Discrete-Time Systems

- A discrete-time system processes a given input sequence $x[n]$ to generates an output sequence $y[n]$ with more desirable properties
- In most applications, the discrete-time system is a single-input, single-output system:

Discrete-Time Systems: Examples

- 2-input, 1-output discrete-time systems Modulator, adder
- 1-input, 1-output discrete-time systems Multiplier, unit delay, unit advance

2

Discrete-Time Systems: Examples

- Accumulator - $y[n]=\sum_{\ell=-\infty}^{n} x[\ell]$

$$
=\sum_{\ell=-\infty}^{n-1} x[\ell]+x[n]=y[n-1]+x[n]
$$

- The output $y[n]$ at time instant n is the sum of the input sample $x[n]$ at time instant n and the previous output $y[n-1]$ at time instant $n-1$, which is the sum of all previous input sample values from $-\infty$ to $n-1$
- The system cumulatively adds, i.e., it accumulates all input sample values

Discrete-Time Systems:Examples

- M-point moving-average system -

$$
y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]
$$

- Used in smoothing random variations in data
- In most applications, the data $x[n]$ is a bounded sequence
- $\Rightarrow M$-point average $y[n]$ is also a bounded sequence

Discrete-Time Systems:Examples

- Accumulator - Input-output relation can also be written in the form

$$
\begin{aligned}
y[n] & =\sum_{\ell=-\infty}^{-1} x[\ell]+\sum_{\ell=0}^{n} x[\ell] \\
& =y[-1]+\sum_{\ell=0}^{n} x[\ell], n \geq 0
\end{aligned}
$$

- The second form is used for a causal input sequence, in which case $y[-1]$ is called the initial condition

4

Discrete-Time Systems:Examples

- If there is no bias in the measurements, an improved estimate of the noisy data is obtained by simply increasing M
- A direct implementation of the M-point moving average system requires $M-1$ additions, 1 division, and storage of $M-1$ past input data samples
- A more efficient implementation is developed next

6
Copyright © 2005, S. K. Mitra

Discrete-Time Systems:Examples

$$
\begin{aligned}
y[n] & =\frac{1}{M}\left(\sum_{\ell=0}^{M-1} x[n-\ell]+x[n-M]-x[n-M]\right) \\
& =\frac{1}{M}\left(\sum_{\ell=1}^{M} x[n-\ell]+x[n]-x[n-M]\right) \\
& =\frac{1}{M}\left(\sum_{\ell=0}^{M-1} x[n-1-\ell]+x[n]-x[n-M]\right)
\end{aligned}
$$

Hence

$$
y[n]=y[n-1]+\frac{1}{M}(x[n]-x[n-M])
$$

Discrete-Time Systems:Examples

- Computation of the modified M-point moving average system using the recursive equation now requires 2 additions and 1 division
- An application: Consider

$$
x[n]=s[n]+d[n],
$$

where $s[n]$ is the signal corrupted by a noise $d[n]$

Discrete-Time Systems:Examples

$s[n]=2\left[n(0.9)^{n}\right], d[n]$ - random signal

Discrete-Time Systems:Examples

- For $0<\alpha<1$, the exponentially weighted average filter places more emphasis on current data samples and less emphasis on past data samples as illustrated below

$$
\begin{aligned}
y[n] & =\alpha(\alpha y[n-2]+x[n-1])+x[n] \\
& =\alpha^{2} y[n-2]+\alpha x[n-1]+x[n] \\
& =\alpha^{2}(\alpha y[n-3]+x[n-2])+\alpha x[n-1]+x[n] \\
& =\alpha^{3} y[n-3]+\alpha^{2} x[n-2]+\alpha x[n-1]+x[n]
\end{aligned}
$$

Copyright © 2005, S. K. Mitra

Discrete-Time Systems:Examples

- Exponentially Weighted Running Average Filter

$$
y[n]=\alpha y[n-1]+x[n], \quad 0<\alpha<1
$$

- Computation of the running average requires only 2 additions, 1 multiplication and storage of the previous running average
- Does not require storage of past input data samples

Discrete-Time Systems:Examples

- Linear interpolation - Employed to estimate sample values between pairs of adjacent sample values of a discrete-time sequence
- Factor-of-4 interpolation

