STATISTICALLY OPTIMIZED PR-QMF DESIGN
Hakan Caglar, Yipeng Liu and Ali N. Akansu

New Jersey Institute of Technology
Department of Electrical and Computer Engineering
Center for Communications and Signal Processing Research

University Heights, Newark, NJ 07102

ABSTRACT

A multivariable optimization problem is set to design 2-band PR-QMFs in this paper. The
energy compaction, aliasing energy, step response, zero-mean high-pass filter, uncorrelated subband
signals, constrained nonlinearity of the phase-response, and the given input statistics are simul-
taneously considered in the proposed optimal filter design technique. A set of optimal PR-QMF
solutions and their optimization criteria along with their energy compaction performance are given
for comparison. This approach of PR-QMF design leads to an input driven adaptive subband filter
bank structure. It is expected that these optimal filters outperform the well-known fixed PR-QMF's
in the literature for image and video coding applications.

I. INTRODUCTION

2-band Perfect Reconstruction Quadrature Mirror Filters(PR-QMF) have become popular mul-
tiresolution signal decomposition tools particularly for signal coding applications[1][2][3][4]. Their
modular nature leads to the hierarchical subband trees which have been widely used in the lit-
erature. Additionally, it is shown that the 2-band PR-QMFs are the crucial components of the
orthonormal wavelet basis design procedure[5][6).

This paper deals with the optimal 2-band PR-QMF design problem. The approach taken here
considers a set of design variables which are of great practical interest in image coding. Some of
these variables have been considered in the filter design field earlier but this study considers all of
them simultaneously to obtain the optimal solutions.

Section II. introduces the variables of optimization problem and their practical significance.
Section III. discusses the mathematical preliminaries and lays the ground for the objective functions
of the optimization. Sections IV. and V. looks into two different cases of optimal PR-QMF design
problem. Section VI. discusses the future research and concludes the paper.

II. VARIABLES OF OPTIMIZATION AND THEIR PRACTICAL SIGNIFICANCE

The proposed statistically optimized PR-QMF design technique considers several parameters of
practical significance in the filter design. These parameters, namely energy compaction, aliasing,
step response, zero mean high-pass filter, uncorrelated band signals, constrained non-linear phase
response, and given input statistics characteristics are combined to define the objective function of
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the optimization problem. Some of these features have been well known in the filter design field
and used by several researchers in the literature. Johnston has considered the aliasing minimization
in his QMF design procedure[7]. But as known, his filters are not PR. Additionally, it is a classical
approach to filter design to minimize the stop band energy. This study intuitively benefited from the
earlier work in the field but also has significant improvements in the solution of PR-QMF problems.
We included the following variables in the design of PR-QMFs:

a) Orthonormal PR Requirement: This set of requirements is included in the design to obtain the
perfect reconstruction condition which is of interest here. The PR becomes important particularly
in signal coding applications.

b) Energy Compaction: It is a well known, desired characteristic from any orthogonal signal
decomposition technique which has direct connections with the rate-distortion theory. The sig-
nificance and derivation of this measure is given in [8]. This measure has been widely used for
performance comparisons of different signal decomposition techniques in the literature[4].

c¢) Aliasing Energy: Any PR signal decomposition technique satisfies the conditions of alias
cancelation. But in practice, since all the decomposition bands or coefficents are not used, or the
different levels of subband quantization noise leads to the aliasing problerh. Its significance has been
noticed particularly in image coding applications in the literature. It is known that the aliasing
problem causes annoying patterns in encoded images at low bit-rates.

d) Step Response: The representation of edges in an image is a crucial problem. The edge
structures are localized in time therefore they should be represented by the time-localized basis
functions. Otherwise the well known ringing artifacts occur in encoded images. Therefore the step
responses of the filters in the filter banks should be considered during the design procedure[9]. It
is a well known phenomenon called uncertainty principle which states that a signal can not be
localized perfectly in one domain without the worst concentration in the other[10]. This is easily
observed in an extreme case that if an edge assumed as a unit sample function in time, then the
best representing basis function for this signal is also the unit sample function which has the best
localization in time. On the other hand we know the frequency localization of this function is the
worst. Similarly the best localized frequency functions, e.g. ideal band-pass functions, have infinite
durations in time.

