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Abstract. Well-known block transforms and perfect reconstruction or- |
thonormal filter banks are evaluated based on their frequency behavior
and energy compaction. The filter banks outperform the block transforms
for the signal sources considered. Although the latter are simpler to im- §
plement and already the choice of the existing video coding standards, |
filter banks with simple algorithms may well become the signal decom-
position technique for the next generation video codecs, which require a
multiresolution signal representation.
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1. INTRODUCTION .

Signal decomposition techniques are useful tools for m;my signal
processing problems. The basic idea is to represent the signal
by a superposition of basis functions of an orthonormal trans-
formation. The transformations span from conventional block
transforms to ideal subband filter banks. Block transforms limit
the duration of the basis functions to the number of bands in the
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filter bank. This filtering operation corresponds to a block trans-
form operation. The basis functions of a block transform satisfy
the orthogonality or orthonormality conditions. The goodness
criterion for a block transform is the interband or intercoefficient
decorrelation power, which also implies its energy compaction
capability. It is well-known that the signal-dependent Karhunen-
Loéve transform (KLT) is the optimum solution for this type of
signal decomposition.

If the duration of the basis functions or filters is increased,
a number of possible signal decomposition tools are available.
First of all, if the duration of the basis functions is doubled
compared to that of block transforms, the lapped orthogonal
transform (LOT) is obtained. ' Obviously, the expense of the
forward and inverse transform operations increases over the block
transforms. If the duration of the basis functions is relaxed even
further, many different filter bank solutions are obtained.>™®
Finally, when the duration of basis functions or filters goes to
infinity, the ideal filter bank that is the globally optimum solution
is reached. Optimality refers here to perfect interband decorre-
lation and alias-free band split simultaneously for multirate sig-
nal processing.
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Block transforms have fixed time-frequency resolution; there-
fore, they have not been considered historically as a multires-
olution signal decomposition tool. Section 2 interprets the block
transforms as filter banks, shows the frequency selectivity of
their basis functions or bandpass filters, and attempts to extend
the block transform concept for multiresolution time-frequency
signal analysis.9 Section 3 revisits the perfect reconstruction
quadrature mirror filter (PR-QMF) very briefly and defines the
regular (half-band or binary) and irregular tree structures. The
links of these trees to the time-frequency signal analysis are also
given in this section. The performance criterion, gain of trans-
form coding over pulse code modulation Grc, is given in Sec. 4
along with the energy compaction performance of several dif-
ferent scenarios for comparison. The performance measure Grc
is also extended for irregular tree structures in this section. Sec-
tion 5 proposes a new signal-dependent tree structuring algorithm
based on energy compaction. The validity of the proposed al-
gorithm is examined on the test images, and it is shown that
proper irregular trees are very useful for signal decomposition.

2. BLOCK TRANSFORM FILTER BANKS

In one dimension, the set of N signal samples
X' = [x(0), x(1),.... x(N — 1)] M

is transformed via matrix A into coefficient vector @ as

6 =Ax, )
where
A™' = AT, 3)

We define the autocorrelation sequence of the i’th basis function
a;(j), which is also the i’th row of the transform matrix A, as

gitk) = ai(k) * ai(—k)

N~k—1
= 2 a(Dal + k) @
fori =0,1,..,.N -1
k=0,x1,£2,... ., x(N-1) .

When the input autocorrelation function Ry x(m) is known, the
corresponding power spectral density is Px«(®), and the output
power spectral density for the i’th bandpass filter is found to be

Py(®) = |Gi(e)PPex(w) , )
where
IGie™)? = aie™)ai(e ™) 6)

and a;(e’®) is the Fourier transform of a;(j).

Figure 1 gives a;(j) and |Gi(e’*)| of the discrete cosine trans-
form (DCT) for N = 8. These functions show the frequency
selectivity of the basis functions or filters in the DCT block filter
bank. One can easily obtain the output energy of the i’th band

|
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Fig. 1. The basis functions of DCT and their magnitude functidns in
frequency, 0<w <, for N = 8.

1 (" .
of = 2TJ i) Pi(w)do  i=0,1,..N-1.
)

The {07} are used later to calculate the performance measure.

