following Gaussian PDFs 

                       
2 1/ 2 2 2

buttom

2 1/ 2 2 2
surface

( ) (2 ) exp[ ( ) (2 )], 0 ,

( ) (2 ) exp[ ( ) (2 )], 2 .

b b b
b b b

s s s
s s s

w

w

γ πσ γ µ σ γ π

γ πσ γ µ σ π γ π

−

−

= − − < <

= − − < <
 (28) 

For large angle spreads, once can use the von Mises PDF [23] [24]. In Fig. 3 these two PDFs are 

plotted in both linear and polar coordinates. 

The first-order Taylor expansion of bγ  around bµ  gives the following results 

                                          cos( ) cos( ) sin( )( )b b
b b bγ µ µ γ µ≈ − − , 

                                          sin( ) sin( ) cos( )( )b b
b b bγ µ µ γ µ≈ + − , 

                                     
1 1 1 1

( )
sin( ) sin( ) sin( ) tan( )

b
bb

b b b

γ µ
γ µ µ µ

≈ − − , (29) 

where tan(.) sin(.) / cos(.)= . Of course similar relations can be obtained for sγ . The utility of 

these first-order expansions comes from the considered small angle spreads, which means the 
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AOAs andb sγ γ  are mainly concentrated around andb sµ µ , respectively . By substituting these 

relations into (12), ( , )PC f L∆  can be written as 

( )
( )

( )

1

1
bottom

0

1

surface

( , ) exp cos( ) sin( ) [sin( )]

( )exp sin( ) cos( ) [sin( ) tan( )] ( )

(1 )exp cos( ) sin( ) [sin( )]

( )exp

b

P b y b b b b

b b b
y b b b b b b

b y s s s s

s

C f L jk jkL j T

w j k kL T d

jk jkL j T

w j

π

γ

ε µ µ µ ω

γ ε µ µ µ µ ω γ µ γ

ε µ µ µ ω

γ

−

−

=

−

∆ ≈ Λ + − ∆

 × − + + ∆ − 

+ − Λ + + ∆

× −

∫

( )2
1sin( ) cos( ) [sin( ) tan( )] ( ) , as  0.

s

s s
y s s s s s s yk kL T d

π

γ π
ε µ µ µ µ ω γ µ γ ε−

=
 + − ∆ − → ∫

 (30) 
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Fig. 3. The bottom and surface angle-of-arrival Gaussian PDFs in (28), with 

o o

/ 90 (2 ), /18 (10 ),b bσ π µ π= =  o o o/120 (1.5 ) and 348 /180 (348 12 )s sσ π µ π= = ≡ − : (a) 

linear plot, (b) polar plot. 

The integrals in (30) resemble the characteristic function of a zero-mean Gaussian variable, 

which is 2 1/ 2 2 2 2 2exp( )(2 ) exp[ /(2 )] exp( / 2)j x x dxθ π σ σ σ θ− − = −∫  [22] . This simplifies (30) to 

the following closed form 

 

( )

( )

( )

1

2
2 1

1

2

( , ) exp cos( ) sin( ) [sin( )]

exp 0.5 sin( ) cos( ) [sin( ) tan( )]

(1 )exp cos( ) sin( ) [sin( )]

exp 0.5 sin( ) cos( )

P b y b b b b

b y b b b b b

b y s s s s

s y s s

C f L j k kL T

k kL T

j k kL T

k kL

ε µ µ µ ω

σ ε µ µ µ µ ω

ε µ µ µ ω

σ ε µ µ

−

−

−

 ∆ = Λ + − ∆ 

 × − − + + ∆  

 + − Λ + + ∆ 

× − − +( )21[sin( ) tan( )] , as  0.s s s yTµ µ ω ε− − ∆ →  

 (31) 

According to (31) we have (0,0) 1PC = , consistent with the convention of unit (total average) 

received pressure power, introduced in Appendix I. By taking the derivatives of (31) with respect 
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to L and yε , as listed in (23)-(27), closed-form expressions for a variety of correlations in vector 

sensor receivers can be obtained. In what follows we focus on spatial correlations for two vector 

sensors at the same frequency and frequency correlations for a single vector sensor. 

