Wavelets: A different way to look at subband coding.

Ingrid Daubechies
AT&T Bell Laboratories

(until July 1st 1990;
visiting Mathematics Department
University of Michigan)

April 30, 1990
"Wavelets"

Technique to cut up \{ data functions \}
operators

into different frequency components, and
to study each component with a resolution
matched to their scale.

This technique was "invented" independently
in several different fields

- pure mathematics: harmonic analysis
 (Calderón)
- quantum mechanics: coherent states
 (Ashtakoon- Kleindler)
- engineering: signal analysis
 (SHF filters - Botebain & Galland
 Smith & Barnwell
 Jean Morlet)

Recently (last three years): synthesis between
different approaches → very fertile for all branches.
ORTHONORMAL BASES OF WAVELETS.

Old example: Haar basis.

\[
\begin{align*}
&\begin{array}{c}
\text{support } \Phi_0 = [-1, 1] \\
\text{support } \Phi_{j,k} = \left(2^{-j}, 2^{-j}\right)
\end{array} \\
\text{center of support } \Phi_{j,k} = (k+1/2)2^{-j}
\end{align*}
\]

Proof that \(\Phi_{j,k} \) constitute orthonormal basis?

Sufficient to show that functions with support in \([-2^j0, 2^j0]\), preciseness constant on intervals \([2^j-2^{-j}, (k+1)2^{-j}]\), can be written as combination of \(\Phi_{j,k} \).
\[
\sum_{k=1}^{K} 2^{-k} a_k + (2^{-j_0-k} x) + 2^{-K} a \phi(2^{-j_0-K} x)
\]

where \(\phi \) is
\[
\begin{array}{c}
1 \\
-1
\end{array}
\]

But \(\|2^{-K} a \phi(2^{-j_0-K} x)\|^2 \leq 2^{-2K} (a_k^2) 2^{-j_0+K} \to 0 \) for \(K \to \infty \).

\Rightarrow \text{done!}

In fact, proof uses \underline{multiresolution analysis}:
- introduces "averaging" function \(\phi \)
- space \(V_j \) spanned by \(\phi(2^{-j} x - k) \)
 \(V_j \subset V_{j-1} \)
- \(\text{Proj}_{V_j} f = \text{Proj}_{V_{j-1}} f + \text{expansion in the } \{y_k\} \).
Orthogonal bases of wavelets.

For very special ψ:
$$2^{-m/2} \psi(2^{-m} t - n) = \psi_{mn}(t)$$
are orthonormal basis.

NB. $b_0 = 1$ is not really a restriction.
$a_0 = 2$: computationally easy.
other a_0 also possible. (in fact
all rational values are allowed)

These are associated to a beautiful mathematical construction:

Multi-resolution analysis. (S. Mallat,
Y. Meyer)

ladder of spaces

$$\cdots \subset V_1 \subset V_0 \subset V_{-1} \subset \cdots$$

$$\forall m \in \mathbb{Z}$$

$$\bigcup_{m \in \mathbb{Z}} V_m = L^2(\mathbb{R})$$

V_0 describes functions in which all scales finer than 2^0 are left out.

$$2x: \quad V_0 \quad - \quad V_1 \quad - \quad V_2 \quad - \quad V_3$$
general framework for construction of orthonormal wavelet bases.

\[
\cdots, V_1, V_0, V_{-1}, V_{-2}, \ldots
\]

\[
\bigoplus_{d \in \mathbb{Z}} \mathcal{V}_d = L^2(\mathbb{R}).
\]

\[
\mathcal{V}_d \ni f \iff f(2^d \cdot) \in \mathcal{V}_0.
\]

\[
\exists \phi \in \mathcal{V}_0 \text{ so that } \phi_{0,k} \text{ are o.n. basis for } \mathcal{V}_0
\]

\[
\phi_{0,k}(x) = \phi(x - k).
\]

MULTIRESOLUTION ANALYSIS.