Block transform bases are not designed based on their fre-
quency selectivity. Rather they satisfy orthogonality conditions,
and the optimum transform KLT decorrelates the bands or coef-
ficients perfectly. The interaction of their frequency bands, al-
iasing, is quite high, and the Nyquist condition for decimation
by N is not satisfied properly. Therefore, the coefficients in block
transforms are not commonly used in practice as the subbands
of the input signal because of their poor frequency performance.
Additionally, the block transforms have a fixed time-frequency
resolution. On the other hand, the transform or filtering operation
is very efficient—N band signal decomposition is realized at
once.

Multiresolution has become a desired feature for many signal
decomposition techniques.5'° It provides the tools to localize
or “zoom in”’ on the significant parts of the signal in time as
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well as in frequency. This-implies that longer time functions

mean better resolution in“ffequency. This duality feature helps:~*-

to interpret the time- and frequency-domain characteristics of a
signal simultaneously.

Block transforms or filter banks can be extended for multi-
resolution signal decomposition purposes.® The original signal
is first block transformed or filtered into N; bands. Each band
again may be block transformed or filtered into N;; bands where
i =1,2,...,N; and j is the size of the transform performed on
the i’th band of the first level. This process may be repeated
through many levels until a sufficient set of features of the signal
is obtained from the decomposition operation. Figure 2 shows
a typical multiresolution block transform or filter bank structure.
Obviously, the aliasing problem should be kept in mind. It is
seen from Fig. 2 that the possibilities for transform decompo-
sition trees are many.

LOTs or filter banks are the special case between the block
filter banks and conventional subband filter banks. The bandpass
filters in this bank have twice the duration of the conventional
transform filters.'?

3. HALF-BAND FREQUENCY SPLIT: PR-QMF

Half-band filter banks are quite popular for mulfiresolution signal
decomposition. The basic idea here is to split the signal into its
low- and high-frequency components. The duration of the anal-
ysis and the synthesis filters is not restricted to two taps as would
be the caseina2 X 2 block transform. Therefore, the frequency
selectivity of the two basis functions is expected to be better
than the 2 X 2 block transforms. There are many two-band PR-
QMF banks proposed in the literature.>>7*8 The perfect recon-
struction requirements of the analysis/synthesis filter banks will
be revisited briefly.

Level 1 level 2

Block 1| [ 1 (6 ey RN
L: ‘| Band 1 - g Band 11
A e

Block 2 Al (63 B |- Band 12

Az} : i [ Band 2

Block M
A H

Fig. 2. A typical multistage or resolution block transform structure.
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Fig. 3. Two-band QMF bank.
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A - N; x N; transform matrix

B - N; x N, transform matrix

914 / OPTICAL ENGINEERING / July 1991 / Vol. 30 No. 7
\

The z transform of the reconstructed signal in Fig. 3 can be §
writte Iﬁ - S “He .

%(2) = JHEKIE) + H@KLINE)

+ %[Hl(—z)Kl(z) + Hf—0KAK(—7)

= T(2)X(z) + §(2)X(—2z) . \ 8)
Perfect reconstruction requires: |
S(z)= 0, forall z , )]
T(z) = cz” ™,c is a constant . (10) ‘

If one chooses

Ki\(z) = —Hx(-2) , an
Kx(z) = Hi(—2) ,

the first requirement is met, §(z) =
leaving us with

0, and aliasing is eliminated,

T(z) = %[Hl(—Z)Hz(Z) — Hi(2)Hx~-2)] .

Next, with N odd, if one selects
Hxz) = 2 "Hy(-z"1) , 12)
this choice forces

Hy(—z2) = —Ki(2)

so that
1
T(z) = ‘”[Hmz)Hl(z Y+ Hi(-2Hi(-z"hH1 . (13)

Therefore, the perfect reconstruction requirement reduces to finding
an H(z) = Hj(z) such that

I

H()H(z™Y) + H(—2)H(=z"") = ez7™
R(z) + R(—2) . (14)

0(2)

This selection implies that all four filters are causal whenever
H(z) is causal.