It has been reported that the human visual system is able to resolve the time frequency domains
therefore a joint time-frequency localization should be considered in a practically meritful filter
bank design. This trade-off between the time and frequency resolutions reflects itself implicitly into
the aliasing and step response characteristics of the designed filters.

e) Zero Mean High-Pass: Most of the practical signal sources have their significant energy around
the DC frequency. Therefore any practically useful signal decomposition technique should be able
to represent the DC frequency component within only one basis function. Following this argument
one should constrain the high-pass QMF function of having a zero mean.

f) Uncorrelatedness of Subband Signals: 1t is a well-known fact in signal coding field that any
good signal representation technique should be able to provide uncorrelated transform coefficients
or subband signals. The well known Karhunen-Loeve Transform(KLT) is a typical example of this
characteristic in the block transforms. Similarly the filter bank solutions under the constraints of
this feature are sought in this study.

It is also noteworthy to mention that the uncorrelatedness and the maximum energy compaction
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requirements merge in the KLT solutions of block transforms.

g) Constrained Non-linear Phase Response: Since there can not be any linear-phase orthonormal
PR-QMF solution, the linearity of the phase response of the basis functions are relaxed. Linear phase
and PR are two conflicting conditions in orthonormal 2-band QMF design. But it is also known
that severe phase nonlinearities create undesired degradations in image and video applications.
Therefore a measure which indicates the level of nonlinearity of the filter phase response is included
as a parameter in this optimized filter design.

h) Given Input Statistics: The characteristics of the input spectral density function are very
important for the design variables explained earlier. Therefore the whole optimization procedure is
related to the given input statistics. This also leads to the input adaptive solutions which may be
useful in some of the applications for the non-stationary sources.

IITI. MATHEMATICAL PRELIMINARIES

The variables of the optimization which have been introduced in the previous section will be de-
fined here. The objective function of the optimization problem will be set for the optimal solutions.

a) Orthonormal PR Requirement: The high-pass filter is assumed to be the mirror of the half-
band low-pass filter {k(n)} of length 2N which is also expressed in the vector form h. Hence the
orthonomality condition can easily be written as

KTh=1 1)
The perfect reconstruction conditions of orthonormal 2-band PR-QMF is derived as

S h(n)h(n + 2k) = 6(k) | (2)

We can now express Egs.(1) and (2) in the matrix form
KTCh=0 i=1,2,.,N—-1 (3)

where C; are the corresponding shuffling matrices as

(0010 .0 000 10
00071 ..0 000 .. 01

1000 .0 000 ..00

. . 000 .. 00

Cy = ‘ yo Onaa= | S (4)

0010 1 .

000 1 100 ..00

(0000 .. 0] (010 ..00

b) Energy Compaction: The output energy of the low pass filter A(n) for the given zero-mean
input covariance matrix R,, can be written as

U% = h_TRz:z:h (5)
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We are now looking for the solution which maximizes Eq.(5). It is clear that this will be the
sufficient condition to maximize the gain of transform coding over PCM(Gr¢) which is given for

the two-band case as

o? o?

Gre = (c20%)1/2 " oLon (6)

where the input signal variance is expressed in the unitary case as

1
ot = Lot + o)

c) Aliasing Energy: The aliasing energy component for the low-pass filter output of 2-band
PR-QMF bank can be written for the given input spectral density functionS,.(e’*) as

1 T —Jjw (w+m (w+m
7= g [ H(E) P Sual ) H () Pl G

The corresponding time-domain version of this relation can be rewritten as

ol = 2_lp(n) * (—1)"p(n)] Reo(k) (8)

k

where p(n) is the autocorrelation sequence of h(n) defined as
p(n) = h(n) * h(—n)

and R;;(k) is the autocorrelation sequence of the input. The optimal solution searched should
minimize the aliasing energy component of the low-pass filter output as given in Eq.(8) in 2-band
PR-QMF case.