5.1. Spatial Correlations for Two Vector Sensors at the Same Frequency 

(a) Pressure Correlation: With 0f∆ = , (31) reduces to 

                                 
[ ]
[ ]

2 2 2 2

2 2 2 2

(0, ) exp sin( ) 0.5 cos ( )

(1 )exp sin( ) 0.5 cos ( ) .

P b b b b

b s s s

C L jkL k L

jkL k L

µ σ µ

µ σ µ

= Λ −

+ − Λ −
 (32) 

 

The magnitude of (32) is plotted in Fig. 4. To show the accuracy of (32), the exact but more 

complex equation for the pressure correlation is derived in Appendix II, eq. (61), and is plotted 

in Fig. 4. The close agreement between the two curves verifies the usefulness of the approximate 

yet simpler pressure spatial correlation model in (32). 
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Fig. 4. The magnitudes of the pressure spatial autocorrelation in (32) and pressure-velocity 

spatial crosscorrelations in (33) and (34) versus /L λ , with 
o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  o o o/120 (1.5 ) , 348 /180 (348 12 )s sσ π µ π= = ≡ − . 

(b) Pressure-Velocity Correlations: By taking the derivative of (32) with respect to L we 

obtain 

   
[ ]
[ ]

* 2 2 2 2 2 2
2 1

2 2 2 2 2 2

[ ( ){ ( )} ] [sin( ) cos ( )]exp sin( ) 0.5 cos ( )

(1 )[sin( ) cos ( )]exp sin( ) 0.5 cos ( ) .

z
b b b b b b b

b s s s s s s

E P f P f j kL jkL k L

j kL jkL k L

µ σ µ µ σ µ

µ σ µ µ σ µ

=Λ + −

+ − Λ + −
 (33) 

Moreover, differentiation of (31) with respect to yε  at 0f∆ =  results in 
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[ ]
[ ]

* 2 2 2 2 2
2 1

2 2 2 2 2

[ ( ){ ( )} ] [cos( ) sin( )cos( )]exp sin( ) 0.5 cos ( )

(1 )[cos( ) sin( )cos( )]exp sin( ) 0.5 cos ( ) .

y
b b b b b b b b

b s s s s s s s

E P f P f j kL jkL k L

j kL jkL k L

µ σ µ µ µ σ µ

µ σ µ µ µ σ µ

= Λ − −

+ − Λ − −

 (34) 

For 0L = , i.e., a single vector sensor, co-located pressure/vertical-velocity and co-located 

pressure/horizontal-velocity correlations are sin( ) (1 )sin( )b b b sµ µΛ + − Λ  and 

cos( ) (1 )cos( )b b b sµ µΛ + − Λ , respectively. As an example, let 

o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  o/120 (1.5 )sσ π= , and 

o o348 /180 (348 12 )sµ π= ≡ − . This results in 0.055−  and 0.98 for 1 1/ zP P  and 1 1/ yP P  

correlations, respectively. Plots of the magnitudes of (33) and (34) are provided in Fig. 4. 

(c) Velocity Correlations: By taking the second derivatives of (31) according to (25)-(27) 

at 0f∆ =  we get 

   
[ ]

* 2 2 2 4 2 2 4 2 2
2 1

2 2 2 2

2 2 2 4 2 2 4 2 2

[ ( ){ ( )} ] [sin ( ) cos ( ) cos ( ) 2 sin( )cos ( )]

exp sin( ) 0.5 cos ( )

(1 )[sin ( ) cos ( ) cos ( ) 2 sin( )cos ( )]

exp sin( ) 0.

