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Abstract

This paper presents two approaches for the calculation of the average outage duration (AOD) of diversity
systems over generalized fading channels. First, a “classical” probablility density function (PDF)-based
approach, is used to obtain exact closed form expressions for the AOD of maximal-ratio combiner (MRC) over
independent and identically distributed (i.i.d.) Rayleigh and Rice fading channels. On the other hand, relying
upon a numerical technique for inverting Laplace transforms of CDFs, and in conjunction with the calculation
of the joint characteristic function (CF) of the combined output SNR process and its time derivative, a CF-
based approach is adopted to compute the AOD of MRC over non-i.i.d. Rayleigh and Rician diversity paths.
The mathematical expressions are ilustrated by presenting and interpreting numerical results/plots, showing
the impact of the power delay profile, the angle of arrivals, and the angle spreads on the AOD of diversity

systems operating over typical fading channels of practical interest.

I. INTRODUCTION

The problem of fading and its deleterious impact on the performance of wireless communi-
cation systems has been of interest for a long time. To mitigate fading many communication
systems make use of diversity schemes in one form or another [1], [2], [3]. Average probability
of error has been traditionally the most commonly used performance measure of these diver-
sity schemes [4], [5]. However, in certain communication system applications such as adaptive
transmission schemes [6], [7], [8], [9] the average probability of error does not provide enough
information for the overall system design and configuration. In that case, in addition to the
average probability of error, wireless communication design engineers are also interested in
other performance measures such as outage probability, average outage duration (AOD), and
frequency of outages.

In what follows, we provide a summary of the previous works on the AOD and level crossing
rate (LCR) (related to the frequency of outages and AOD) of diversity systems. The LCR of
an L branch predetection equal gain combiner (EGC) and the LCR and AOD for two-branch
EGC with correlated Rayleigh signals are studied in [10] and [11], respectively. In [12], the
LCR and AOD of two-branch maximal ratio combiner (MRC), EGC, and selection combiner
(SC) have been analyzed and compared for Rayleigh fading. Note that the LCR and AOD
expressions of [11] and [12] are accurate but approximate results and hold for branches with
average equal power. More recently, [13], [14] have studied the LCR and AOD of MRC
and EGC, for independent identically distribued (i.i.d.) Rayleigh fading paths. In [14], the
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LCR and AOD expressions over Nakagami-m fading channels are derived for a single branch
receiver, while the LCR and AOD expressions for an L branch MRC, operating over i.i.d.
Nakagami-m distributed paths, are presented in [15]. The LCR of an L branch MRC with

non-i.i.d. Rayleigh and Rician is caluculated in [16].

The objective of this paper is to present exact anaytical methods for calculating the AOD of
diversity receivers over generalized fading channels, where diversity branches have different
fading statistics. More specifically, after introducing the channel model in Section II we
present two approaches for the calculation of the AOD. First, in Section III a “classical”
probablility density function (PDF)-based approach, relying on the cumulative distribution
function (CDF) of the combined output SNR, as well as the joint PDF of the combined
output SNR and its time derivative, is used to obtain exact closed-form expressions for the
LCR and AOD of MRC over i.i.d. Rayleigh and Rician fading channels. On the other hand,
based on a numerical technique for inverting the Laplace transform of a CDF, along with
the use of the joint characteristic function (CF) of the combined output SNR and its time
derivative, a CF-based approach is adopted in Section IV. The CF-based approach allows
us to calculate, numerically, the LCR and AOD of MRC over non i.i.d. Rayleigh and Rician
paths. The paper illustrates the mathematical formalism by presenting and interpreting
various numerical results/plots, which show the impact of the power delay profile (PDP) and
the distribution of the angle of arrival (AOA) of waves on the LCR and AOD of diversity
systems, operating over typical fading channels of practical interest. Finally, Section V

summarizes the main contributions of the paper.

