Blind Modulation Classification: A Concept Whose Time Has Come

Octavia A. Dobre¹, Ali Abdi¹, Yeheskel Bar-Ness¹, and Wei Su²

¹CCSPR, Dept. of ECE, New Jersey Institute of Technology, Newark, NJ 07102, USA
²RDECOM, Fort Monmouth, NJ 07703, USA

octavia.dobre@njit.edu, ali.abdi@njit.edu, barness@yegal.njit.edu, wei.su@mail1.monmouth.army.mil

Abstract – In this paper we address the problem of identifying the modulation format of an incoming signal. We review many existing techniques for digital modulation recognition in a systematic way, which helps the reader to see the main features of each technique. The goal is to provide useful guidelines for choosing appropriate classification algorithms for different modulations, from the large pool of available techniques. Furthermore, the performance of a benchmark classifier is presented, as well as its sensitivity to several model mismatches. At the end, open problems and possible directions for further research are briefly discussed.

I. INTRODUCTION

Blind modulation classification (MC) is an intermediate step between signal detection and demodulation, with application in both commercial and military communication systems. In civilian systems, MC is specially applied in software defined radio (SDR), to cope with the variety of communication systems. In military communication systems, advanced techniques are required for real-time signal interception and processing, which are vital for decisions involving electronic warfare operations and other tactical actions. This has emerged the need for smart receivers, which employ blind signal processing techniques. A major task of such systems is the blind recognition of the modulation of an incoming signal. MC is a challenging problem, particularly in a non-cooperative environment, since in addition to complex channels, there are many unknown parameters, such as carrier frequency, symbol timing, etc., that have to be extracted from the received signal. The design of a classifier essentially involves two steps: preprocessing of the incoming signal and proper selection of the classification algorithm. Preprocessing tasks can include noise removal, estimation of carrier frequency, symbol period, signal and noise powers, equalization, etc. The required preprocessing and its accuracy depend on the classification algorithm chosen in the second step. For the classification part there are two general approaches: likelihood-based (LB) [1]-[8] and feature-based (FB) methods [9]-[20]. A good classifier has to provide a high correct classification rate for a large range of signal-to-noise ratio (SNR), in a short observation interval. In addition, it needs to fulfill these requirements: robustness with respect to (w.r.t.) preprocessing inaccuracy, capability to recognize a large number of modulations in environments with different propagation characteristics, real-time functionality, and low computational complexity. A classifier should either decide what modulation has been received, out of N_{mod} equally likely candidates, or that the modulation cannot be recognized as one of the catalog. The former case is considered here, as being the only treated in the literature. Due to the lack of space, we focus on classification algorithms for phase shift keying (PSK), quadrature amplitude modulations (QAM), amplitude shift keying (ASK), and frequency shift keying (FSK).

The rest of the paper is organized as follows. A general signal model is introduced in Section II. Algorithms derived within the LB and FB frameworks are presented in Section III and Section IV, respectively. Numerical results are provided in Section V, and conclusions are finally drawn in Section VI.

II. SIGNAL MODEL

The MC algorithms proposed in the literature employ information extracted from the baseband [1]-[9], [13]-[20] or intermediate frequency band [11]-[12]. A general expression for the baseband received waveform is given by

$$r(t) = s(t; \mathbf{u}_i) + n(t), \quad 0 \leq t \leq KT,$$

(1)

where

$$s(t; \mathbf{u}_i) = a_i e^{j m(t)} e^{j 2 \pi f(t) t} g(t - (k - 1) T - \varepsilon T)$$

(2)