z z
b b b b b b b b b

b b b

b s s s s s s s s

s

E P f P f k L j kL

jkL k L

k L j kL

jkL

µ σ µ σ µ σ µ µ

µ σ µ

µ σ µ σ µ σ µ µ

µ

=Λ + − +

× −

+ − Λ + − +

× −[ ]2 2 2 25 cos ( ) ,s sk Lσ µ

 (35) 

[ ]

* 2 2 2 4 2 2 2 2 2 2
2 1

2 2 2 2

2 2 2 4 2 2 2 2 2 2

[ ( ){ ( )} ] [cos ( ) sin ( ) sin ( )cos ( ) 2 sin( )cos ( )]

exp sin( ) 0.5 cos ( )

(1 )[cos ( ) sin ( ) sin ( )cos ( ) 2 sin( )cos ( )]

y y
b b b b b b b b b b

b b b

b s s s s s s s s s

E P f P f k L j kL

jkL k L

k L j kL

µ σ µ σ µ µ σ µ µ

µ σ µ

µ σ µ σ µ µ σ µ µ

= Λ + − −

× −

+ − Λ + − −

× [ ]2 2 2 2exp sin( ) 0.5 cos ( ) ,s s sjkL k Lµ σ µ−

 (36) 

[ ]

*
2 1

2 4 2 2 3 2 2 2

2 2 2 2

2 4 2 2 3 2

[ ( ){ ( )} ]

[(1 )sin( )cos( ) sin( )cos ( ) cos( ){sin ( ) cos ( )}]

exp sin( ) 0.5 cos ( )

(1 )[(1 )sin( )cos( ) sin( )cos ( ) cos( ){

z y

b b b b b b b b b b b

b b b

b s s s s s s s s

E P f P f

k L jkL

jkL k L

k L jkL

σ µ µ σ µ µ σ µ µ µ

µ σ µ

σ µ µ σ µ µ σ µ

=

Λ − + − −

× −

+ − Λ − + −

[ ]

2 2

2 2 2 2

sin ( ) cos ( )}]

exp sin( ) 0.5 cos ( ) .

s s

s s sjkL k L

µ µ

µ σ µ

−

× −

 (37) 

For a single vector sensor, by plugging 0L =  into the above equations we obtain 

              
2 2 2 2 2 2 2

1

2 2

[| ( ) | ] [sin ( ) cos ( )] (1 )[sin ( ) cos ( )]

sin ( ) (1 )sin ( ),

z
b b b b b s s s

b b b s

E P f µ σ µ µ σ µ

µ µ

=Λ + + − Λ +

≈ Λ + − Λ
 (38) 
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2 2 2 2 2 2 2

1

2 2

[| ( ) | ] [cos ( ) sin ( )] (1 )[cos ( ) sin ( )]

cos ( ) (1 )cos ( ),

y
b b b b b s s s

b b b s

E P f µ σ µ µ σ µ

µ µ

= Λ + + − Λ +

≈ Λ + − Λ
 (39) 

          
* 2 2

1 1[ ( ){ ( )} ] (1 )sin( )cos( ) (1 )(1 )sin( )cos( )

(1/ 2)[ sin(2 ) (1 )sin(2 )].

z y
b b b b b s s s

b b b s

E P f P f σ µ µ σ µ µ

µ µ

= Λ − + − Λ −

≈ Λ + − Λ
 (40) 

The almost equal sign ≈  in (38)-(40) comes from the assumption of , 1b sσ σ ≪  in this case 

study. As a numerical example, let 
o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  

o/120 (1.5 )sσ π= , and o o348 /180 (348 12 )sµ π= ≡ − . According to (38) and (39), the average 

powers of the vertical and horizontal velocity channels are 0.038 and 0.962, respectively. 