II. GENERALIZED FADING CHANNELS
A. Dwersity Channel Model

In this model, L replicas {r;(t)}}~; are received over independent paths. Because of the
slow-fading assumption, the fading amplitudes {a;(¢)}£, and the AOAs {6,(¢)}L, (in the
horizontal plan) are all constant (time-independent) random variable over a symbol inter-
val [2]. In our channel model, {y(t)}L, are independent variables, distributed according
to Rayleigh and/or Rician fading distributions, described in the sequel. By definition we

have ; = El[a?], where E[-] denotes mathematical expectation. Moreover, {6,(t)}F-, are
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independent variables with von Mises distribution, defined later on.

After passing through the fading channel, each replica of the signal is perturbed by the
complex baseband additive white Gaussian noise (AWGN) n,;(t) with the one-sided power
spectral density N, (W/Hz). The AWGN n,(t) is assumed to be statistically independent
from path to path and independent of {r/(t)}£ ;. Hence the instantaneous SNR per symbol
of the Ith path is given by ~/(t) = o“z(]tvi)oEs
Ny = >{, N; (W/Hz) is the total power spectral density of {n;(t)}E£ ;.

, where Ey (J) is the energy per symbol, and

B. Fading Models

For the Rayleigh fading the instantaneous SNR per symbol of the [th path, v;, is distributed

according to an exponential distribution given by

_ 1 M
Py (v577,) = = exp <—r> ;. m=>0, (1)
!

where 7, = Q‘Nf—s denotes the average SNR per symbol of the [th path. On the other hand,

for the Rician fading case the distribution of 7, is given by

Py, (71§7l7Kl) = (1 i K_l) - €Xp <_W> o (24 M) ! 20 (2)

Vi i Vi
where K is the Rician factor and I,,(+) is the nth-order modified Bessel function of the first
kind.
C. Distribution of the Angle of Arrivals

As was mentioned previously, we assume that the AOA of the [th path in the horizontal
plane follows a von Mises distribution [17]

exp|ry cos(0; — )]

0,) =
p@[( l) 27_‘_10(%1) 3

0= [-m,m) (3)

where y; € [—m, ) represents the mean direction of the AOA, and k; > 0 controls the width
of AOA. For x; = 0, we obtain py,(6,) = 1/27 (isotropic scattering), while x; = oo yields
Do, (61) = 0(6,— ) (extremely non-isotropic scattering), where §(-) is the Dirac delta function.
For large k; the von Mises PDF converges to a Gaussian PDF with mean p; and standard

deviation 1//r; [18].
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D. Spectral Moments

If we assume that 6, is a von Mises variable with parameters p; and k;, then the autoco-

variance of r,(t), defined as $E[r} (¢)ri(t + 7)] — |E[ri(¢)]]* [2], can be shown to be [17]

I (\/ﬁf — A2 2712 + jATE COS(Ml)de)

CT[T[ (T) = bl,O

Io (k) ’
where 0, is the nth spectral moment given by
1 d"C,,,
bl:n:-_#(/r)“:o; n:071727"" (5)
]" d7-n

As we will see later, we need the first and second spectral moments for LCR calculations
which can be obtained in closed form with the help of [19] by substituting (4) into (5) for
n=1,2

by = 1,0—2ﬂfdcﬁsgﬁf))ll—(ﬁl); (©)
bio—b 27 f7 [To (k1) +12 (k) cos(2p)]
,2 — YI,0 To(r1) .

For k; = 0, (4) simplifies to the correlation function of the Clarke’s two-dimensional isotropic

scattering model

CRlRl (T) = bl,0J0(27deT); (7)

where Jy(+) is the zeroth-order Bessel function of the first kind. Furthermore, the ;7 and b,

reduces to [2]
bl,l = 07
b172 = b170271'2fd2.