Then, \exists associated orthonormal wavelet basis.

\[
\mathcal{W}_0 : \text{orthogonal complement in } V_1 \text{ of } \mathcal{V}_0
\]

\[
\mathcal{V}_0 \oplus \mathcal{W}_0 = V_1, \quad \mathcal{W}_0 \perp \mathcal{V}_0.
\]

\[
\exists \Psi \in \mathcal{W}_0 \text{ so that } \Psi_{0,k} \text{ are orthonormal basis for } \mathcal{W}_0
\]

\[
\text{Proj}_{V_1} = \text{Proj}_{\mathcal{V}_0} + \text{expansion in } \Psi_{0,k}.
\]

\[
\cdots, \mathcal{V}_1, \mathcal{V}_0, \mathcal{V}_{-1}, \mathcal{V}_{-2}, \ldots
\]

\[
\mathcal{W}_1 \subset \mathcal{W}_0 \subset \mathcal{V}_{-1} \subset \mathcal{V}_{-2} \subset \mathcal{W}_{-2} \subset \mathcal{W}_{-3}
\]

\[
f \in \mathcal{W}_d \implies f(2^d x) \in \mathcal{W}_0.
\]

\[
\forall \mathcal{W}_i \text{ all orthogonal, and } \bigoplus_{i=-1}^{-\infty} \mathcal{W}_i = L^2(\mathbb{R}).
\]
\[w_j \text{ dilated version on } W_0 \]
\[\text{on. basis } \mathcal{V}(x-k) \]
\[\Rightarrow \mathcal{V}_j(x) = 2^{-j/2} \mathcal{V}(2^{-j}x-k), \quad k \in \mathbb{Z} \]
\[\text{on. basis in } W_j \]
\[\Rightarrow \{ \mathcal{V}_j : j \in \mathbb{Z} \} \text{ on. basis for } L^2(\mathbb{R}) \]

Recipe for \(\mathcal{V} \):

1. \(\phi \in V_0 \subset V_{-1} \rightarrow \text{on. basis } \phi_{-1,n} \)
2. \[\phi(x) = \sum_n h_n \phi_{-1,n}(x) \]
 \[= \sqrt{2} \sum_n h_n \phi(2x-n) \]
 \[h_n = \langle \phi, \phi_{-1,n} \rangle \]
3. \[\mathcal{V}(x) = \sqrt{2} \sum_n (-1)^n h_{-n+1} \phi(2x-n) \]

To prove existence + recipe for \(\mathcal{V} \), analyze in detail what \(W_0 \) really represents.

A crucial role in this analysis is played by the trigonometric polynomial
\[m_0(\xi) = \frac{1}{\sqrt{2}} \sum_n h_n e^{-2\pi i n \xi} \].
\[|m_0(\xi)|^2 + |m_0(\xi+\frac{1}{2})|^2 = 1. \]
to generalize Haar basis. generalize the associated multiresolution analysis.

Two paths.

- Generalize
 - Precise constant
 - Linear
 - Quadratic
 - Cubic (splines)

But \(\phi \) is not orthonormal!

Lo orthonormalization trick.

\[
\tilde{\phi}(\xi) = \frac{\phi(\xi)}{\left(\sum_k |\phi(k\xi)|^2 \right)^{1/2}}
\]

\(\tilde{\phi} \) is orthonormal.

span same space as \(\phi \)

\(\phi \) can be used to construct \(\tilde{\phi} \).

orthonormalization trick loses compact support wanted arbitrarily high regularity. only finite \# of \(h_n \) allowed.

\[
m_0(\xi) = \frac{1}{12} \sum h_n e^{-2\pi i n \xi}
\]

\[
1 m_0(\xi) + 1 m_0(\xi + 1/2) = 0
\]

\[
\phi(\xi) = m_0(\xi/2) \tilde{\phi}(\xi/2)
\]

\[
\prod_{\text{d} = 1} m_0(2^{-d} \xi)
\]