Discrete-Time Systems: Examples

- Factor-of-2 interpolator -

$$
y[n]=x_{u}[n]+\frac{1}{2}\left(x_{u}[n-1]+x_{u}[n+1]\right)
$$

- Factor-of-3 interpolator -

$$
\begin{aligned}
y[n]=x_{u}[n] & +\frac{1}{3}\left(x_{u}[n-1]+x_{u}[n+2]\right) \\
& +\frac{2}{3}\left(x_{u}[n-2]+x_{u}[n+1]\right)
\end{aligned}
$$

Discrete-Time Systems: Examples

- Factor-of-2 interpolator -

Down-sampled
(256×256)
Original (512×512)

Interpolated (512×512)

Discrete-Time Systems: Examples

Median Filter -

- The median of a set of $(2 K+1)$ numbers is the number such that K numbers from the set have values greater than this number and the other K numbers have values smaller
- Median can be determined by rank-ordering the numbers in the set by their values and choosing the number at the middle

Discrete-Time Systems:

 ExamplesMedian Filter -

- Example: Consider the set of numbers

$$
\{2, \quad-3,10, \quad 5, \quad-1\}
$$

- Rank-order set is given by

$$
\{-3,-1,2, \quad 5,10\}
$$

- Hence,

$$
\operatorname{med}\{2, \quad-3, \quad 10, \quad 5, \quad-1\}=2
$$

Discrete-Time Systems:

Examples

Median Filter -

- Implemented by sliding a window of odd length over the input sequence $\{x[n]\}$ one sample at a time
- Output $y[n]$ at instant n is the median value of the samples inside the window centered at n

Discrete-Time Systems: Examples

Median Filter -

- Finds applications in removing additive random noise, which shows up as sudden large errors in the corrupted signal
- Usually used for the smoothing of signals corrupted by impulse noise

Discrete-Time Systems:

 Examples
Median Filtering Example -

Linear Discrete-Time Systems

- Definition - If $y_{1}[n]$ is the output due to an input $x_{1}[n]$ and $y_{2}[n]$ is the output due to an input $x_{2}[n]$ then for an input

$$
x[n]=\alpha x_{1}[n]+\beta x_{2}[n]
$$

the output is given by

$$
y[n]=\alpha y_{1}[n]+\beta y_{2}[n]
$$

- Above property must hold for any arbitrary constants α and β, and for all possible inputs $x_{1}[n]$ and $x_{2}[n]$

Linear Discrete-Time Systems

- The outputs $y_{1}[n]$ and $y_{2}[n]$ for inputs $x_{1}[n]$ and $x_{2}[n]$ are given by

$$
\begin{aligned}
& y_{1}[n]=y_{1}[-1]+\sum_{\ell=0}^{n} x_{1}[\ell] \\
& y_{2}[n]=y_{2}[-1]+\sum_{\ell=0}^{n} x_{2}[\ell]
\end{aligned}
$$

- The output $y[n]$ for an input $\alpha x_{1}[n]+\beta x_{2}[n]$ is given by

$$
y[n]=y[-1]+\sum_{\ell=0}^{n}\left(\alpha x_{1}[\ell]+\beta x_{2}[\ell]\right)
$$

Linear Discrete-Time Systems

- Accumulator $-y_{1}[n]=\sum_{\ell=-\infty}^{n} x_{1}[\ell], \quad y_{2}[n]=\sum_{\ell=-\infty}^{n} x_{2}[\ell]$ For an input

$$
x[n]=\alpha x_{1}[n]+\beta x_{2}[n]
$$

the output is

$$
\begin{aligned}
y[n] & =\sum_{\ell=-\infty}^{n}\left(\alpha x_{1}[\ell]+\beta x_{2}[\ell]\right) \\
& =\alpha \sum_{\ell=-\infty}^{n} x_{1}[\ell]+\beta \sum_{\ell=-\infty}^{n} x_{2}[\ell]=\alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

- Hence, the above system is linear

22

Discrete-Time Systems: Classification

- Linear System
- Shift-Invariant System
- Causal System
- Stable System
- Passive and Lossless Systems