is the noise-free baseband complex envelope of the received signal, resulting from the ith modulation format, $i = 1, \ldots, N_{\text{mod}}$, $a_i = \sqrt{E_i / \sigma_i^2}$, $E_i = M_i \sigma_i^2 = \left(\sum_{m=1}^{K_i} s^{(m)}_i \right)^2$ is the variance for the ideal noise-free constellation corresponding to the ith modulation format, M_i is the number of equiprobable points in the ith signal constellation, $E_p = \| p_{tx}(t) \|^2$ represents the pulse energy, with $p_{tx}(t)$ the transmitter pulse shape, E is the baseband signal energy, Δf is the frequency offset, θ is the time-invariant carrier phase, $\{ \phi_i \}_{i=1}^{K_i}$ represents the phase jitter, $g(t) = p_{tx}(t) \otimes h(t)$, with $h(t)$ as the channel impulse response and \otimes denoting convolution, T is the symbol period, $[0, KT]$ is the K symbol observation interval, ε denotes the timing offset w.r.t. the receiver reference clock $(0 \leq \varepsilon < 1)$, $s^{(m)}_i = s^{(m)}_i + j s^{(m)}_i$ is the symbol transmitted within the kth period and $n(t)$ is aggregate noise: receiver noise, as well as cochannel interference and jamming. We adopt the notation $s(t; \mathbf{u}_i)$ to stress the signal dependence on the unknown quantities, $\mathbf{u}_i = \{ a_i, \Delta f, \theta, g(t) \}$, $\{ \phi_i \}_{i=1}^{K_i}$, $\{ s^{(m)}_i \}_{i=1}^{K_i}$, where \dagger is the transpose operator. Note that the term

¹ The pulse shape $g(t)$ contains information of both transmitter pulse shape and channel. For example, the additive white Gaussian noise (AWGN) channel is characterized by $h(t) = \delta(t)$, with $\delta(t)$ as the Dirac delta function, whereas for a flat block fading $h(t) = e^{j \alpha(t) \phi}$, with α and ϕ the channel amplitude and phase, respectively, constant over the observation interval.

² For FSK the data symbols depend on t. For others, such as ASK, PSK and QAM, $s^{(m)}_i$’s do not depend upon t. To simplify the notation, we most often drop the t-dependence, unless otherwise specified.
“unknown quantity” refers to both unknown signal parameters, such as carrier frequency and timing offsets, as well as unknown data symbols. The data symbols \(s_k^{(i)} \) are taken from a finite-alphabet specific to the \(i \)th modulation format, \(i = 1, \ldots, N_{\text{mod}} \). For alphabets associated to different digital modulations see, for example, [21] Ch. 4. Without loss of generality, we consider here unit variance constellations, i.e., \(s_k^{(i)} / \sigma_i \). To simplify the notation, only \(s_k^{(i)} \) will be used in the sequel.

III. LIKELIHOOD BASED APPROACH TO MC

Within the LB framework, MC is formulated as a multiple composite hypothesis-testing problem. Under the hypothesis \(H_i \), the \(i \)th modulation is assigned to the incoming signal, \(i = 1, \ldots, N_{\text{mod}} \). This approach is based on the likelihood-ratio test (LRT), which uses the likelihood function (LF) of \(r(t) \) over the interval \([0, KT] \). Depending on the model chosen for the unknown quantities, three LB-MC techniques were proposed in the literature: average LRT (ALRT) [1], [8], generalized LRT (GLRT) [6] and hybrid LRT (HLRT) [6]-[7].

With ALRT, the unknown quantities are treated as random variables (r.v.’s) and the LF is computed by averaging over them,

\[
A_{i}^{(l)}[r(t)]=\int A[r(t) \mid v, H_{i}]p(v \mid H_{i})d\nu_{v},
\]

where \(\eta_{i} \) is a threshold, \(l = A(\text{ALRT}), G(\text{GLRT}), H(\text{HLRT}) \). Extension of (4) to multiple hypotheses is straightforward (see, for example, [23] Ch. 2).

For AWGN, using the complex Gaussian distribution of \(n(t) \) and for the \(i \)th hypothesis \(H_{i} \), one can show that the conditional LF is given by (see, for example, [21] Ch.6)

\[
A[r(t) \mid u, N_{0}, H_{i}] = \exp\left\{ 2N_{0}^{\Re} \Re\left[\int_{0}^{KT} r(t)s^{*}(t; u)dt \right] - N_{0}^{2} \int_{0}^{KT} |s(t; u)|^{2}dt \right\},
\]

where \(\Re[.] \) is the real part and \(N_{0} \) (W/Hz) is the two-sided power spectral density (PSD) of the complex AWGN \(n(t) \). The autocorrelation function of \(n(t) \) is given by \(\mathbb{E}[n(t)n^{*}(t+\tau)] = N_{0}\delta(\tau) \), where \(\mathbb{E}[.] \) is the mathematical expectation, and \(\delta(\cdot) \) denotes complex conjugation.