This half-band frequency split operation can be applied to
any subband of the new level in a tree, and the process continues
until the desired frequency splitor resolution is achieved. If all
bands of any level in the tree are split into two new half-bands,
the corresponding frequency tree is called a regular tree, which
implies equal bandwndths If the number of levels is L, the
regular tree has 2k equal -sized frequency bands; the maximum
frequency resolution is achieved in this frequency split. As will
be shown later, many applications may not need a regular tree.
Several of the maximum resolution frequency bands, with band-
widths BW = m/2%, can be combined as a larger frequency band
of the next higher level in the tree. These tree structures with
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Fig. 4. (a) A regular tree structure and its frequency bands assuming
ideal filters. (b} An irregular tree structure and its frequency bands
assuming ideal filters.

unequal bands are called irregular trees. Figures 4(a) and 4(b)
show examples of regular and irregular trees and their frequency
characteristics assuming ideal filters for L = 3. The irregular
trees have fewer bands than the regular trees for a fixed L, thereby
reducing the number of filters. On the other hand, the bandwidths
are not equal in irregular tree structures, which also implies
different sized time functions for different sized frequency bands.

The computational simplicity of the block filter banks or
transforms over subband filter banks is obvious. An N = 2L
band subband filter bank requires an L level regular tree, whereas
the N sized block filter bank realizes that operation at one level.
However, as mentioned earlier, the latter does not consider the
frequency characteristics of the basis functions. There are good
filters with reasonable durations in time that make them an al-
ternative to the block transforms. For irregular tree structures,
the computational burden of conventional filter banks over block
transforms is significantly reduced but with a payoff in a little
better performance.

Recently, the wavelet transforms have become popular as a »

hew approach for multiresolution signal decomposition.!'~!3 If
the orthonormality condition is imposed on finite support wave-
lets, this approach merges to the conventional PR-QMF signal
decomposition ‘technique. The wavelet transform brings new
Insights into PR-QMF design. The regularity or differentiability

. Fre BT

conditions of waygletsimposes

compaction performance of several wavelet filters is calculated
and compared with other multirate filters.

4. PERFORMANCE CRITERION

An energy compaction measure, namely, the gain of transform
coding over pulse code modulation, Gyc, has been a common
tool for comparing orthonormal transforms.'* This tool is also
valid for any orthonormal signal decomposition technique. Ex-
tensions of this measure to multilevel multiband regular trees as
well as irregular tree structures are derived in this section. While
there are other subjective measures in speech and image coding,
this criterion is universal and objective. An N; band orthonormal
transform implies the variance preservation condition,

oy = — ok (15)

where o7 is the input signal variance with zero mean and {of}
are the band variances. If one assumes that all the bands and
the input signal have the same pdf type, the distortion ratio of
PCM over transform coding at the same bit rate can be obtained
easily as'*:

Dpcwm oz
- - (16)

Drc
(n o%>
k=0

If each band of the first-level decomposition tree goes through
an N> band decomposition, Grc can be extended easily for this
case. The input variance is now connected to the variances of
N1 X N3 bands as

Grc

Ni—1N2—-1

2
E Okikr - 17)
NNy 2o 2 5%

5 1

Oy = ——

An orthonormal transform ensures that the average of the
analysis bands’ reconstruction error after the synthesis operations
is equal to the quantization error of the signal:

Ni—1N2—1
1

2: 2
’ % NN ki=0 k=0 ™ (

The band distortions can be expressed as

Ogute = k2 Dby, . 19)
where By, is the average bit rate for band kik,, and e;zqkz is the
quantizer correction factor for that band. After assuming the

same pdf type for all the bands, one can write

ki = 0,1,...,(N1—1)
ky = 0,1,...,(N2—1) .

2 __ 2
€ = Ehk

20
Hence, the 4verage distortion is

1 Ni—1 N2—1
— 24 —~2Bixy 2
= E, €2 ok - 21
T NN o 2 ’

The opfimization problem is to find the bit allogations of

V1 X N2) bands such that the average @istortiori &, IS mini-
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mized. The bands have equal distortion levels, and the overall

+“*=§¥erage bit rate is constrained by ==

Ni—-1N2—1
1 1 2

2 Bui, = constant .
=0 k2=0

B =

(22
NiN: 4 )

Using the Lagrange multiplier method,

.