- Strategy to construct \(m_0 \) so that infinite product has decay
 - check that strategy works!
ONDELETTE:
Wanted: \[m_0(\xi) = \sum_{n=0}^{\infty} \frac{1}{\sqrt{n!}} \eta_n e^{-2\pi i n \xi} \]

\[|m_0(\xi)|^2 + |m_0(\xi + 1/2)|^2 = 1 \]

\[\prod_{j=1}^{\infty} m_0(2\pi j \xi) \text{ decays for } |\xi| \to \infty. \]

\[m_0(\xi) = \left(\frac{1 + e^{-2\pi i \xi}}{2} \right)^L \xi(\xi) \]

\[\frac{1 + e^{-2\pi i \xi}}{2} = e^{-\pi i \xi} \cos \pi \xi \]

\[\prod_{j=1}^{\infty} \cos \left(2\pi j \xi \right) = \frac{\sin \pi \xi}{\pi \xi} \]

\[\Rightarrow \text{ if sufficient control over } \prod_{j=1}^{\infty} \xi(2\pi j \xi), \]

\[\text{then } \xi \text{ will have good decay.} \]

\[(\cos \pi \xi)^{2L} |\xi(\xi)|^2 + (\sin \pi \xi)^{2L} |\xi(\xi + 1/2)|^2 = 1 \]

polynomial in \(\cos 2\pi \xi \)

\[\Rightarrow \text{polynomial in } \sin^2 \pi \xi \]

\[(1 - y)^L P(y) + y^L P(1-y) = 1 \]

\[P(y) = \frac{1}{(1-y)^L} + O(y^L) \]

\[= \sum_{l=0}^{L-1} \left(\frac{L-1}{l} \right) y^l + O(y^L) \]
\[
\Rightarrow (\mathfrak{F}(\xi))^2 = \sum_{l=0}^{L-1} (L-l) (\sin \pi \xi l)^2
\]

- Use a lemma by Rice to "extract square root"

\[
\Rightarrow \mathfrak{F}(\xi) = \sum_{l=0}^{L-1} \mathcal{F}_l e^{-2\pi i \xi l}
\]

where real.

- \[\left| \mathfrak{F}(2^{-j} \xi) \right| \leq C (1 + |\xi|)^{\mu - j} \quad \mu \geq 0.81 \]

- \[\left| \mathfrak{F}(\xi) \right| \leq C (1 + |\xi|)^{-\nu - j} \quad \nu \geq 0.19 \]

* arbitrarily high regularity!
What does all this have to do with subband coding?

\[f \in V_0 \quad f = \sum_{n} b_n \phi_{on} \]

\[V_1 \oplus W_1 \]

\[f = s + d \quad s = \sum_{k} s_k \phi_{1k} \]

\[d = \sum_{k} d_k \psi_{1k} \]

\[\phi_{1k} = \sum_{n} h_{n-2k} \phi_{on} \]

\[\psi_{1k} = \sum_{n} g_{n-2k} \phi_{on} \]

\[g_n = (-1)^n h_{-n+1} \]

\[\Rightarrow \quad s_k = \frac{1}{n} h_{n-2k} f_n \]

\[d_k = \frac{1}{n} g_{n-2k} f_n \]

Inverse transform: uses transposed matrix

\[f_m = \sum_{k} \left[h_{m-2k} s_k + g_{m-2k} d_k \right] \]

Diagram of subband coding with exact reconstruction.
the "filter coefficients" \(h_n \), \(g_n \) coming from an orthonormal basis of wavelets correspond exactly to the filters in an exact reconstruction subband coding scheme.

(\(\rightarrow \) compact support for \(\phi, \psi \) important! leads to FIR filters).

What role does regularity play?

Suppose you have the decomposition

\[
\begin{align*}
\mathcal{F} & \rightarrow \mathcal{F}_L \rightarrow \mathcal{F}_{LL} \rightarrow \mathcal{F}_{LLL} \rightarrow \\
& \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
& \mathcal{F}_H \quad \mathcal{F}_{LH} \quad \mathcal{F}_{LHH} \\
\end{align*}
\]

with reconstruction

\[
\begin{align*}
\mathcal{F}_L & \oplus \mathcal{F}_L \oplus \mathcal{F}_{LL} \oplus \mathcal{F}_{LLL} \quad \leftarrow \\
& \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
& \mathcal{F}_H \quad \mathcal{F}_{LH} \quad \mathcal{F}_{LHH} \\
\end{align*}
\]