Linear Discrete-Time Systems

- Now $\alpha y_{1}[n]+\beta y_{2}[n]$

$$
\begin{gathered}
=\alpha\left(y_{1}[-1]+\sum_{\ell=0}^{n} x_{1}[\ell]\right)+\beta\left(y_{2}[-1]+\sum_{\ell=0}^{n} x_{2}[\ell]\right) \\
=\left(\alpha y_{1}[-1]+\beta y_{2}[-1]\right)+\left(\alpha \sum_{\ell=0}^{n} x_{1}[\ell]+\beta \sum_{\ell=0}^{n} x_{2}[\ell]\right)
\end{gathered}
$$

- Thus $y[n]=\alpha y_{1}[n]+\beta y_{2}[n]$ if

$$
y[-1]=\alpha y_{1}[-1]+\beta y_{2}[-1]
$$

24

Linear Discrete-Time System

- For the causal accumulator to be linear the condition $y[-1]=\alpha y_{1}[-1]+\beta y_{2}[-1]$ must hold for all initial conditions $y[-1]$, $y_{1}[-1], y_{2}[-1]$, and all constants α and β
- This condition cannot be satisfied unless the accumulator is initially at rest with zero initial condition
- For nonzero initial condition, the system is nonlinear

Nonlinear Discrete-Time System

- The median filter described earlier is a nonlinear discrete-time system
- To show this, consider a median filter with a window of length 3
- Output of the filter for an input

$$
\begin{aligned}
& \left\{x_{1}[n]\right\}=\{3, \quad 4, \quad 5\}, 0 \leq n \leq 2 \\
& \left\{y_{1}[n]\right\}=\{3, \quad 4, \quad 4\}, 0 \leq n \leq 2
\end{aligned}
$$

is

Copyright © 2005, S. K. Mitra

Nonlinear Discrete-Time System

- Output for an input
$\left\{x_{2}[n]\right\}=\{2, \quad-1, \quad-1\}, 0 \leq n \leq 2$
is

$$
\left\{y_{2}[n]\right\}=\left\{\begin{array}{lll}
0, & -1, & -1
\end{array}\right\}, 0 \leq n \leq 2
$$

- However, the output for an input

$$
\{x[n]\}=\left\{x_{1}[n]+x_{2}[n]\right\}
$$

is

$$
\{y[n]\}=\{3, \quad 4, \quad 3\}
$$

27

Shift-Invariant System

- For a shift-invariant system, if $y_{1}[n]$ is the response to an input $x_{1}[n]$, then the response to an input

$$
x[n]=x_{1}\left[n-n_{o}\right]
$$

is simply

$$
y[n]=y_{1}\left[n-n_{o}\right]
$$

where n_{o} is any positive or negative integer

- The above relation must hold for any arbitrary input and its corresponding output

Nonlinear Discrete-Time System

- Note

$$
\left\{y_{1}[n]+y_{2}[n]\right\}=\{3, \quad 3, \quad 3\} \neq\{y[n]\}
$$

- Hence, the median filter is a nonlinear discrete-time system

8

Shift-Invariant System

- In the case of sequences and systems with indices n related to discrete instants of time, the above property is called time-invariance property
- Time-invariance property ensures that for a specified input, the output is independent of the time the input is being applied

Shift-Invariant System

- Example - Consider the up-sampler with an input-output relation given by

$$
x_{u}[n]=\left\{\begin{array}{cc}
x[n / L], & n=0, \pm L, \pm 2 L, \ldots . . \\
0, & \text { otherwise }
\end{array}\right.
$$

- For an input $x_{1}[n]=x\left[n-n_{0}\right]$ the output $x_{1, u}[n]$ is given by

$$
\begin{aligned}
x_{1, u}[n] & =\left\{\begin{array}{cc}
x_{1}[n / L], & n=0, \pm L, \pm 2 L, \ldots . . \\
0, & \text { otherwise }
\end{array}\right. \\
& =\left\{\begin{array}{cc}
x\left[\left(n-L n_{o}\right) / L\right], & n=0, \pm L, \pm 2 L, \ldots . . \\
0, & \text { otherwise } \\
\text { Copyrighto 2005, s. . . Mirra }
\end{array}\right.
\end{aligned}
$$