(8)

1II. PDF-BASED APPROACH

The common approach for calculating the LCR of a real stationary random process X (),

for a given threshold zy, is to employ Rice’s formula given by [2]
Nx(@w) = [ @ pyg(on ) di,
= pxlew) [ @ pg(EX = 20) di (9

where Ny (xy) represents the average number of times, per unit time, that X (¢) crosses the
threshold with positive slope, dot denotes differentiation with respect to time, p ¢(z, &) is

the joint PDF of the random variables X = X (t,) and X = X(t,), where , is an arbitrary
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instant of time, px(z) is the PDF of the variable X, and py y(#|X = z) is the PDF of
X conditioned on X = zy,. If X is Gaussian, independent of X, with zero mean and the
variance 0%, then (9) becomes
Nx(zm) = U—pr(fl?th)- (10)
V27
The AOD of X, T'x (x4,), which indicates how long in average the random process X (t) stays
below the given threshold zy, is given for a positive random process by [2]

Prob[0 < X < aw] i px(v)de
Nolea)  Nw) -

where Prob[X < xy,] is the CDF of X, also known as the outage probability of X (¢) for the

Tx (xth) =

threshold .

A. Application to MRC over 1.1.D. Rayleigh and Rician Distributed Fading Channels

Consider MRC (or equivalently, a postdetection EGC) receiver, operating over L i.i.d.
fading paths. In the presence of AWGN and for equally likely transmitted symbols, the total
instantaneous SNR per symbol at the output of both MRC and postdetection EGC is given

by [2]

=S ou) = 7 Yat) = 7o't (12

It is easy to verify that & is a zero-mean Gaussian variable with variance 00% = (b1ob12 —

b%1)/bio [1], [20]. Hence, according to (10), the LCR of a(t) is given by

N b1,ob1,2 - b%;
a(ath) = Tblopa(ath)- (13)

Following the result given in [21, Appendix 5A.3] for p,(«), (13) can be written as

b1 0b1 9 — b% 1 20[2L71 CYQ
Na — s s 5 th o th 14
= S s A TC T e O T (14)

By employing the relation v, = £= ath and Q; = E|a?] = 2b, g, the LCR of v, can be shown

A.1 Rayleigh Fading

to be given by

b b\ 2 Q . L-1/2 y
N () = 4| 22— <g> 1 (ﬁ) ox <_;h> | 15
%) bio  \bro/ 2m(L -1\ M A (13
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For isotropic scattering, (15) can be simplified by substituting b;; and b, » given in (8) as

Vs ()"

(L—1)'exp (773—1}1) .
(16) has been derived in [22] and [23], independently. For L=1, (16) further simplifies to the
result given in [2, Eq. (2.86)]. By calculating the CDF of p, () using [19, Section 3.381] and

then substituting the result, together with (15), into (11), we obtain the AOD of ~(¢) as

N, () = (16)

l
Jth
V2rby(L — 1)! [exp (22) — 22 @
T, (vm) = ; - (17)

For isotropic scattering, (17) reduces to

()
-1 fon () - i UL

Ty (vw) = (18)

varfi ()"
(18) has been derived in [22] and [23], independently.

In the case where L = 1, (18) agrees with [2, Eq. (2.95)]. For the dual branch case (L=2)
with isotropic scattering, (18) simplifies to the result of [12, Eq. (18)]. Furthermore, for small
values of y4y,, using the series representation of the exponential function, it can be shown that
(18) reduces to the asymptotic result given in [13, Section IV].

As a numerical example, Fig. 1 shows the effect of nonisotropic scattering with two scat-
tering scenarios (uq,#1) = (0°,1.2) and (u,x1) = (0°,3.3) over Rayleigh fading channels
with diversity order L=1, 2, and 4. The above values of y; and x; are taken from the real
measured data presented in [17]. As expected, the AOD decreases as the diversity increases.
For example, when 7,/v; = —5 dB, the normalized AOD with x = 1.2 is 1.25, 1, and
0.3981 for L=1, 2, and 4, respectively. On the other hand, one can see from Fig.1 that
there is a significant effect of non-isotropic scattering on the AOD. It shows that for high
non-isotropic scattering, i.e., high s, the AOD becomes large. This can be attributed to the
fact that as k increases, the correlation between the envelope samples, which is proportional
to |Cyr, (7)]? [2], increases. Hence, when fade (outage) occurs, it tends to last longer, which

increases the AOD.
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A.2 Rician Fading