Ni—-1 N2—-1
1 1 2

9 | 2
o, — MB — B =0 . 23
akakz[ 7 ( NN, klz:o kzz klkz)] @

This provides the optimum bit allocation expression as

2
Thyk

N1—1 Na—1 /NNy ?
(1, 1 o)

k1=0 k=

1
B =B + =
k1k2 2

loga 24)

where By, are not restricted to being nonnegative. In practice,
they are truncated to zero if they become negative. A negative
bit allocation result implies that if that band is completely dis-
carded, its reconstruction error contribution is still less than the
corresponding distortion for the given rate. The resulting quan-
tization error variance by using this optimum bit allocation is
found to be

1/N1N2

Ni—1 Nx—1
min{oZ} = 227 % ( IT II aklkz)

=0 k=

(25)

Assuming the same pdf type also for the input signal, the
distortion for PCM at the same rate is

ospcm = £27 %02, (26)

and the distortion gain due to the orthonormal transform is found
as

2 Ckikz
max{Grc} = 2 - NNz kizo @7
min{o}} et e UNiN2
2 2 Okika
ki=0 k=0

If the process repeats regularly for L levels with the number of
bands in each decomposmon asN;fori = 1,2,...,L, this expres-
sion is generalized for 1% | N; bands as

1 N1 M1 N1
(nw) (z Z.“Z(ﬁmh)
i=1 ki=0 k2=0

k=0
e 28
mix{Grtc} = Nie 1 N2—1  Ni-1 T N T 28
l—[ H H 0'1%11(2...1@)
ki=0 k2=0 k=0

This expression is valid for any regular tree structure of ortho-
normal filter banks or block transforms.

A similar expression for the irregular tree structures will be
derived now. The case considered here assumes an N; band
orthonormal decomposition in the first level of the tree, and only
band p is decomposed further into N bands in the second level

916 / OPTICAL ENGINEERING / July 1991 / Vol. 30 No. 7

of the tree. Smce any middle level node in the tree means an
ition, the overall average distorti®i for
this scenario can be similarly written as before:

Ni—1
Z 0'2k|

Iu #p

Ni—1

2 Ok (29)

"and the band distortion terms with the assumption of the same

pdf types

- ki = 0,1,...,N;—1
Ogn = 27l LT (30)
Ok, = 27 Bl k= 0,1,...,Na—1 . (1)

The optimization problem now is to find the bit allocation |

among the bands of this irregular tree that minimizes 0'3, with
equal band distortions in the same level of the tree, and satisfies
the rate constraint

1 Ny —1 N2—1
B=—\| > By +— D Bu| = constant . (32)
Ni\ =0 N2 ;=0
ki#p

Using the Lagrange multiplier technique again,

F 1 N1—1 1 Na—1
2
—1o; —AN{B — — By, — —— B =0
8Br | ¢ 1k12=0 ki NiN> k22=0 P
ki#p
ki =0,1,...,(Ny—1)
for % , (33)
Ni—1 N2—1
0 2 1 1
O, — X B - Bk _— B k — 0
0Bpi, 7 1k12=0 YNV, k22=0 P2
ki#p
fork; = 0,1,...,(N2 — 1) . (34)

The corresponding optimum bit allocation expressions are found
as

1 o%
By, = B + Elogz i Lo
Ni—1 N> 1/N1N>
H 0%1 < n ngz)
k1 =0 k2=0
ki#p
ki = 0,1,...,(N = 1)
for ki #+p ) (35)
1 o’
Bpkz =B + -2‘10g2 /Ny 28
N1—1 N2 UNN2
[T o ( [1 0,2;1(2)
k=0 k2=0
ky#p
for ky = 0,1,...,(N2— 1) , (36)

A T
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and yield average distortion as

1/N1
Na—1 UN2 [Ny~
: 24 —2B 2 2
min{o} = &2 [ Upkz) Il ok ;
k2=0 k=0
ki#p

(37

assuming the same pdf type again for the original signal provides

2
TgPCM

maX{GTC} = mln{(r?l}

(38)

1INy °

N2—1 UN2 [ Ny —~1
2 2
H Opkz) H Ok,
k2=0 k

This result can be extended to any arbitrary tree structure and
the regular tree is regarded as a special case. This measure can
also be extended easily to two-dimensional separable tree struc-
tures.

4.1. Energy compaction upper bounds

It was mentioned earlier that the KLT is the optimum solution
for the block filter banks. Its basis functions are calculated based
on the input signal statistics, and they decorrelate the bands
perfectly. Therefore, the upper bounds of Grc for orthonormal
block filter banks or transforms are set by the performance of
KLT for the given N-band decomposition. On the other hand,
the global upper bounds of G for any orthonormal filter bank
will be defined by the performance of the ideal filter banks. The
ideal filter banks are optimal based on their perfect interband
decorrelation for any signal source and frequency band split
characteristics for multirate signal processing. For a known input
power spectral density function P,.(w), the band variances of
the N band ideal filter bank are obtained from

T+
0’i2 = —ﬁ( Pix(w) do i=0l1,..N—-1, (39)
ky ;,’

and the performance upper bound G4% is calculated using Eq. (16).
A similar approach also provides the performance upper bounds
for irregular, unequal bandwidth tree structures by assuming the

ideal half-band QMF banks.