Shift-Invariant System

- However from the definition of the up-sampler

$$
x_{u}\left[n-n_{o}\right]
$$

$$
\begin{aligned}
& =\left\{\begin{array}{cc}
x\left[\left(n-n_{o}\right) / L\right], & n=n_{o}, n_{o} \pm L, n_{o} \pm 2 L, \ldots . . \\
0, & \text { otherwise }
\end{array}\right. \\
& \neq x_{1, u}[n]
\end{aligned}
$$

- Hence, the up-sampler is a time-varying system

Linear Time-Invariant System

- Linear Time-Invariant (LTI) System A system satisfying both the linearity and the time-invariance property
- LTI systems are mathematically easy to analyze and characterize, and consequently, easy to design
- Highly useful signal processing algorithms have been developed utilizing this class of systems over the last several decades

Causal System

- In a causal system, the n_{o}-th output sample $y\left[n_{o}\right]$ depends only on input samples $x[n]$ for $n \leq n_{o}$ and does not depend on input samples for $n>n_{o}$
- Let $y_{1}[n]$ and $y_{2}[n]$ be the responses of a causal discrete-time system to the inputs $x_{1}[n]$ and $x_{2}[n]$, respectively

Causal System

- Then

$$
x_{1}[n]=x_{2}[n] \text { for } n<N
$$

implies also that

$$
y_{1}[n]=y_{2}[n] \text { for } n<N
$$

- For a causal system, changes in output samples do not precede changes in the input samples

Causal System

- Examples of causal systems:
$y[n]=\alpha_{1} x[n]+\alpha_{2} x[n-1]+\alpha_{3} x[n-2]+\alpha_{4} x[n-3]$
$y[n]=b_{0} x[n]+b_{1} x[n-1]+b_{2} x[n-2]$
$+a_{1} y[n-1]+a_{2} y[n-2]$
$y[n]=y[n-1]+x[n]$
- Examples of noncausal systems:
$y[n]=x_{u}[n]+\frac{1}{2}\left(x_{u}[n-1]+x_{u}[n+1]\right)$
$y[n]=x_{u}[n]+\frac{1}{3}\left(x_{u}[n-1]+x_{u}[n+2]\right)$
36
$+\frac{2}{3}\left(x_{u}[n-2]+\underset{\text { Copyightic ocos, S. K. Mitra }}{x_{u}}[n+1]\right)$

Causal System

- A noncausal system can be implemented as a causal system by delaying the output by an appropriate number of samples
- For example a causal implementation of the factor-of-2 interpolator is given by

$$
y[n]=x_{u}[n-1]+\frac{1}{2}\left(x_{u}[n-2]+x_{u}[n]\right)
$$

- We consider here the bounded-input, bounded-output (BIBO) stability
- If $y[n]$ is the response to an input $x[n]$ and if $|x[n]| \leq B_{x} \quad$ for all values of n then
$|y[n]| \leq B_{y}$ for all values of n

Stable System

- Example - The M-point moving average filter is BIBO stable:

$$
y[n]=\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]
$$

- For a bounded input $|x[n]| \leq B_{x}$ we have

$$
\begin{aligned}
|y[n]| & =\left|\frac{1}{M} \sum_{k=0}^{M-1} x[n-k]\right| \leq \frac{1}{M} \sum_{k=0}^{M-1}|x[n-k]| \\
& \leq \frac{1}{M}\left(M B_{x}\right) \leq B_{x}
\end{aligned}
$$

Passive and Lossless Systems

- A discrete-time system is defined to be passive if, for every finite-energy input $x[n]$, the output $y[n]$ has, at most, the same energy, i.e.

$$
\sum_{n=-\infty}^{\infty}|y[n]|^{2} \leq \sum_{n=-\infty}^{\infty}|x[n]|^{2}<\infty
$$

- For a lossless system, the above inequality is satisfied with an equal sign for every input

Passive and Lossless Systems

- Example - Consider the discrete-time system defined by $y[n]=\alpha x[n-N]$ with N a positive integer
- Its output energy is given by

$$
\sum_{n=-\infty}^{\infty}|y[n]|^{2}=|\alpha|^{2} \sum_{n=-\infty}^{\infty}|x[n]|^{2}
$$