Similar to the Rayleigh case, the LCR in the Rician isotropic scattering scenario is found

to be given by

N, () = faV2rLK (%)iexp <—K_+1%h—LK> I (2\/LK(K_+ 1)%h> (19)
N N N

On the other hand, the CDF of the envelope with L branch MRC over Rician fading channel
can be derived with the help of [21, Appendix 5A.5] as

Prob[0 <7y <vwm|=1-Q, (\/ 2LK, \/@%h) . (20)

where Q1 (-, -) is the generalized (Lth-order) Marcum @-function [21]. After substituting (20)
and (19) in (11), the AOD over i.i.d. Rician fading channel can be found in closed-form as

L

K+1 2 K+1
Tv(%h) = <(7LK7)1%}1> exp <— VYth — LK)

i <\/T : o ) (21)

faV2rLK IL—I( M%h)

X

71

Note that for L = 1, (21) reduces to the non-diversity result given in [2, Eq. (2.93)], as
expected. Fig. 2 shows the normalized LCR, N, (7n)/ fa and AOD, T’ (y4n) fg with MRC and
postdetection EGC reception versus normalized power threshold, /71, over i.i.d. Rician
fading channels with Rician factor K=3 dB, for various values of L. As expected, the AOD
decreases as the order of diversity L increases. For example, for v, = 0 dB and K=3 dB,
one requires 18 dB of the average SNR for a single branch and 4 dB, -1 dB, and -3 dB for
L=2, 3, and 4, respectively, to achieve 0.1 normalized AOD.

B. Application to Coherent EGC over Non-1.1.D. Rayleigh Fading Channels

For coherent EGC with equally likely transmitted symbols, the combined SNR per symbol
7 is given by [2, p. 249, eq. (5.108)]

(22)
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where
L
Q= Z ap, (23)
1=1
and oy in (23) is Rayleigh distributed. Knowing that ¢; is a zero-mean Gaussian variable

with variance of = (biobi2 — b7,) /b, & = >°% | ¢y can be found to be a zero-mean Gaussian

variable with variance
“ bio '

=1
Using (10) the LCR of « can be shown to be given by

Oa

\/ﬁpa (ath)

bl,Obl,2*bi1
b0

= Wpa(ath); (25)

Na (ath) —

where p,(«) is the PDF of « in (23). By employing the relation, ag, = 1/ Lyin/(Es/No), the
LCR of v can be shown to be

Ny () = %pa (\/ L%h/(Es/NU)> : (26)

For the dual branch case (L = 2), the PDF of « in (26) can be found in closed-form as [24]

2a <Qle_g_1 + 926_?2_2> o2 2
pal@) ¢ VTt (29 g
(1 + Q)2 (2 + Qy)3/2 Q +Q
20, 200 )]
x |1- | ——— | — oy —— 11|, 27
[ “ < Qo (1 + Q2)> “ ( O (1 + Q) (27)

where Q(-) is the Gaussian Q-function. In addition, the CDF of v can also be found in

closed-form as [24]

2 2
7167% + 7267% 2/ 271 yamy -
— — e 71t72
T+ Yo (1 + 72)3/2

N 727
X 1—@(2 B ——— —Q<2 7)]7 28
l T2(71 + 72) N+ 72) 28)
and as a result the AOD of dual-branch of EGC can be obtained in closed-form. For arbitrary

Pv(?’) = 1

L > 2, no explicit closed expression is known for the PDF and CDF of the sum of Rayleigh
or Rice RVs. Hence computation of the LCR and AOD for EGC with L > 2 has to rely on
numerical techniques for the evaluation of such PDFs and CDFs [25], [26], [27].
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IV. CF-BASED APPROACH
A. Qutline of CF-Based Approach

For diversity systems operating over generalized fading channels with non-i.i.d. paths, it is
very hard, if not impossible, to derive an expression for the joint PDF of the signal envelope
and its derivative at the output of the diversity combiner. Hence we express Ny (xy,) in (9)

in terms of the joint CF of X and X, @, ¢ (wi,ws) = Elexp(jw; X + jw,X)], rather than
Pyx(z, ) as [16]