4.2. Performance results

The Grc results for several different cases are presented in this
section. First, the decomposition schemes assume an AR(1) in-
put signal, which is defined as

X(n) = pX(n — 1) + N(n) , (40)
where p is the correlation coefficient and {N(n)} is a zero-mean
white noise with known variance. The autocorrelation sequence

of this source with unit variance is

e m o= 0,+1,.. s [Z3))

Table 1. Energy compaction performance of several irregular trans-
form trees along with the full tree and upper performance bounds
for AR{1) source of p = 0.95. (a) 2x 2 DCT, (b) 4 x 4 DCT, and {c) 8x 8
DCT.

Table 1.a 2 x 2 DCT

level Regular Tree Irregular Tree
# of bands [ Gr¢ Gfc [#ofbands [ Groc | GE,
1 2 3.2026 | 3.9462 2 3.2026 | 3.9462
2 4 5.2172 ] 7.2290 3 5.2165 | 7.1532
3 8 6.2317 | 9.1604 4 6.2265 | 8.9617
4 16 6.5980 | 9.9407 5 6.5801 | 9.6232
5 32 6.7132 | 10.1791 6 6.6725 | 9.7940
6 64 6.7545 | 10.2376 7 6.7136 | 9.8209
Table 1.b 4 x 4 DCT
level Regular Tree Irregular Tree
# Of bands GTC G'%bc # of bands GTC Ggpc
1 4 5.7149 | 7.2290 4 5.7149 | 7.2290
2 16 7.4789 | 9.9407 7 7.4685 | 9.7619
3 64 7.6689 | 10.2376 10 7.6234 | 9.9816

Table 1.c 8 x 8 DCT

level Regular Tree Irregular Tree
# of bands | Gr¢ G¥z | # of bands | Gro G§.
1 8 7.6312 | 9.1604 8 7.6312 | 9.1604
2 64 8.4475 | 10.2376 15 8.4171 | 10.0962

and its power spectral density function is

1 —p?
1 + p? - 2p cosw

Sxx(w) = 42)

AR(1) sources are a crude approximation to real-world sig-
nals. Typical values are p = 0.85 for speech and p = 0.97 for
still images. Table 1 gives the energy compaction results of
several different irregular trees based on block transforms along
with the corresponding regular tree performance and the upper
performance bounds. These examples assume a full tree size of
64 bands. Table 1a employs a2 X 2 transform for this purpose
and the irregular tree is based on splitting only the lowest band
again into two bands. The level of this tree is L = 6. Table 1b
uses the 4 X 4 DCT basis and only the lowest bands are split
again into four subbands and L = 3. Similarly, Table 1c em-
ploys an 8 X 8 DCT basis as the filter bank and L = 2. All
these results assume p = 0.95. It is seen that the irregular trees
perform very close to the regular trees of the same case for this
signal model, but the first one is much simpler than the second
one to implement.

Table 2 displays the compaction results of binomial-QMF
banks,® which are identical to the orthonormal wavelet filters
proposed in Ref. 11 for four-tap, six-tap, and eight-tap cases,
respectively. These results are for octave band irregular tree
structures and the corresponding regular trees along with the
upper performance bounds. The levels of trees are limited to
L = 4 here. It is observed from these tables that even a five-
octave band irregular tree with a four-tap filter provides better
performance than the 16-band block filter bank. It is clear that
the irregular tree structures reduce the computational expense of
the subband filter banks and make them practical competitors to
block filter banks or transforms.

These resultssuggest that a-practical scheme to define an
irregular tree based on the input signal is very important. An

OPTICAL ENGINEERING / July 1991 / Vol. 30 No. 7/ 917
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Table 2. Energy compaction pgﬂormanq% PR-QMF filter banks
along with the full tree and upper perférinance bounds for AR(1)
source of p = 0.95. {a) 4-tap binomial-QMF, (b} 6-tap binomial-QMF,
and (c) 8-tap binomial-QMF.