In the available literature, the mathematical expression of the LF, \(A_{i}^{(l)}[r(t)] \), was derived for certain simplified scenarios, i.e., AWGN channel, with \(v_{i} = [s_{i}^{(i)}]^{T} \) \[1\], \(v_{i} = [\phi_{i}^{K}]^{T} \) \[4\], and \(v_{i} = [\phi_{i}^{K} \{s_{i}^{(i)}\}]^{T} \) \[8\].

\[
A_{i}^{(l)}[r(t)] = \prod_{k=1}^{K} E[v_{i,k}] \left[\exp\left\{ 2\sqrt{S}N_{0}^{2} \Re[R_{i}^{(l)}(\eta_{i})] - S N_{0}^{2} |s_{i,k}^{(l)}|^{2} \right\} \right],
\]

where \(S = E_{i}^{2}/T \) is the signal power, \(I_{0}(.) \) is the zero order modified Bessel function of the first kind, \(E_{i}^{0} \) is nothing but a finite summation over all the \(M_{i} \) possible constellation points of the \(i \)th modulation, divided by \(M_{i} \), for the \(k \)th interval and \(E^{0}[(\cdot)] \) is the averaging performed over \(K \) data symbols. Also, \(\xi_{i}^{0} = \sum_{k=1}^{K} R_{i}^{(l)} \) and \(\eta_{0}^{0} = \sum_{k=1}^{K} |s_{i,k}^{(l)}|^{2} \), where

\[
A_{i}^{(l)}[r(t)] = E[v_{i,k}] \left[e^{-\xi_{i}^{0}/N_{0}^{2}} I_{0}(2\sqrt{S}N_{0}^{2} |s_{i,k}^{(l)}|) \right],
\]

For linear modulations \(s_{i,k}^{(l)}(t) \) is constant over the period \((k-1)T \rightarrow kT \), and thus \(R_{i}^{(l)} = s_{i,k}^{(l)} r_{i} \), where \(r_{i} = \sum_{t=-\lfloor KT \rfloor}^{KT} r(t)dt \) is the output of the matched filter at \(kT \). The decision was made based on (4), with the threshold set to one. By comparing (6) and (7), one can easily notice that the complexity in computing the LF increases with the unknown carrier phase \(\theta \).

For many cases of interest, the computational complexity and even mathematical intractability of the ALRT-based classifier, as well as the need for prior knowledge, can render the ALRT impractical. Hence, approximations of the LF were investigated, leading to the so-called quasi-ALRT classifiers [3]-[5]. Such algorithms were derived for linear modulation classification in AWGN channel, with \(v_{i} = [0 \{s_{i}^{(i)}\}]^{T} \) \[2\]-[3] and \(v_{i} = [\theta \varepsilon \{s_{i}^{(i)}\}]^{T} \) \[2\]-[3], and for FSK signal identification, with \(v_{i} = [\phi_{i}^{K} \{s_{i}^{(i)}\}]^{T} \) \[4\] and \(v_{i} = [\varepsilon \{s_{i}^{(i)}\}]^{T} \) \[5\]. For example, the approximation of the LF used in [3] for PSK and QAM signal, with \(v_{i} = [0 \{s_{i}^{(i)}\}]^{T} \) and AWGN, is

\[
A_{i}^{(l)}[r(t)] \approx \exp\left\{ \sum_{n=0}^{n-1} (\sqrt{S}N_{0}^{2})^{n} K \sum_{q=0}^{n/2} \left| u_{i,n,q} \right|^2 (q(n-q))^{-3/2} \right\}^{1/2} \left| \tilde{m}_{i,n,q} \right| \left| \tilde{m}_{i,n,q} \right| = \left| \tilde{m}_{i,n,q} \right| \left| \tilde{m}_{i,n,q} \right|
\]