Furthermore, the correlation between the vertical and horizontal channels is 0.0536− , calculated 

using (40). Plots of the magnitudes of (35)-(37) are provided in Fig. 5. 
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Fig. 5. The magnitudes of the velocity spatial autocorrelations in (35) and (36), and velocity-

velocity spatial crosscorrelation in (37) versus /L λ , with 
o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  o o o/120 (1.5 ) , 348 /180 (348 12 )s sσ π µ π= = ≡ − . 

5.2. Frequency Correlations for One Vector Sensor 

(a) Pressure Correlation: With 0L =  in (31) we obtain 

                              

( )
[ ]

( )
[ ]

1

2 2 2 2

1

2 2 2 2

( ,0) exp [sin( )]

exp 0.5 [sin( ) tan( )] ( )

(1 )exp [sin( )]

exp 0.5 [sin( ) tan( )] ( ) .

P b b b

b b b b

b s s

s s s s

C f j T

T

j T

T

µ ω

σ µ µ ω

µ ω

σ µ µ ω

−

−

−

−

∆ = Λ − ∆

× − ∆

+ − Λ ∆

× − ∆

 (41) 

The magnitude of (41) is plotted in Fig. 6. To show the accuracy of (41), the exact but more 

complex equation for the frequency correlation is derived in Appendix II, eq. (61), and is plotted 
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in Fig. 6. The close agreement between the two curves verifies the usefulness of the approximate 

yet simpler pressure frequency correlation model in (41). 
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Fig. 6. The magnitudes of the pressure frequency autocorrelation in (41) and the pressure-

velocity frequency crosscorrelations in (42) and (43) versus 0/f f∆ , with 

0 0 112 kHz, 100m, 54m, 1500 m/s,f D z c= = = =  
o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  
o o o/120 (1.5 ) , 348 /180 (348 12 )s sσ π µ π= = ≡ − . 

(b) Pressure-Velocity Correlations: By applying (23) and (24) to (31) with 0L =  one 

obtains the following results, respectively 

[ ]
[ ]

*
1 1

2 2 1 2 2 2 2

2 2 1 2 2 2 2

[ ( ){ ( )} ]

[sin( ) [tan( )] ]exp [sin( )] 0.5 [sin( ) tan( )] ( )

(1 )[sin( ) [tan( )] ]exp [sin( )] 0.5 [sin( ) tan( )] ( ) ,

z

b b b b b b b b b b b

b s s s s s s s s s s

E P f f P f

j T j T T

j T j T T

µ σ µ ω µ ω σ µ µ ω

µ σ µ ω µ ω σ µ µ ω

− − −

− − −

+ ∆ =

Λ + ∆ − ∆ − ∆

+ − Λ − ∆ ∆ − ∆

 (42) 

[ ]
[ ]

*
1 1

2 1 1 2 2 2 2

2 1 1 2 2 2 2

[ ( ){ ( )} ]

[cos( ) [tan( )] ]exp [sin( )] 0.5 [sin( ) tan( )] ( )

(1 )[cos( ) [tan( )] ]exp [sin( )] 0.5 [sin( ) tan( )] ( ) .

y

b b b b b b b b b b b

b s s s s s s s s s s

E P f f P f

j T j T T

j T j T T

µ σ µ ω µ ω σ µ µ ω

µ σ µ ω µ ω σ µ µ ω

− − −

− − −

+ ∆ =

Λ − ∆ − ∆ − ∆

+ − Λ + ∆ ∆ − ∆

 (43) 

For 0f∆ = , (42) and (43) simplify to the results given in Subsection 5.1. The magnitudes of (42) 

and (43) are plotted in Fig. 6. 