What does a sequence

\[
\mathcal{F}_{LLL} = 0 0 0 1 0 0 0
\]

correspond to?
\[
\begin{align*}
(f_0)_n &= \delta_{h_0} \\
(f_j)_h &= \frac{1}{n} \sum_{h\leq k} (f_{j-1})_n \\
F_d(x) &\text{ piecewise constant on } [\frac{d}{2-\delta}, (d+1)\delta] \\
F_d^n(x) &= \frac{1}{\sqrt{2}} \sum_{n} h_n F_{d-1} \left(2x-n\right) \\
F_d &\rightarrow \text{ fixed point of } T \\
(\text{IF})_d(x) &= \frac{1}{\sqrt{2}} \sum_{n} h_n F(2x-n) \\
\text{But this fixed point is } \phi ! \\
\phi(x) &= \frac{1}{\sqrt{2}} \sum_{n} h_n \phi(2x-n)
\end{align*}
\]
Regularity is a good idea.

Regularity forces constraints on filters.

\[\phi, \psi \in C^k \]

\[m_0(f) = \left(\frac{1 + e^{-2\pi i f}}{2} \right) \mathbb{I}(f) \]

Low-pass filter has zero of order \(k \)
at \(f = \frac{1}{2} \).

Same is true for generalizations of orthonormal wavelet bases to higher dimensions, or to other dilation factors than 2.
Biorthogonal wavelet bases.

\[\phi = \sum_{d,k} <\phi, \Psi_{d,k} > \Psi_{d,k} \]

- correspond to analysis filters
- synthesis filters

- symmetric \(\Psi \) possible (\(\rightarrow \) linear phase filters?)

- regularity constraints:
 \[\Psi \in \mathcal{C}^k \Rightarrow \int dx x^l \tilde{\Psi}(x) = 0 \quad l=0, \ldots, k-1 \]

 \[\Rightarrow m_0(x) = \left(\frac{1 + e^{-2\pi i x}}{2} \right)^k \tilde{\Psi}(x) \]

 regularity on both \(\Psi, \tilde{\Psi} \)

 \(\Rightarrow \) both \(m_0, \tilde{m}_0 \) need factorization of this kind.

- Examples:
 - \(m_0 \) binomial (\(\Rightarrow \) B-spline)
 - family of more and more regular \(m_0 \)
 - rearrange previous examples (cf. Vetterli)
 - \(m_0, \tilde{m}_0 \) both very close to orthonormal case

\[m_0(x) = -0.5e^{-2\pi i x} + 0.25e^{-4\pi i x} + 0.25e^{-6\pi i x} - 0.5e^{-8\pi i x} \]
"Wavelets" : more than just orthonormal bases!

Continuous case

\[y_{a,b}(x) = \frac{1}{\sqrt{a}} y\left(\frac{x-b}{a} \right) \]

\[\int_{-\infty}^{\infty} y(x) \, dx = 0 \quad y \text{ symmetric} \]

\[f = C_4^{-1} \int_{0}^{a} \int_{b}^{\infty} \, db \quad <f, y_{a,b}> = y_{a,b} \]

\[<f, y_{a,b}> = \int_{-\infty}^{\infty} f(t) \cdot y_{a,b}(t) \, dt \]

Frames

\[a = a_0^m \quad m \in \mathbb{Z} \quad (a_0 > 1 \text{ fixed}) \]

\[b = n b_0 a_0^m \quad n \in \mathbb{Z} \quad (b_0 > 0 \text{ fixed}) \]

\[y_{mn}(x) = a_0^{-m/2} y\left(a_0^{-m} x - n b_0 \right) \]

2 dual points of view:

- characterize \(f \) by \(<f, y_{mn}> \)
- find \(a_{mn} \) so that \(f = \sum_{m,n} a_{mn} y_{mn} \)
CONCLUSION.

- Subband coding with exact reconstruction

 \leftrightarrow anormal wavelet bases
 biorthogonal wavelet bases

 Regularity!

- More to wavelets than subband coding.