where \(m_{i,n,q} = E[(s_{i,n,q}^{(l)})^{2}] \) is the \(n \)th-order/ \(q \) conjugate moment of the \(i \)th constellation, \(\tilde{m}_{i,n,q} \) is the zero-delay vector \(\tilde{m}_{i,n,q} \), and \(\tilde{m}_{i,n,q}^{*} \) denotes rounding to the nearest integer, \(u_{i,n,q} \) is 1 if \(q = n/2 \) and 2 for \(q < n/2 \), and \(\tilde{m}_{i,n,q} \) denotes factorial. Eq. (9) can be further simplified for symmetric constellations, as the \(n \)th order moments are equal to zero for \(n \) odd. Furthermore, one can easily show that the lowest order approximations, as well as flat block Rayleigh fading channel, with \(\xi_{i}^{0} \) as a r.v. \(U[-\pi, \pi] \).

Note:
- The carrier phase was modeled as a r.v. \(U[-\pi, \pi] \).
- The pulse shape was modeled as a r.v. \(U[0,1] \).
- Eq. (9) was obtained by writing (5) given in [3] in terms of signal moments.
- For the definition of the 0th-order/1st conjugate moment, \(m_{i,n,q} \), and the cumulant, \(c_{i,n,q} \), as well as the relations between the moments and cumulants, see [22] Ch.2. A \(\tilde{m}_{i,n,q} \) delay vector is an \((n-1)\times1 \) vector, with all the elements equal to zero.
The design of a FB-MC algorithm essentially needs feature selection and decision-making. Features common to different modulations are selected in an ad-hoc way and the decision is made based on their differences. Some examples of features are statistics of the instantaneous amplitude, phase and frequency [9], 14], statistics of the signal itself [13], 16]-[20], the number of extrema in the PDF of the magnitude and peak magnitude of the signal wavelet transform [11], etc. Different methods can be used for decision-making, such as PDF-based [13]-[14], Euclidian distance [17]-[20], binary decision tree [9]-[10], neural networks [9], etc. The FB classifiers are summarized in Table II, including the features used, modulation types, unknown parameters and channel. Subsequently, the FB algorithms are presented from the perspective of a hierarchical approach, i.e., the modulation class of the incoming signal is first identified (e.g., QAM, PSK, ASK, FSK), and then the modulation order of each (M).

A. FB Algorithms for Modulation Class Identification

• **Algorithms based on the instantaneous amplitude, phase and frequency**

The most intuitive way to identify the modulation class of an incoming signal is by using information extracted from the instantaneous amplitude, phase and frequency. In [9], the maximum of the discrete Fourier transform (DFT) of the

11 In order to maximize the probability of correct classification, the threshold \(\eta \) is chosen to satisfy \(p^{+}(\eta) = p^{-}(\eta) \), where \(p^{+}(\eta) \) and \(p^{-}(\eta) \) are the PDFs of the chosen metric under the hypotheses \(H_{i} \) and \(H_{j} \), respectively.

12 This threshold is set to maximize the average probability of correct classification over a large number of data and noise realizations. It is assumed that such simulations should be run off-line and the threshold can be stored as a function of the noise and signal parameters. In a practical implementation, the threshold is therefore obtained from a look-up table.
normalized centered\(^3\) amplitude was used to discriminate FSK and (ASK and PSK) classes, the variance of the absolute normalized centered phase was used to distinguish between \(M\) -PSK \((M > 2)\) and real-valued constellation signals (BPSK and ASK), and the variance of direct (not absolute) normalized centered phase to distinguish between BPSK and ASK classes. A binary decision tree structure was employed to discriminate between classes. Discrimination within each class will be briefly discussed in Subsection B. At each tree node, the decision was made by comparing the selected statistic against a threshold\(^4\). A decision-tree classifier was also proposed in [10], and a practical system was developed based on this algorithm, at the Communication Research Center, Canada [24].