(c) Velocity Correlations: When (25)-(27) are applied to (31), we obtain the following 

results at 0L = , respectively 
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  [ ]

*
1 1

2 2 2 4 4 2 2 2 2 1

1 2 2 2 2

2 2 2 4 4 2

[ ( ){ ( )} ]

[sin ( ) cos ( ) [tan( )] ( ) 2 cos ( )[sin( )] ]

exp [sin( )] 0.5 [sin( ) tan( )] ( )

(1 )[sin ( ) cos ( ) [tan( )] (

z z

b b b b b b b b b b b

b b b b b b

b s s s s s s

E P f f P f

T j T

j T T

T

µ σ µ σ µ ω σ µ µ ω

µ ω σ µ µ ω

µ σ µ σ µ

− −

− −

−

+ ∆ =

Λ + − ∆ + ∆

× − ∆ − ∆

+ − Λ + − ∆

[ ]

2 2 2 1

1 2 2 2 2

) 2 cos ( )[sin( )] ]

exp [sin( )] 0.5 [sin( ) tan( )] ( ) ,

s s s s

s s s s s s

j T

j T T

ω σ µ µ ω

µ ω σ µ µ ω

−

− −

− ∆

× ∆ − ∆

 (44) 

  [ ]

*
1 1

2 2 2 4 2 2 2 2 2 1

1 2 2 2 2

2 2 2 4 2 2

[ ( ){ ( )} ]

[cos ( ) sin ( ) [tan( )] ( ) 2 cos ( )[sin( )] ]

exp [sin( )] 0.5 [sin( ) tan( )] ( )

(1 )[cos ( ) sin ( ) [tan( )] (

y y

b b b b b b b b b b b

b b b b b b

b s s s s s s

E P f f P f

T j T

j T T

T

µ σ µ σ µ ω σ µ µ ω

µ ω σ µ µ ω

µ σ µ σ µ

− −

− −

−

+ ∆ =

Λ + − ∆ − ∆

× − ∆ − ∆

+ − Λ + − ∆

[ ]

2 2 2 1

1 2 2 2 2

) 2 cos ( )[sin( )] ]

exp [sin( )] 0.5 [sin( ) tan( )] ( ) ,

s s s s

s s s s s s

j T

j T T

ω σ µ µ ω

µ ω σ µ µ ω

−

− −

+ ∆
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[ ]
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T j T
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− −
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 (46) 

When 0f∆ = , (44)-(46) reduce to (38)-(40). The plots of the magnitudes of (44)-(46) are given 

in Fig. 7. 
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Fig. 7. The magnitudes of the velocity frequency autocorrelations in (44) and (45), and velocity-

velocity frequency crosscorrelation in (46) versus 0/f f∆ , with 

0 0 112 kHz, 100m, 54m, 1500 m/s,f D z c= = = =  
o o

0.4, / 90 (2 ), /18 (10 ),b b bσ π µ πΛ = = =  
o o o/120 (1.5 ) , 348 /180 (348 12 )s sσ π µ π= = ≡ − . 
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In the ambient noise field, correlations among the elements of a vector sensor array are 

calculated in [25]. The emphasis of this manuscript, however, is the development of a 

geometrical-statistical model for the shallow water waveguide, as shown in Fig. 2 and analyzed 

in appendices. Upon using Gaussian PDFs for surface- and bottom-reflected AOAs, a closed-

form integral-free expression is derived in (31) for the pressure field correlation in space and 

frequency. Another focal point of the present paper is the emphasis on the frequency domain 

representation of the acoustic field, e.g., the frequency transfer functions in (8) and (9). This 

allows to derive frequency domain correlations that are important for communication system 

design. For example, eq. (41) can be used to determine the correlation between two f∆ -

separated tones received by a vector sensor, in a multi-carrier system such as OFDM (orthogonal 

frequency division multiplexing). Overall, the proposed shallow water geometrical-statistical 

channel model provides useful expressions for space-frequency vector sensor correlations, in 

terms of the physical parameters of the channel such as mean angle of arrivals and angle spreads. 

6. COMPARISO/ WITH MEASURED DATA 

To experimentally verify the proposed model, in this section we compare the derived 

pressure correlation function in (32) with the measured data of [26]. Once the accuracy of the 

pressure correlation function is experimentally confirmed, one can take the derivatives of the 

pressure correlation, to find different types of correlations in a vector sensor array, as discussed 

in previous sections. 