- Hence, it is a passive system if $|\alpha|<1$ and is a lossless system if $\quad|\alpha|=1$

Copyright © 2005, S. K. Mitra

Impulse and Step Responses

- The response of a discrete-time system to a unit sample sequence $\{\delta[n]\}$ is called the unit sample response or simply, the impulse response, and is denoted by $\{h[n]\}$
- The response of a discrete-time system to a unit step sequence $\{\mu[n]\}$ is called the unit step response or simply, the step response, and is denoted by $\{s[n]\}$

Impulse Response

- Example - The impulse response of the system
$y[n]=\alpha_{1} x[n]+\alpha_{2} x[n-1]+\alpha_{3} x[n-2]+\alpha_{4} x[n-3]$
is obtained by setting $x[n]=\delta[n]$ resulting in
$h[n]=\alpha_{1} \delta[n]+\alpha_{2} \delta[n-1]+\alpha_{3} \delta[n-2]+\alpha_{4} \delta[n-3]$
- The impulse response is thus a finite-length sequence of length 4 given by

$$
\left.\{h[n]\}=\underset{\uparrow}{\left\{\alpha_{1},\right.} \quad \alpha_{2}, \quad \alpha_{3}, \quad \alpha_{4}\right\}
$$

Copyright © 2005, S. K. Mitra

Impulse Response

- Example - The impulse response $\{\mathrm{h}[\mathrm{n}]\}$ of the factor-of-2 interpolator

$$
y[n]=x_{u}[n]+\frac{1}{2}\left(x_{u}[n-1]+x_{u}[n+1]\right)
$$

- is obtained by setting $x_{u}[n]=\delta[n]$ and is given by

$$
h[n]=\delta[n]+\frac{1}{2}(\delta[n-1]+\delta[n+1])
$$

- The impulse response is thus a finite-length sequence of length 3 :

45
$\{h[n]\}=\{0.5, \quad \underset{\uparrow}{1} 0.5\}$
Copyright © 2005, S. K. Mitra

Impulse Response

- Example - The impulse response of the discrete-time accumulator

$$
y[n]=\sum_{\ell=-\infty}^{n} x[\ell]
$$

is obtained by setting $x[n]=\delta[n]$ resulting in

$$
h[n]=\sum_{\ell=-\infty}^{n} \delta[\ell]=\mu[n]
$$

44

Time-Domain Characterization of LTI Discrete-Time System

- Input-Output Relationship -

A consequence of the linear, timeinvariance property is that an LTI discretetime system is completely characterized by its impulse response

- \longrightarrow Knowing the impulse response one can compute the output of the system for any arbitrary input
46
Copyright © 2005, S. K. Mitra

Time-Domain Characterization of LTI Discrete-Time System

- Let $h[n]$ denote the impulse response of a LTI discrete-time system
- We compute its output $y[n]$ for the input:
$x[n]=0.5 \delta[n+2]+1.5 \delta[n-1]-\delta[n-2]+0.75 \delta[n-5]$
- As the system is linear, we can compute its outputs for each member of the input separately and add the individual outputs to determine $y[n]$

Time-Domain Characterization of LTI Discrete-Time System

- Since the system is time-invariant

$$
\begin{array}{cc}
\text { input } & \text { output } \\
\delta[n+2] & \rightarrow h[n+2] \\
\delta[n-1] & \rightarrow h[n-1] \\
\delta[n-2] & \rightarrow h[n-2] \\
\delta[n-5] & \rightarrow h[n-5]
\end{array}
$$

Time-Domain Characterization of LTI Discrete-Time System

- Likewise, as the system is linear

$$
\begin{aligned}
\text { input } & \text { output } \\
0.5 \delta[n+2] & \rightarrow 0.5 h[n+2] \\
1.5 \delta[n-1] & \rightarrow 1.5 h[n-1] \\
-\delta[n-2] & \rightarrow-h[n-2] \\
0.75 \delta[n-5] & \rightarrow 0.75 h[n-5]
\end{aligned}
$$