Table 2.2 4-tap Binomial-QMF
level Regular Tree Half Band Irregular Tree
# ofbands | Grc | Gy |#oftbands | Gre | Gfe
1 2 3.6389 | 3.9462 2 3.6389 | 3.9462
2 C2) | 64321 7.2290 3. | 6,3681 | 7.1532
3 8 8.0147 { 9.1604 N 7.8216 | 8.9617
4 " 16 8.6503 | 9.9407 5 8.3419 | 9.6232
Table 2.b 6-tap- Binomial-QMF
level Regular Tree Half Band Irregular Tree
#of bands | Gre | Gop |#ofbands| Gre | Gfe
1 2 3.7608 | 3.9462 2 3.7608 | 3.9462
2 4 6.7664 | 7.2290 3 6.6956 § 7.1532
3 8 8.5291 | 9.1604 4 8.2841 | 8.9617
4 16 9.2505 | 9.9407 5 8.8592 | 9.6232
Table 2.c 8-tap Binomial-QMF
level Regular Tree Half Band Irregular Tree
#olbands | Grec | Gy |#ofbands | Gre | G¥e
1 2 3.8132 | 3.9462 2 +3.8132 | 3.9462
2 4 6.9075 | 7.2290 3 6.8355 | 7.1532
3 8 8.7431 | 9.1604 4 8.4828 [ 8.9617
4 16 9.4979 | 9.9407 5 9.0826 | 9.6232

algorithm based on the input statistics and energy compaction
criterion is proposed in the following section.

Table 3 displays the compaction performance of several dif-
ferent six-tap orthonormal wavelet filters, namely, binomial
QMF,8’11 most regular wavelet ﬁlte:rs,15 Coiﬂet,15 for two-, four-
and eight-band signal decompositions along with the KLT and
ideal filter bank. The results in this table assume an AR(1) source
with p = 0.95. These results indicate that the most regular filter
did not perform the best even for a highly correlated signal
source. Although the mathematical interpretation of the regu-
larity in wavelets is very meaningful, its practical significance
in signal processing is not fully understood.

Figure 5 shows the Grc results of KLT, ideal filter bank, and
six-tap binomial-QMF for different resolution regular trees. It
is seen that the binomial-QMF reaches the global upper bound
when N — o faster than the KLT. This result is expected because
the binomial-QMF has maximally flat magnitude square and the
signal source considered has a decreasing spectral density. Faster
decay of the input spectral density means even better perfor-
mance for the maximally flat magnitude square PR-QMF bank.

Any good PR-QMF bank should have an energy compaction
performance curve that lies in the region between the KLT and
the ideal filter bank curves and satisfies the Nyquist conditions
for multirate signal processing. Additionally, its computational

Table 3. Energy compaction performance of several six-tap wavelet
filters along with the KLT and ideal filter bank for an AR(1) source
of p = 0.95.

2-Bands | 4-Bands | 8-Bans
6-Tap Maxregular Filter 3.745 6.725 8.464
6-Tap Coiflet 3.653 6.462 8.061
6-Tap Binomial QMF(Maxflat) | 3.760 6.766 8.529
KLT 3.202 5.730 7.660
Ideal Filter Bank 3.946 7.230 9.160
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Fig. 5. Graph of Grc versus N for a six-tap binomial OMF, KLT, and
ideal filter bank assuming an AR(1) source with p = 0.95.

complexity should be comparable to fixed transform filter banks
such as DCTs.

5. SIMPLE TREE STRUCTURING ALGORITHM

The main advantage of the multiresolution signal decomposition
techniques is to be able to localize the features of a signal in
both frequency and time domains. The availability of simulta-
neous time-frequency features is very useful for many applica-
tions. In general, most practical signals have a band-limited
frequency spectrum or a significant portion of the signal energy
is concentrated within several frequency bands, or packets. o
Therefore, the regular decomposition tree is not fully justified.

A simple algorithm to modify the regular tree based on the
signal to be decomposed is introduced in this section. The mod-
ified tree is called an irregular tree. The bands in this irregular
tree are adapted to the signal spectrum. It is more efficient and
has fewer filters than the regular tree.