Differently from the earlier design procedures in the literature, the aliasing energy is related to
the spectral density function of interest rather than the deviations of the designed filter’s frequency
characterictics from the ideal filter.

d) Step Response: The unit step response of the filter h(n) can be written as

a(n) = h(n) *x u(n)

where u(n) is the unit step sequence. The error energy between the unit step response a(n) and
the unit step sequence u(n) can be expressed as

2N-1 &k

Eo= Y[ h(n) — 1 9)

k=0 n=0

E, is minimized for the optimal solution. The optimization variable E, does not consider the
symmetry of the unit step response around the step point. As known the ringing problem of image
coding may be caused by an overshoot or undershoot. But this point is addressed later that this
symmetry condition of the unit step response is directly related to the linear phase condition of the
desired filter.
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e) Zero Mean High-Pass Condition: It is important that the high pass filter has zero mean as
disscussed earlier. This means that
2 (=1)"h(n) =0 (10)

n

This requirement implies that there should be at least one zero of the low pass filter h(n) at w = =.

f) Uncorrelatedness of Subbands: Since this is a desired feature particularly for signal coding
applications it is considered as one of the variables of the optimal filter design problem. This
characteristic is defined as

E{yr(n)yu(n)} = Reu(0) = Y [Y_A()(=1)'h(n = I)]Rez(n) =0  for allm (11)
n |

g) Constrained Non-linear Phase Response: Since the severe nonlinearity of the phase response
in filter banks is a cause of degradation in visual signal processing applications the constrained
phase nonlinearity which does not cause any practical problem should be considered in the optimal
filter design. Nonlinearity measure of the phase response is related to the non-symmetry of the unit
sample response and defined as

E, = Ylh(n) — h(2N — 1 — n)[? (12)

k) Given Input Statistics: The optimal solutions searched here are related to the input signal
statistics. This leads to the input driven adaptive filter solutions which may be employed to deal
with nonstationarities of the real world signal sources. This study assumes an autoregresive, order
1, AR(1) source model with the correlation coefficient p = 0.95 which is a crude approximation to
still images. The correlation sequence of this source is expressed as

Ro.(m)=p™ m=0,4+1,42,... (13)
From Eq.(13) the corresponding teoplitz covariance matrix R, is easily obtained.

IV. OPTIMAL PR-QMF DESIGN BASED ON ENERGY COMPACTION

This optimization problem consists of the variables of a), b) in the previous section, for an AR(1)
source of g) from the previous section with p = 0.95.
We can now set the objective function J which is to be maximized as

max {J} = AT Ryzh + Mo[l — hTh] + M [ATC1A] + ... + M{ATC;] (14)
Hence,
oJ
a_h =0
therefore
Ro:h+ M\MCih+ ... + N\;Cih = Aoh (15)
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If the terms in the left side of the equation are combined as

Rh = Mok (16)

where

R = sz + /\lCl + ...+ A:'C'i

Eq.(16) looks like a classical eigenvalue problem but here the matrix R has unknown parameters in
it. The vector h which satisfies Eq.(16) is the optimal PR-QMF half-band low-pass filter. Tables 1
and 2 provide the 4, 6, and 8 tap filter coefficents obtained from this optimization procedure.

V. OPTIMAL PR-QMF DESIGN BASED ON EXTENDED SET OF VARIABLES

The aliasing energy, step response, and constrained non-linear phase characteristics additional
to the constraints of Eq.(14) and zero-mean high-pass filter condition are included in the objective
function in this section. The objective function of this optimization problem is easily set as

2N-1 k

max{J}:b.TRmh—a;[p(n)*( 1)"p(n)] Raz(k)—8 Y [D_ h(n) vZ[h h(2ZN—1-n)]*

k=0 n=0
(17)
with the set of unitary, PR, and zero-mean constraints

S h(n)h(n +2k) = &(k)

2 (=1)"h(n) = 0 (18)
Tables 3a, b, and ¢ display three different sets of 4,6,8 tap optimal PR-QMF solutions for the
indicated parameter sets {a, 3,7} and the 2-band filter bank energy compaction performance of
those filters for AR(1) source model with p = 0.95.

VI. FUTURE RESEARCH AND CONCLUSIONS

We have developed a frame to design statistically optimized 2-band PR-QMFs. This procedure
considers the effects of the uncertainty principle of the time-frequency signal analysis. This is
implicitly succeeded by considering the effects of the aliasing energy and the unit step response of
the designed PR-QMF's for the given statistics.