- Hence because of the linearity property we get

$$
\begin{aligned}
y[n]= & 0.5 h[n+2]+1.5 h[n-1] \\
& -h[n-2]+0.75 h[n-5]
\end{aligned}
$$

Time-Domain Characterization of LTI Discrete-Time System

- Now, any arbitrary input sequence $x[n]$ can be expressed as a linear combination of delayed and advanced unit sample sequences in the form

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

- The response of the LTI system to an input $x[k] \delta[n-k]$ will be $x[k] h[n-k]$

Time-Domain Characterization of LTI Discrete-Time System

- Hence, the response $y[n]$ to an input

$$
x[n]=\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]
$$

will be

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

which can be alternately written as

$$
y[n]=\sum_{k=-\infty}^{\infty} x[n-k] h[k]
$$

Copyright © 2005, S. K. Mitra

Convolution Sum

- Properties -
- Commutative property:

$$
x[n] \circledast h[n]=h[n] \circledast x[n]
$$

- Associative property :

$$
(x[n] \circledast h[n]) \circledast y[n]=x[n] \circledast(h[n] \circledast y[n])
$$

- Distributive property :
$x[n] \circledast(h[n]+y[n])=x[n] \circledast h[n]+x[n] \circledast y[n]$

Convolution Sum

- The summation
$y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} x[n-k] h[n]$
is called the convolution sum of the sequences $x[n]$ and $h[n]$ and represented compactly as

$$
y[n]=x[n] \circledast h[n]
$$

Convolution Sum

- Interpretation -

- 1) Time-reverse $h[k]$ to form $h[-k]$
- 2) Shift $h[-k]$ to the right by n sampling periods if $n>0$ or shift to the left by n sampling periods if $n<0$ to form $h[n-k]$
- 3) Form the product $v[k]=x[k] h[n-k]$
- 4) Sum all samples of $v[k]$ to develop the n-th sample of $y[n]$ of the convolution sum

Convolution Sum

- Schematic Representation -

- The computation of an output sample using the convolution sum is simply a sum of products
- Involves fairly simple operations such as additions, multiplications, and delays

Convolution Sum

- We illustrate the convolution operation for the following two sequences:

$$
\begin{aligned}
& x[n]= \begin{cases}1, & 0 \leq n \leq 5 \\
0, & \text { otherwise }\end{cases} \\
& h[n]=\left\{\begin{array}{cc}
1.8-0.3 n, & 0 \leq n \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Figures on the next several slides the steps involved in the computation of

$$
y[n]=x[n] \circledast h[n]
$$

Time-Domain Characterization of LTI Discrete-Time System

- In practice, if either the input or the impulse response is of finite length, the convolution sum can be used to compute the output sample as it involves a finite sum of products
- If both the input sequence and the impulse response sequence are of finite length, the output sequence is also of finite length

Time-Domain Characterization of LTI Discrete-Time System

- If both the input sequence and the impulse response sequence are of infinite length, convolution sum cannot be used to compute the output
- For systems characterized by an infinite impulse response sequence, an alternate time-domain description involving a finite sum of products will be considered

Time-Domain Characterization of LTI Discrete-Time System

- Example - Develop the sequence $y[n]$ generated by the convolution of the sequences $x[n]$ and $h[n]$ shown below

71
Copyright © 2005, S. K. Mitra

Time-Domain Characterization of LTI Discrete-Time System

- As can be seen from the shifted timereversed version $\{h[n-k]\}$ for $n<0$, shown below for $n=-3$, for any value of the sample index k, the k-th sample of either $\{x[k]\}$ or $\{h[n-k]\}$ is zero

72

Time-Domain Characterization of LTI Discrete-Time System

- As a result, for $n<0$, the product of the k-th samples of $\{x[k]\}$ and $\{h[n-k]\}$ is always zero, and hence

$$
y[n]=0 \quad \text { for } n<0
$$

- Consider now the computation of $y[0]$
- The sequence $\{h[-k]\}$ is shown on the right

Time-Domain Characterization

 of LTI Discrete-Time System- The product sequence $\{x[k] h[-k]\}$ is plotted below which has a single nonzero sample $x[0] h[0]$ for $k=0$