The proposed algorithm based on an energy compaction cri-
terion can be connected to entropy measures.'* The algorithm
also assumes ideal filter banks and half-band frequency splits
only. If an input signal, with known power spectral density
P,x(w), is split into low and high half-bands with an ideal QMF,
the corresponding energy compaction is given as

2
g
Gic = ——7 > (43)
()
where
/2
of = — | Pulw) do, (44)
™ J0
(" o )
i = — f Pir(w) do . (45)
T Ju/2

The two-band energy ratio is defined as

2
Th
n=3. | (40)
gy ‘
Therefore, for a uniform power spectrum m = 1, Grc = 1.

Figure 6 displays the variation of Gr¢ with respect to m.
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Fig. 6. Graph of Gr¢ versus m for AR(1) source, p = 0.95.

The tree structuring algorithm for a given maximum fre-
quency resolution BWyin = w/2" can be summarized as fol-
lows:

1. Measure the power spectral density Py.(w) of the given
ZEero mean SOUICe.

2. Calculate o7, o and find M. Compare m with a
predefined threshold 7:

If g =<T, stop.
If m > T, band split, obtain [ and % bands.

3. Calculate 0121, 012;, and 0;2,1, 0%;, band variances and
corresponding v, and . Check with the threshold T:
Ifnl=<T, stop.

If m/ > T, band split, obtain // and Ik bands.
If mp < T, stop.
If mp > T, band split, obtain Al and hh bands.

4. Repeat the procedure until the desired frequency
resolution BWns is reached. The corresponding
suboptimum tree structure based on input statistics is
obtained.

The proposed algorithm is signal dependent and the regular
tree of 2~ equal bands is adapted to the signal power spectrum
within M unequal bands, 2 > M. Whenver 2" = M, the ir-
regular tree becomes a regular tree. For many signal sources,
an irregular tree is a better practical choice. Obviously, a regular
tree provides the upper compaction bound for known L.

The validity of the algorithm is tested with several source
models as well as several test images. The tree structuring al-
gorithm can be easily extended for two-dimensional separable
transforms. After defining the signal-dependent tree structure,
real filters replace the ideal filters in the corresponding filter
bank. Table 4 displays the energy compaction performance of
several decomposition techniques for the standard test images,
Lena, building, cameraman, and brain. The images are 256 X 256
pixels monochrome with 8 bit/pel resolution. The test results
displayed in Table 4 are broadly consistent with the results ob-
tained for AR(1) signal sources. These tables also show that the
irregular tree achieves a performance very close to that of the
regular tree, but with fewer bands.

6. DISCUSSIONS AND CONCLUSIONS

1_approach to the popular orthonormal signal decom-
techniques is presented. Energy compaction perfor-

A

TEST IMAGE LENA | BUILDING | CAMERAMAN | BRAIN
8 x 82D DCT 21.99 20.08 19.10 3.79
64 Band Regular 4-tap B-QMF 19.38 18.82 18.43 3.73
64 Band Regular 6-tap B-QMF 22.12 21.09 20.34 3.82
64 Band Regular 8-tap B-QMF 24.03 22.71 21.45 3.93
4x42D DCT 16.00 14.11 14.23 3.29
16 Band Regular 4-tap B-QMF 16.70 15.37 15.45 3.25
16 Band Regular 6-tap B-QMF 18.99 16.94 16.91 3.32
16 Band Regular 8-tap B-QMF 20.37 18.17 17.98 3.42
10 Band Irregular 4-tap B-QMF | 16.50 14.95 13.30 3.34
| *10 Band Irregular 6-tap B-QMF | 18.65 16.55 14.88 3.66
“10 Band Irregular 8-tap B-QMF | 19.66 17.17 15.50 3.75

Table 4. Gy of several different regular and irregular tree structures

along with the DCT for the test images.

* Bands used are Il — IR — WAL — IR — UL — UKD - UK — Th — Al — kb,

mance of block transforms and perfect reconstruction filter banks
for AR(1) and test image sources are compared along with the
optimum solutions. As expected, the filter banks outperform the
block transforms. The frequency behavior of their basis functions
is considered in the design of filter banks, but not in the block
transforms. The computational complexities and subjective per-
formance of the various decomposition techniques are not con-
sidered in this study. It is well known that block transforms are
simpler to implement, but they have a fixed resolution. On the
other hand, filter banks have multiresolution signal representa-
tion as a by-product. The comparative subjective performance
is a subject for future study. Among the filter banks considered,
the maxflat solution®!! marginally outperforms the maxregular'®
solution for the sources considered here. The practical signifi-
cance of the regularity remains a subject for further study. It is
concluded that the filter banks with simple -algorithms and ir-
regular tree structures are potential competitors to the industry
standard DCT for next-generation video codecs.
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