© 1 d®yy(wi,w2) _in s
Nx(zw) = 47r2/ /oo OJ2 X)le; 2)6 i
(wy,w Dx(wW1) _iwrw
= 47r2/ / e 2)2 x( l)e Jh oo dws. (29)

)

For the calculation of the outage probability, Prob[0 < X < xyy,], we use the Euler numerical

technique presented in [28] and given by

- Q N+q n _At2njn
Prob[O S X S xth]:2 QGA/2 Z<Q> Z—i— (_1) R{ MX ( .2Ith ) }"’G(A; N; Q)7 (30)
0

A+27jn
th q= n=0 /B’I'L 2xth

with ((’3) m, R{-} as the real part of its argument and

2 n=0
1 n=12,---,N,

671:

In (30), Mx(s) = Elexp(sz)] is the moment generating function (MGF) of the random
variable X, and the overall error term €(A, @, N) is approximately bounded by
—A 9-Q pA/2 Q My (— A2 (Ntgtl)
(ANQ) < Sy [P sy e (Q)R Sl S | Y

1—e A Tin q A+27TQ2(N+q+1)
Zth

q=0

Choosing the proper value of A for a specific discretization error, N, and () for a specific

truncation error, gives the desired error bound.

B. Application to Non IID Diversity Paths

Let us represent r,(t) as 7,(t) = x,(t) + jyi(t), where z;(t) and y,(¢) are the inphase and

quadrature components of the [th path, respectively. The process z;(t) is a real stationary
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Gaussian process with mean ¢, and the auto-covariance function Cy,,, (7), while y,() is a zero-
mean real stationary Gaussian process with the same auto-covariance function, i.e. Cy,,(7) =
Cyy (T) (both have the same variance b,). In general, for an arbitrary AOA distribution,
x;(t) and y;(t) are correlated process with the cross-covariance function Cy,,, (7) = —Cy,4, (7).
It is easy to verify that Cy, (7) = Cyy,(7) + jCyy, (1) [2]. According to the statistical
properties of x;(t) and y;(t), oy(t) = |r(t)] = \/22(t) + y?(t) is a Rician process and for
a; = 0 it becomes a Rayleigh process. Based on (12), the total instantaneous SNR per
symbol at the output of both MRC and postdetection EGC can be written as

L E L ) )
= () = 57 Dlet0) + 47 0] (32)
=1 0 =1
while for the derivative we have
2E L _
Z Yi(t )+ yi(t) ()] (33)

Given this set-up and under the fading independence assumption across the paths, we
have @.+(wy, wy) = 11, @5, (w1, w2) where (based on the Turin classical result on the CF of

quadratic forms in Gaussian variables [29]) @5, (w1, w2) is given by [16]

2 2
¥saj (275 by pw3 —jw1)
eXp | — S B
1498 (br,0b1,2—b7 | Jws —327sbi 0w

1 + 4’)’5 (bl Obl 2 — bl 1)(,4)2 j2’)/sbl 0(,4)1

CI)W% (wlﬂ OJ?) (34)

where we have defined 75 = E/N, to simplify the notation of (34). For isotropic scattering
which yields (8), we express (34) in terms of the Rician factor K, = a?/(2b,o) and the average
power Q; = E[a}] = a} + 2b,, by substituting of = K;Q;/(K, + 1) and 2b,0 = /(K + 1)
into (34) as

2 K2 fiws —j(Ki+wi]
(£ +1)% exp < (K +1)2+42n2 f177 wi—jm (K +1)w

i) = e T 9 130PE — (, + D (33)
When the /th path has a Rayleigh distribution, a; = 0, (34) significantly simplifies to
1
(w1 02) = T 07)w3 — j275bown (36)
Furthermore, isotropic scattering reduces (37) to
CI)W’n (wlv WQ) . (37)

L+ 272 f277ws — jnwr
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C. Numerical Examples