- Thus $y[0]=x[0] h[0]=-2$

Time-Domain Characterization of LTI Discrete-Time System

- For the computation of $y[1]$, we shift $\{h[-k]\}$ to the right by one sample period to form $\{h[1-k]\}$ as shown below on the left
- The product sequence $\{x[k] h[1-k]\}$ is shown below on the right

- Hence, $y[1]=x[0] h[1]+x[1] h[0]=-4+0=-4$

Time-Domain Characterization of LTI Discrete-Time System

- To calculate $y[2]$, we form $\{h[2-k]\}$ as shown below on the left
- The product sequence $\{x[k] h[2-k]\}$ is plotted below on the right

$y[2]=x[0] h[2]+x[1] h[1]+x[2] h[0]=0+0+1=1$
Copyright © 2005, s. K. Mitra

Time-Domain Characterization of LTI Discrete-Time System

- Continuing the process we get

$$
y[3]=x[0] h[3]+x[1] h[2]+x[2] h[1]+x[3] h[0]
$$

$$
=2+0+0+1=3
$$

$$
y[4]=x[1] h[3]+x[2] h[2]+x[3] h[1]+x[4] h[0]
$$

$$
=0+0-2+3=1
$$

$$
y[5]=x[2] h[3]+x[3] h[2]+x[4] h[1]
$$

$$
=-1+0+6=5
$$

$$
y[6]=x[3] h[3]+x[4] h[2]=1+0=1
$$

$y[7]=x[4] h[3]=-3$

Time-Domain Characterization of LTI Discrete-Time System

- From the plot of $\{h[n-k]\}$ for $n>7$ and the plot of $\{x[k]\}$ as shown below, it can be seen that there is no overlap between these two sequences
- As a result $y[n]=0$ for $n>7$

Time-Domain Characterization of LTI Discrete-Time System

- The sequence $\{y[n]\}$ generated by the convolution sum is shown below

Time-Domain Characterization of LTI Discrete-Time System

- Note: The sum of indices of each sample product inside the convolution sum is equal to the index of the sample being generated by the convolution operation
- For example, the computation of $y[3]$ in the previous example involves the products $x[0] h[3], x[1] h[2], x[2] h[1]$, and $x[3] h[0]$
- The sum of indices in each of these products is equal to 3

Time-Domain Characterization of LTI Discrete-Time System

- In the example considered the convolution of a sequence $\{x[n]\}$ of length 5 with a sequence $\{h[n]\}$ of length 4 resulted in a sequence $\{y[n]\}$ of length 8
- In general, if the lengths of the two sequences being convolved are M and N, then the sequence generated by the convolution is of length $M+N-1$

Tabular Method of Convolution Sum Computation

$n:$	0	1	2	3	4	5
$g[n]:$	$g[0]$	$g[1]$	$g[2]$	$g[3]$		
$h[n]:$	$h[0]$	$h[1]$	$h[2]$			
	$g[0] h[0]$	$g[1] h[0]$	$g[2] h[0]$	$g[3] h[0]$		
		$g[0] h[1]$	$g[1] h[1]$	$g[2] h[1]$	$g[3][1]$	
			$g[0] h[2]$	$g[1] h[2]$	$g[2] h[2]$	$g[3] h[2]$
$y[n]:$	$y[0]$	$y[1]$	$y[2]$	$y[3]$	$y[4]$	$y[5]$

- The samples $y[n]$ generated by the convolution sum are obtained by adding the entries in the column above each sample
opyright © 2005, S. K. Mitra

Tabular Method of Convolution Sum Computation

- The samples of $\{y[n]\}$ are given by

$$
\begin{aligned}
y[0] & =g[0] h[0] \\
y[1] & =g[1] h[0]+g[0] h[1] \\
y[2] & =g[2] h[0]+g[1] h[1]+g[0] h[2] \\
y[3] & =g[3] h[0]+g[2] h[1]+g[1] h[2] \\
y[4] & =g[3] h[1]+g[2] h[2] \\
y[5] & =g[3] h[2]
\end{aligned}
$$

Tabular Method of Convolution Sum Computation

- The method can also be applied to convolve two finite-length two-sided sequences
- In this case, a decimal point is first placed to the right of the sample with the time index $n=0$ for each sequence
- Next, convolution is computed ignoring the location of the decimal point