- **Algorithms based on the wavelet transform**

 The utility of the wavelet transform (WT) to localize transients in the instantaneous frequency, amplitude and phase of the received signal was also exploited for MC. The distinct behavior of the Haar WT (HWT) magnitude for PSK, QAM and FSK signals was explored for class identification in [11]-[12]. For a PSK signal the HWT magnitude is a constant, with peaks occurring at phase changes. On the other hand, because of the frequency and amplitude variation in an FSK and QAM signal, respectively, the HWT magnitude is a staircase function with peaks at phase changes, although these peaks do not provide useful information for non-continuous phase FSK signals. If only the phase is retained for a QAM signal, it behaves like a PSK signal and thus, the HWT magnitude is constant. On the other hand, as PSK and FSK signals are of constant amplitude, amplitude normalization has no effect on their HWT magnitude. After peaks removal, the variance of the HWT magnitude without amplitude normalization to distinguishing between QAM and PSK classes. The decision was made by comparing the selected feature against a threshold [11]-[12].

- **Algorithm based on cumulants**

 To discriminate amongst BPSK, ASK, \(M\) -PSK \((M > 2)\) and QAM classes, the normalized fourth-order/two-conjugate cumulant of the received signal, \(c_{4,2,1}(0)/c_{2,1}^2(0)\)\(^{16}\), was investigated in [13]. The PDF of the sample estimate was used for decision-making.

B. FB Algorithms for Modulation Order Identification

- ** Algorithms based on the instantaneous amplitude, phase and frequency**

 Information extracted from the instantaneous amplitude, phase and frequency was also exploited to identify the modulation order \((M)\) [9]. The variance of the absolute value of the normalized centered instantaneous amplitude (frequency) was used to distinguish between 2-ASK and 4-ASK (2-FSK and 4-FSK) [9]. The feature was compared against a threshold\(^5\) for decision making, at a node, as part of the binary decision tree classifier mentioned in Section IV.A.

 Statistical moments of the phase were investigated to identify PSK signals in [14], with the PDF of the sample estimates used for decision-making.

- **Algorithms based on the wavelet transform**

 Different PSK signals give rise to different sets of peak values in the magnitude of the Haar wavelet transform. The modulation order \((M)\) of the PSK signal was selected by matching the histogram of the peaks with theoretical PDFs corresponding to different orders [11]. The number of modes in the PDF of the HWT magnitude was investigated for FSK signal recognition in [11]; the input was identified as \(M\) -FSK if there were \(M/2 + 1\) to \(M\) modes in the histogram.

- **Algorithms based on cumulants**

 To identify the modulation order of ASK, PSK and QAM signals, features based on the fourth-order cumulants of the received signal were investigated in [13]. For example, the normalized cumulant of fourth-order/zero-conjugate, \(c_{4,2,1}(0)/c_{2,1}^2(0)\)\(^{16}\), was employed to identify the order of QAM signals. The PDF of the sample estimate was used for decision-making.

- **Algorithms based on cyclostationarity**

 Signal cyclostationarity was exploited for classification, with two manifestations, i.e., spectral line generation when passing the signal through different nonlinearities [15] and periodical fluctuation of cumulants up to the \(n\) th-order \((n = 8,6,4,2)\) with time [16]-[20]. A generic classifier based on a feature vector whose components are the magnitudes of the cyclic cumulants (CCs)\(^{14}\) up to the \(n\) th-order \((q\) -conjugate, \(q = 0,\ldots,n)\), raised to the power of \(2/n\), as \(n\) goes to infinity, and computed at all possible cycle frequencies (CFs) and delay vectors, \(\tau_{n,q}\), was proposed in [17]. The difficulty of implementing such a classifier led to simplified algorithms [17]-[18]. For example, the features investigated in [18] were based on the magnitudes of the CCs up to the sixth-order \((n = 6,4,2,\ldots,n)\), at the CF \((n - 2q)M + 1/T\) and a delay vector \(\tau_{n,0}\Rightarrow 0\Rightarrow n\), which ensures the maximum of the features. Such features are robust to the carrier phase and timing offset [17]-[19]. The decision was made based on the distance between the vector of sample estimates of the features and the vector of prescribed features, with the Euclidian norm employed as metric. The CC-based features were estimated from \(K\) samples, taken over the observed \(K\) symbol interval [25]. Classification of single or multiple incoming signals present at the receiver was investigated in [18]. Multiple signals which overlap in time and frequency but have distinct CFs, can be distinguished using CCs (selectivity property of CCs) [17]. Eight-order CC-based features were investigated in [19] for classifying real- and complex-valued constellations, respectively. Features based on the \(n\) th-order CCs \((n = 4,6,8,\ldots,q = n/2)\), robust to carrier phase and timing offset, as well as frequency offset and phase jitter, were proposed for QAM recognition in [20]. The minimum Euclidian distance was also employed for decision in [19]-[20]. A raised-cosine pulse shape was considered in [17]-[20].