Through the application of the general expression in (34), together with (29), one can
calculate N, (yn) for many different generalized fading channels of practical interest, which
seems to be intractable using the PDF-based approach. For example, Fig. 3 shows the
LCR and AOD over independent Rayleigh fading paths with isotropic scattering and an
exponentially decaying PDP (3, = 4, exp[—d(I—1)], I = 1,2, ..., L). Note that the unbalanced
distribution of power among the branches, 6 # 0, increases the AOD. As another example,
Fig. 4 shows the curves for a RAKE receiver with two and three fingers, experiencing
non-isotropic scattering over a non-constant PDP. The parameter of Fig. 4 are taken from
measured values reported in [30] and [31]. Specifically, for the two-finger RAKE receiver
in [30], the first path is Rayleigh with p; = 90° and x; = 0.77, the second path is Rician
with pe = 105° and kg = 525, and the power unbalance ratio (7,/7;) between the two fingers
is 2.13. On the other hand, in the three-finger RAKE receiver [31], all the paths are Rician
with py = —42°, uy = —11°, pug = 162°, k1 = kg = k3 = 365, K1 = Ky = K3 = 10, and the
PDP is given by 7, = 4,107 %=1 |=12 and 3. Clearly, none of these real-world scenarios
can be handled by the traditional PDF-based approach.

Now we consider a non-i.i.d. branch case, which highlights the importance of the utilization
of spatial information (as well as the temporal data). Consider a three-finger RAKE receiver,
where the three equal-power narrowbeam (k; = k3 = k3 = kK = 365) Rayleigh waves impinge
the receiver from different but closely-spaced AOAs. 6; = 85°, 6, = 90°, and 65 = 95°. If we
combine the three waves without taking into account the differences between the AOAs, i.e.,
if we incorrectly assume that 6;=60,=60; = 90°, then we get the AOD curve given in Fig. 5
However, if we identify the AOA of the waves by beamforming using an antenna array, then
after combining we obtain the other AOD curve in Fig. 5, which is smaller than the former
curve within several order of magnitudes. This simple example demonstrates how spatial

processing using antenna arrays can reduce the effect of fading, by decreasing the AOD.

V. CONCLUSION

Relying on a PDF-based approach, this paper derived closed-form expressions for the
AOD of MRC and EGC over i.i.d. Rayleigh and Rician fading channels. Numerical examples
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showed that non-isotropic scattering and the number of diversity paths have an important

impact on the AOD. The paper presented also a CF-based numerical technique for the exact

AOD evaluation of MRC over not necessarily i.i.d. Rayleigh and Rician fading channels.

The analysis was illustrated by numerical results/plots which showed that the power delay

profile, the angle of arrivals, and the angle spreads have a non-negligible effect on the AOD

of diversity systems operating over typical fading channels of practical interest.
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FIGURES CAPTIONS

1. Fig. 1. Normalized LCR and AOD with MRC or postdetection EGC RAKE reception
(L=1, 2, and 4), versus the normalized power threshold, vy, /71, for two different scattering
scenarios (py, /1) = (0°,1.2) and (0°,3.3), with i.i.d. Rayleigh diversity paths.

2. Fig. 2: Normalized LCR and AOD with MRC or postdetection EGC RAKE reception
(L=1, 2, 3, and 4), versus normalized power threshold, /71, for isotropic scattering over
i.i.d. Rician diversity paths with K=3dB.

3. Fig. 3: Normalized LCR and AOD of MRC or postdetection EGC RAKE reception
(L=2 and 4), versus the normalized power threshold, /71, over independent Rayleigh
fading paths with isotropic scattering and an exponentially decaying power delay profile,
Y =Texp[—d(l—1)],l=1,2,..., L.

4. Fig. 4: Normalized LCR and AOD with MRC or postdetection EGC RAKE reception
(L=2 and 3), versus the normalized power threshold, ~,/71, over two different generalized
fading channels (Rayleigh/Rician and Rician/Rician/Rician), with parameters derived from
published empirical results in [30] and [31], respectively.

5. Fig. 5: Normalized LCR and AOD with MRC or postdetection EGC RAKE reception

(L=4), versus the normalized power threshold, 1, /71, for different angle of arrivals.
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