Convolution Using MATLAB

- The M-file conv implements the convolution sum of two finite-length sequences
- If $a=\left[\begin{array}{lllll}-2 & 0 & 1 & -1 & 3\end{array}\right]$
$\mathrm{b}=\left[\begin{array}{llll}1 & 2 & 0 & -1\end{array}\right]$
then conv (a, b) yields

$$
\left[\begin{array}{llllllll}
-2 & -4 & 1 & 3 & 1 & 5 & 1 & -3
\end{array}\right]
$$

87
Copyright © 2005, S. K. Mitra
88

Simple Interconnection Schemes

- Two simple interconnection schemes are:
- Cascade Connection
- Parallel Connection

Copyright © 2005, S. K. Mitra

Cascade Connection

- Impulse response $h[n]$ of the cascade of two LTI discrete-time systems with impulse responses $h_{1}[n]$ and $h_{2}[n]$ is given by

$$
h[n]=h_{1}[n] \circledast h_{2}[n]
$$

Cascade Connection

- Note: The ordering of the systems in the cascade has no effect on the overall impulse response because of the commutative property of convolution
- A cascade connection of two stable systems is stable
- A cascade connection of two passive (lossless) systems is passive (lossless)

Cascade Connection

- An application is in the development of an inverse system
- If the cascade connection satisfies the relation

$$
h_{1}[n] \circledast h_{2}[n]=\delta[n]
$$

then the LTI system $h_{1}[n]$ is said to be the inverse of $h_{2}[n]$ and vice-versa

Cascade Connection

- An application of the inverse system concept is in the recovery of a signal $x[n]$ from its distorted version $\hat{x}[n]$ appearing at the output of a transmission channel
- If the impulse response of the channel is known, then $x[n]$ can be recovered by designing an inverse system of the channel

$$
\begin{aligned}
& \\
& x[n] \longrightarrow \text { channel } \\
& h_{1}[n] \\
& h_{1}[n] \circledast h_{2}[n]=\delta[n]
\end{aligned}
$$

Copyright © 2005, S. K. Mitra

Cascade Connection

- Example - Consider the discrete-time accumulator with an impulse response $\mu[n]$
- Its inverse system satisfy the condition

$$
\mu[n] \circledast h_{2}[n]=\delta[n]
$$

- It follows from the above that $h_{2}[n]=0$ for $n<0$ and

$$
\begin{gathered}
h_{2}[0]=1 \\
\sum_{\ell=0}^{n} h_{2}[\ell]=0 \text { for } n \geq 1
\end{gathered}
$$

Parallel Connection

- Impulse response $h[n]$ of the parallel connection of two LTI discrete-time systems with impulse responses $h_{1}[n]$ and $h_{2}[n]$ is given by

$$
h[n]=h_{1}[n]+h_{2}[n]
$$

Simple Interconnection Schemes

- Consider the discrete-time system where
$h_{1}[n]=\delta[n]+0.5 \delta[n-1]$,
$h_{2}[n]=0.5 \delta[n]-0.25 \delta[n-1]$,

Simple Interconnection Schemes

- Simplifying the block-diagram we obtain

Simple Interconnection Schemes

$$
\begin{aligned}
& h_{2}[n] \circledast h_{4}[n]=\left(\frac{1}{2} \delta[n]-\frac{1}{4} \delta[n-1]\right) \circledast\left(-2\left(\frac{1}{2}\right)^{n} \mu[n]\right) \\
&=-\left(\frac{1}{2}\right)^{n} \mu[n]+\frac{1}{2}\left(\frac{1}{2}\right)^{n-1} \mu[n-1] \\
&=-\left(\frac{1}{2}\right)^{n} \mu[n]+\left(\frac{1}{2}\right)^{n} \mu[n-1] \\
&=-\left(\frac{1}{2}\right)^{n} \delta[n]=-\delta[n] \\
& \text {-Therefore }
\end{aligned}
$$

$h[n]=\delta[n]+\frac{1}{2} \delta[n-1]+\delta[n]-\frac{1}{2} \delta[n-1]-\delta[n]=\delta[n]$ 99

Copyright © 2005, S. K. Mitra