\(^{14}\) For the definition of the \(n\) th-order CCs of a cyclostationary process, as well as the theoretical expression for the \(n\) th-order CCs of linear modulations see, for example, [17],[19] and [25].

\(^{15}\) Raising the \(n\) th-order CC magnitudes to the power of \(2/n\) forces the feature to take values within the same order of magnitude. Therefore, the classic Euclidian distance can be used for decision.

\(^{16}\) The received signal is oversampled (multiple samples over a symbol period) in order to exploit signal cyclostationarity. The sampling frequency is \(\rho/T\), with \(\rho\) a positive integer, called the oversampling factor.
V. NUMERICAL RESULTS

Subsequently, we present numerical results for QAM signal identification, with 16-QAM, 32-QAM and 64-QAM as candidate modulations ($N_{\text{mod}} = 3^y$). In classifying N_{mod} modulations, we use the average probability of correct classification as a performance measure. This is defined as $P_{\text{err}} = N_{\text{mod}} \sum_{i=1}^{N_{\text{mod}}} P^{(i)}$, where $P^{(i)}$ is the probability to declare that the ith modulation is received when indeed it has been originally transmitted. The $P^{(i)}$ is estimated based on 1000 Monte Carlo simulations. The number of processed symbols is $K = 100$, the pulse shape is rectangular, and the SNR per symbol is defined as $\gamma_s = ST/N_0$. We set $T = 1$ and $S = 1$, and change the SNR by varying N_0.

The ALRT-based classifier, as defined by (4) and (6), with $\eta_p = 1$, serves as a benchmark, against which performances of other classifiers are compared. We present in Table III the performance of this classifier, as well as a sensitivity effect to several model mismatches. Such analysis provides bounds of performance, imposed by different preprocessing operations.

In an ideal scenario (AWGN and all parameters assumed perfectly known), a P_{err} of one is attained at 14dB SNR (III-1), and a P_{err} of 0.9 at 11dB (III-2). Henceforth, the SNR is set to 14dB, unless otherwise mentioned. An acceptable performance (P_{err} above 0.9) is reached for a normalized carrier frequency offset Δf lower than 3.3×10^{-4} (III-3). When investigated for model mismatch, the carrier phase is fixed over a realization, but varies randomly, $U[-\theta_{\text{sim}}, \theta_{\text{sim}}]$ from realization to realization. An acceptable performance is achieved for $\theta_{\text{sim}} < 0.9$ (III-4). A similar result ($\phi_{\text{sim}} \leq 12^\circ$) is obtained when studying performance degradation due to a phase jitter, with the phase ϕ modeled as a r.v. uniformly distributed over $[-\phi_{\text{sim}}, \phi_{\text{sim}}]$, which varies from symbol to symbol (III-5). For a rectangular pulse shape, one can easily show that a synchronization error of ε translates, after matched filtering, to an equivalent two-path channel $[1 - \varepsilon e]$. An acceptable P_{err} is still achieved for $\varepsilon = 0.074$ (III-6). With an error ΔS in estimating the signal power S, an acceptable performance is achieved for $|\Delta S|/S \leq 22\%$ (III-7). The effect of the impulse noise was investigated using a contaminated Gaussian noise PDF, $p(\eta) \mathcal{N}(0, \sigma^2_\eta) + p(\eta, 1(0, 100\sigma^2_\eta))$ [26]. Here the addition refers to “mixture”, i.e., the process is realized from $\mathcal{N}(0, \sigma^2)$ with probability $1-p$ and from $\mathcal{N}(0, 100\sigma^2)$ with probability p. The impulse noise causes occasional impulsive events of a magnitude that is considerably greater than the background noise. We set the SNR based on the total noise variance, i.e., $N_0 = (1-p)\sigma^2 + p(100\sigma^2)$, and $p = 10^{-4}$. Another type of non-Gaussian noise used in the sensitivity analysis was generated by a gun fired repeatedly (Machine gun noise) [27]. With non-Gaussian noise, 13.5dB SNR is required to achieve a P_{err} of 0.9 (III-8). With a PSK signal as interference, i.e., transmitted on the same carrier frequency and at the same symbol rate as the QAM signal, a signal to interference ratio (SIR) greater than 18.4 dB is required to identify the QAM signals with a P_{err} higher than 0.9 (III-9). The SIR is defined as the signal power over the interference power. Interestingly, we have noticed that classification performance degradation does not depend on the modulation order of the interference.