A uniform 33-element array with 0.5 m element spacing was deployed at a 10 km range, 

where the bottom depth was 103 m [26]. The measurements were conducted at the center 

frequency of 0 1.2 kHzf = . The empirical vertical correlation of the pressure field, estimated 

from the measured data, is shown in Fig. 8. The vertical correlation in [26] is measured with 

respect to the eighth element from the bottom of the 33-element array. This explains the 

horizontal axis in Fig. 8 and the peak value at the eight element. To compare the proposed 

correlation model in (32) with measured correlation, its parameters need to be determined. We 

chose o o o3 and 353 7b sµ µ= = ≡ − , as according to [26], there are two dominant arrivals from 



Signal Correlation Modeling in Acoustic Vector Sensor Arrays                                                                                                                A. Abdi and H. Guo 

page 21 of 28 

these directions. After inserting these numbers into (32), the remaining parameters were 

estimated using a numerical least squares approach. Similarly to [26], the model was compared 

with the measured correlation over the eight neighboring receivers (elements one to fifteen in 

Fig. 8). This resulted in 0.56, 0.04 and 0.14 radb b sσ σΛ = = = . The magnitude of the proposed 

model in (32) is plotted in Fig. 8. The close agreement between the model and measured 

correlations in Fig. 8 indicates the usefulness of the model. As a reference, the exponential model 

of [26], i.e., 2 2exp( /(2 ) )L λ−  is also included in Fig. 8. Here 1.2 mλ =  is the wavelength. One 

can observe the proposed model provides a closer match to experimental correlation at the first 

and fifteenth elements. The main advantage of the proposed model is that it expresses the 

acoustic field correlation as a function of important physical parameters of the channel such as 

angle of arrivals and angle spreads. This allows system engineers to understand how these 

channel parameters affect the correlation, which in turn provides useful guidelines for proper 

array and system design. 
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Fig. 8. Comparison of the proposed model with measured data. 

7. CO/CLUSIO/ 

In this paper we have developed a statistical framework for mathematical characterization of 

different types of correlations in acoustic vector sensor arrays. Closed-form expressions are 

derived which relate signal correlations to some key channel parameters such as mean angle of 

arrivals and angle spreads. Using these expressions one can calculate the correlations between 
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the pressure and velocity channels of the sensors, in terms of element spacing and frequency 

separation. The results of this paper are useful for the design and performance analysis of vector 

sensor systems and array processing algorithms. 
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Appendix I.  

A CLOSED-FORM FREQUE/CY-SPACE CORRELATIO/ MODEL FOR THE PRESSURE CHA//EL 

When angle spreads are small and 1 0 1min( , )L z D z−≪ , one can approximate the AOAs in 

(8) and (9) as ,1 ,2
b b b
i i iγ γ γ≈ ≈  and ,1 ,2

s s s
m m mγ γ γ≈ ≈ , where b

iγ  and s
mγ  are shown in Fig. 2. 

Furthermore, the traveled distances can be approximated as ,1 ,2
b b b
i i iξ ξ ξ≈ ≈  and ,1 ,2

s s s
m m mξ ξ ξ≈ ≈ , 

with b
iξ  and s

mξ  depicted in Fig. 2. Note that each delay is the traveled distance divided by the 

sound speed c. Therefore all the delays in (8) and (9) can be approximated by ,1 ,2
b b b
i i iτ τ τ≈ ≈  and 

,1 ,2
s s s
m m mτ τ τ≈ ≈ , where /b b

i i cτ ξ=  and /s s
m m cτ ξ= . According to Fig. 2 it is easy to verify that 

0sin( ) ( ) /b b
i iD Dγ ξ= −  and sin( ) /s s

m mDγ ξ− = . Hence 

                                                   
sin( ), 0 ,

sin( ), 2 .

