Axel G. R. Turnquist, Ph.D.
Department of Mathematical Sciences
New Jersey Institute of Technology
Advisor: Brittany Froese Hamfeldt
Email: agt6 [at] njit [dot] edu
Starting August 2022, I will be doing postdoctoral research at the
Department of Mathematics, University of Texas at Austin
as an R. H. Bing Fellow
Research Interests:
- Optimal Transport
- Monge-Ampère PDE
- PDE on Manifolds
- Diffeomorphic Mappings
- Numerical Analysis
- Wasserstein Distance
- Mean-Field Games
- Machine Learning
Publications:
In Preparation
- Hamfeldt, B. F., Turnquist, A. G. R. Higher-Order Numerical Schemes for the Optimal Transport Problem on the Sphere
Preprints
- Hamfeldt, B. F., Turnquist, A. G. R. On the Reduction in Accuracy of Finite Difference Schemes on Manifolds without Boundary arXiv Link
- Turnquist, A. G. R. Convergent Numerical Methods for Adaptive Meshes on the Sphere via Optimal Transport and Optimal Information Transport arXiv Link
In Print
- Hamfeldt, B. F., Turnquist, A. G. R. A Convergence framework for optimal transport on the sphere Numerische Mathematik (2022) Link
- Brittany Froese Hamfeldt and Axel G. R. Turnquist Convergent numerical method for the reflector antenna problem via optimal transport on the sphere J. Opt. Soc. Am. A 38, 1704-1713 (2021) Link Received Editor's Pick
- Brittany Froese Hamfeldt and Axel G. R. Turnquist A convergent finite difference method for optimal transport on the sphere Journal of Computational Physics, 2021 Link
- Turnquist, A. G. R., Rotstein, H. G. Quadratization: From Conductance-Based Models to Caricature Models with Parabolic Nonlinearities Link
Links:
Brittany Hamfeldt
NJIT Optimization and Machine Learning Talks