In summary, results of the sensitivity analysis, i.e., the need for high SNR (14dB and 13.5dB compared to 11dB) show that the ALRT-based classifier is not robust to model mismatches.

VI. CONCLUSION

A useful summary of many existing LB- and FB-MC algorithms is provided in this paper, which gives the reader an overview of the approaches used so far. The LB approach provides an optimal solution to the MC problem (ALRT), in the sense that it maximizes the average probability of correct classification. However, the complexity of the optimal solution, in many cases of interest naturally, gives rise to proposing suboptimal algorithms, e.g., the quasi-ALRT classifiers. Using ML estimates of the unknown quantities, GLRT and HLRRT were investigated as two alternatives. Although GLRT has some advantages, it fails in identifying nested constellations. On the other hand, HLRRT can be implemented with less complexity than ALRT, and still achieving a reasonable performance. The complexity is further reduced in quasi-HLRRT classifiers, which rely on low-complexity yet accurate parameter estimators. Obviously, there is a trade-off between the complexity and performance, which depends on the estimation method. Although a FB method may not be optimal, it is usually simple to implement, with near-optimal performance, when designed properly.

Accurate preprocessing is required for the effective implementation of most of the known MC algorithms. Devising low-complexity blind algorithms for joint parameter estimation is a topic of interest in MC. In addition, development of classification methods which rely less on preprocessing is another topic for further investigation. New classification problems have raised as a result of emerging wireless technologies, such as single carrier versus multicarrier modulation recognition, classification of signals transmitted using single and multiple antennas, identification of space-time modulation formats, etc. These issues mean that MC in real-world environments continues to be a dynamic research field.

REFERENCES

[27] Signal Processing Information Base, Rice University, Houston, TX, URL http://spie.ece.rice.edu/spib/data/signals/.

Table I. A SUMMARY OF LIKELIHOOD-BASED CLASSIFIERS.

<table>
<thead>
<tr>
<th>Proposed by</th>
<th>Classifier</th>
<th>Modulations</th>
<th>Unknown parameters</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei and Mendel [1]</td>
<td>ALRT</td>
<td>Linear modulations</td>
<td>-</td>
<td>AWGN</td>
</tr>
<tr>
<td>Huang and Polydoros [2]</td>
<td>Quasi-ALRT</td>
<td>PSK signals</td>
<td>Carrier phase and timing offset</td>
<td>AWGN</td>
</tr>
<tr>
<td>Long et al. [3]</td>
<td>ALRT</td>
<td>QAM signals</td>
<td>Carrier phase</td>
<td>AWGN</td>
</tr>
<tr>
<td>Beidas and Weber [4]-[5]</td>
<td>ALRT, Quasi-ALRT</td>
<td>FSK signals</td>
<td>Carrier phase and timing offset</td>
<td>AWGN</td>
</tr>
<tr>
<td>Panagiotou et al. [6]</td>
<td>GLRT, HLRT</td>
<td>Linear modulations</td>
<td>Carrier phase</td>
<td>AWGN</td>
</tr>
<tr>
<td>Dobre et al. [7]</td>
<td>HLRT</td>
<td>Linear modulations</td>
<td>Channel amplitude and phase</td>
<td>Flat fading</td>
</tr>
<tr>
<td>Abdi et al. [8]</td>
<td>ALRT</td>
<td>Linear modulations, FSK signals</td>
<td>Channel amplitude and phase</td>
<td>Flat fading</td>
</tr>
<tr>
<td></td>
<td>Multi-antenna Quasi-HLRT</td>
<td>QAM signals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table II. A SUMMARY OF FEATURE-BASED CLASSIFIERS.