b b b
i b i i

s s s
m s m m

T

T

τ γ γ π

τ γ π γ π

= < <

= − < <
 (47) 

The parameters 0( ) / and /b sT D D c T D c= − =  in (47) denote the vertical travel times from the 

sea bottom to the array center, and from the sea surface to the array center, respectively. Clearly 

the range of s
mγ  in (47) implies that 1 sin( ) 0s

mγ− ≤ < , which makes s
mτ  non-negative, as 

expected. In general we have ,b
b iT iτ≤ < ∞ ∀ , and ,s

s mT mτ≤ < ∞ ∀ . Now (8) and (9) can be 

simplified as follows 

             

1/ 2
1 11

1/ 2
11

( ) ( / ) exp( )exp( sin( ))exp( / sin( ))

((1 ) / ) exp( )exp( sin( ))exp( / sin( )),

b

s

#
b b b b b

b i i i b ii

#
s s s s s

b m m m s mm

P f # a j jk z jT

# a j jk z jT

ψ γ ω γ

ψ γ ω γ

=

=

= Λ −

+ − Λ

∑
∑

 (48) 

1/ 2
2 11

1/ 2
11

( ) ( / ) exp( )exp( [ cos( ) ( )sin( )])exp( / sin( ))

((1 ) / ) exp( )exp( [ cos( ) ( )sin( )])exp( / sin( )), as 0,

b

s

#
b b b b b b

b i i y i i b ii

#
s s s s s s

b m m y m m s m ym

P f # a j jk z L jT

# a j jk z L jT

ψ ε γ γ ω γ

ψ ε γ γ ω γ ε

=

=

= Λ + + −

+ − Λ + + →

∑
∑

 (49) 
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where 0yε >  is a displacement in the y direction. Note that yε  is introduced to represent the 

location of the second sensor in Fig. 2 as 1( , ) ( , ), as 0y yy z z Lε ε= + → . This allows to calculate 

those correlation functions which are related to the horizontal component of the velocity, as 

discussed in Section 4. 

Due to the uniform distribution of all the phases { } and { }b s
i i m mψ ψ  over [0,2 )π  we have 

[exp( )] [exp( )] 0, ,b s
i mE j E j i mψ ψ± = ± = ∀ . This results in [exp( )exp( )] 0, ,b s

i mE j j i mψ ψ± ± = ∀ , 

because all the phases are independent. Similarly we have [exp( )exp( )] 0,b b
i i

E j j i iψ ψ− = ∀ ≠ɶ
ɶ  

and [exp( )exp( )] 0,s s
m mE j j m mψ ψ− = ∀ ≠

ɶ
ɶ . Clearly the last two expressions become 1, when 

andi i m m= =ɶ ɶ . Therefore, after substituting (48) and (49) into 

*
2 1( , ) [ ( ) ( )]PC f L E P f f P f∆ = + ∆ , only the following two single summations remain 

2

1

2

1

( , ) ( / ) [( ) ]exp( [ cos( ) sin( )])exp( / sin( ))

((1 ) / ) [( ) ]exp( [ cos( ) sin( )])exp( / sin( )), as  0,

b

s

#
b b b b b

P b i y i i b ii

#
s s s s s

b m y m m s m ym

C f L # E a jk L jT

# E a jk L jT

ε γ γ ω γ

ε γ γ ω γ ε

=

=

∆ = Λ + − ∆

+ − Λ + ∆ →

∑
∑

 (50) 

where 2 fω π∆ = ∆ . 

The terms 2[( ) ]/b b
iE a #  and 2[( ) ]/s s

mE a #  in (50) represent the normalized (average) 

powers received from the two scatterers b
iS  and s

mS  on the sea bottom and its surface, 

respectively. Let 2 2

1 1
[( ) ]/ 1 and [( ) ]/ 1

b s# #
b b s s
i mi m

E a # E a #
= =

= =∑ ∑ . We also define 

bottom surface( ) and ( )b sw wγ γ  as the probability density functions (PDFs) of the AOAs of the waves 

coming from the sea bottom and its surface, respectively, such that 0 and 2b sγ π π γ π< < < < . 