<table>
<thead>
<tr>
<th>Proposed by</th>
<th>Features</th>
<th>Modulations</th>
<th>Unknown parameters</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azzouz and Nandi [9]</td>
<td>Maximum DFT of normalized centered amplitude, variance of normalized centered (absolute) amplitude, phase and frequency</td>
<td>2ASK,4ASK,BPSK,QPSK,2FSK,4FSK</td>
<td>-</td>
<td>AWGN</td>
</tr>
<tr>
<td>Ho et al. [11]</td>
<td>Variance of the HWT magnitude, the HWT magnitude and peak magnitude histograms</td>
<td>FSK and PSK classes, as well as within each classes</td>
<td>-</td>
<td>AWGN</td>
</tr>
<tr>
<td>Hong and Ho [12]</td>
<td>Variance of the HWT magnitude</td>
<td>FSK, PSK and QAM classes</td>
<td>-</td>
<td>AWGN</td>
</tr>
<tr>
<td>Swami and Sadler [13]</td>
<td>Normalized fourth-order cumulants of the received signal</td>
<td>Linear modulations</td>
<td>Carrier phase, frequency and timing offsets</td>
<td>AWGN, impulsive noise, cochannel interferences</td>
</tr>
<tr>
<td>Spooner [17]-[18]</td>
<td>The (n) th powers of the magnitudes of the (n) th-order CCs of the received signal, (n=6,4,2) and (q=0,\ldots,n)</td>
<td>Linear modulations and minimum shift keying (MSK)</td>
<td>Carrier phase, frequency and timing offsets, symbol period, signal amplitude and pulse shape</td>
<td>AWGN, cochannel interferences</td>
</tr>
<tr>
<td>Dobre et al. [20]</td>
<td>The (n) th powers of the magnitudes of the (n) th-order CCs of the received signal, (n=8,6,4,2) and (q=n/2)</td>
<td>QAM signals</td>
<td>Carrier phase, frequency and timing offsets, and phase jitter</td>
<td>AWGN, impulsive noise</td>
</tr>
</tbody>
</table>

Table III. RESULTS OF THE SENSITIVITY ANALYSIS OF THE ALRT-BASED CLASSIFIER TO MODEL MISMATCHES.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Model mismatch</th>
<th>SNR(dB)</th>
<th>(P_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ALRT, (4) and (6), with (\eta_s = 0)</td>
<td>Ideal case</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>2 ALRT (as in first row)</td>
<td>Ideal case</td>
<td>11</td>
<td>0.9</td>
</tr>
<tr>
<td>3 ALRT (as in first row)</td>
<td>Carrier frequency offset ((\Delta f = 3.3 \times 10^{-4}))</td>
<td>14</td>
<td>0.9</td>
</tr>
<tr>
<td>4 ALRT (as in first row)</td>
<td>Carrier phase ((\theta_{\text{in}} = 9^\circ), with (0^\circ \ldots 360^\circ))</td>
<td>14</td>
<td>0.9</td>
</tr>
<tr>
<td>5 ALRT (as in first row)</td>
<td>Phase jitter ((\phi_{\text{in}} = 12^\circ), with (0^\circ \ldots 360^\circ))</td>
<td>14</td>
<td>0.9</td>
</tr>
<tr>
<td>6 ALRT (as in first row)</td>
<td>Timing offset ((\varepsilon = 0.074))</td>
<td>14</td>
<td>0.9</td>
</tr>
<tr>
<td>7 ALRT (as in first row)</td>
<td>Error in estimating the signal power ((\Delta S / S = 22%))</td>
<td>14</td>
<td>0.9</td>
</tr>
<tr>
<td>8 ALRT (as in first row))</td>
<td>Impulsive noise (mixture model, as well a machine gun noise)</td>
<td>13.5</td>
<td>0.9</td>
</tr>
<tr>
<td>9 ALRT (as in first row)</td>
<td>Cochannel interferences (PSK signal as interference, SIR=18.4dB)</td>
<td>14</td>
<td>0.9</td>
</tr>
</tbody>
</table>