When andb s# #  are large, one can think of 2 2[( ) ]/ and [( ) ]/b b s s
i mE a # E a #  as the normalized 

powers received through the infinitesimal angles andb sd dγ γ , respectively, centered at the 

AOAs andb s
i mγ γ . Thus, with the chosen normalizations 2

1
[( ) ]/ 1

b#
b b
ii

E a #
=

=∑  and 

2

1
[( ) ]/ 1

s#
s s
mm

E a #
=

=∑ , we can write 

2 2
bottom surface[( ) ]/ ( ) and [( ) ]/ ( )b b b b s s s s

i i m mE a # w d E a # w dγ γ γ γ= = . These relations allow the 

summations in (50) to be replaced by integrals 
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bottom
0

2

surface

( , ) ( )exp( [ cos( ) sin( )])exp( / sin( ))

(1 ) ( )exp( [ cos( ) sin( )])exp( / sin( )) , as  0.

b

s

b b b b b
P b y b

s s s s s
b y s y

C f L w jk L jT d

w jk L jT d

π

γ

π

γ π

γ ε γ γ ω γ γ

γ ε γ γ ω γ γ ε

=

=

∆ = Λ + − ∆

+ − Λ + ∆ →

∫

∫
 (51) 

Note that according to (51) we have (0,0) (1 ) 1P b bC = Λ + − Λ = , which represents the convenient 

unit (total average) received pressure power. The factor 0 1b≤ Λ ≤  was defined to stand for the 

amount of the power coming from the sea bottom, whereas 1 b− Λ  shows the power coming from 

the surface. 

Appendix II.  

THE EXACT FREQUE/CY-SPACE CORRELATIO/ OF THE PRESSURE CHA//EL 

Here we derive the exact frequency-space correlation of the pressure channel, for the 

vertical array in the shallow water channel of Fig. 2. By inserting 1( )P f  and 2 ( )P f  from (8) and 

(9) into *
2 1( , ) [ ( ) ( )]PC f L E P f f P f∆ = + ∆  and upon using the properties of the phases 

{ } and { }b s
i i m mψ ψ , as done in Appendix I, one can show that 

          

2
1 ,2 ,1 ,21
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2
1 ,2 ,1 ,21
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+ − Λ −
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∑

∑
,2 ,1 ,2) exp( ( )).s s s

m m mjωτ ω τ τ∆ −

 (52) 

By using the law of cosines in appropriate triangles in Fig. 2, one can obtain the following 

relations, which are needed for calculating (52), numerically 

                       0 1
,1

2 2
0 1 0 1

( ) sin( )
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( ( / 2)) ( ( / 4))sin ( )

b
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b
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, (54) 

                       
2 2
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s
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, (57) 



Signal Correlation Modeling in Acoustic Vector Sensor Arrays                                                                                                                A. Abdi and H. Guo 

page 25 of 28 

                              1
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s
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m
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All the sin’s and τ ’s in (53)-(60) are functions of the bottom and surface AOAs b
iγ  and s

mγ , 

respectively. As done in Appendix I, when andb s# #  are large, one can introduce the AOA 

PDFs as 2 2
bottom surface[( ) ]/ ( ) and [( ) ]/ ( )b b b b s s s s

i i m mE a # w d E a # w dγ γ γ γ= = . This way the two 

summations in (52) can be replaced by integrals over bγ  and sγ , respectively 

                

bottom 1 2 1 2
0

2 1 2

2

surface 1 2 1 2

2 1 2
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γ γ γ γ
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∫

∫
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 (61) 

Note that all the sin’s and τ ’s in (61) are exactly the same as those given in (53)-(60), with the 

subscripts i and m removed. 
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