The proposed solutions succeed to consider several practical problems of signal coding in the
optimization problem. Therefore there are quite a few different filter solutions available under
this approach. All the PR-QMF solutions presented here are based on AR(1) source model with
p = 0.95. Therefore better tuned statistical models of image sources should be included in the
optimization problem for further studies.

This approach somehow leads to the solutions of the input driven adaptive filter banks to
overcome the difficulties of varying source characteristics in the non-stationary cases. It is expected
that the statistically optimized PR-QMFs introduced in this paper perform better than the the
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well-known PR-QMFs in the literature[6][7]. These filters should be incorporated in image, video
processing and coding applications to prove their merits.

It should also be emphasized that some of the characteristics considered in the proposed opti-
mized PR-QMF design procedure may not be significant in the 2-band case. But if a tree structure
based on 2-band PR-QMFs are created it is clearly observed that all of these characteristics become

important. Therefore they should be considered simultaneously.
This approach can be extended to the M —band PR filter bank problem but as expected the
procedure in that case is computationally quite complex for the larger values of M.
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Table 1. Filter coeflicients of 4, 6, and 8 tap optimal PR-QMFs based on Eq.(14) and their 2-band
energy compaction for AR(1) source with p = 0.95.

n h(n) h(n) h(n)
0 { 0.3228416 | 0.3856583 | 0.4884862
1| 0.7492217 | 0.7962807 | 0.8322184
2 | 0.5311527 | 0.4281477 | 0.2261980
3 |-0.0612652 | -0.1408510 | -0.1327707
4 1-0.2055118 | -0.1066993
5| 0.0426724 | 0.0516771
6 | 0.0616565
7| -0.0265680

Gre 3.8567 3.7972 3.6529

Table 2. Optimal PR-QMF's having zero-mean high-pass additonal to Eq.(14) and their 2-band
energy compaction for AR(1) source with p = 0.95.

n h(n) h(n) h(n)
0| 0.3179736 | 0.3856632 | 0.4829630
1| 0.7488967 | 0.7962818 | 0.8365163
2| 0.5349441 | 0.4281412 | 0.2241439
3 | -0.0588333 | -0.1408519 | -0.1294095
4 1-0.2058194 | -0.1066976
5 | 0.0425224 | 0.0516769
6 | 0.0600086
7 1-0.0254790

Gre 3.8567 3.7972 3.6426
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Tables 3 a,b,c Three sets of optimal PR-QMFs obtained from Eqs.(17) and (18) with different

values of e, (3, and 7y parameters and their 2-band energy compaction for AR(1) source with

p =095
a=1,8=001, =001

n h(n) h(n) h(n)
0| 0.3806122 | 0.4502598 | 0.4760834
1| 0.6764663 | 0.8101271 | 0.8383073
2| 0.4606891 | 0.3343153 | 0.2310233
3 [ -0.0829168 | -0.1460764 | -0.1312005
4 |-0.1999896 | -0.0774683
5 | 0.0562299 | 0.0430560
6 | 0.0657951
71-0.0326725

Grc 3.8397 3.7768 3.6422

a=1,8=001,7=01

n h(n) h(n) h(n)
0| 0.3656289 | 0.3880495 | 0.4502767
1| 0.6456302 | 0.8249238 | 0.8441088
2| 0.4881103 | 0.3785860 | 0.2568301
3 |-0.0478489 | -0.1458196 | -0.1370020
4 | -0.2378422 | -0.0595286
5 | 0.0540503 | 0.0280026
6 { 0.0912098
7 1-0.0447258

Gre 3.8150 3.7498 3.6356

a=23=001,7=1

n h(n) h(n) h(n)
0| 0.0213971 | 0.0110556 | 0.0032908
1]-0.0983231 | -0.0809281 | 0.7103669
2 | 0.0234699 | -0.0155682 | 0.7038160
3| 0.7096470 | 0.6908207 | -0.0032601
4| 0.6889528 | 0.7116194
5| 0.1015962 | 0.0972142
6 | -0.0267929
7 1-0.0058133

Gre 3.6608 3.5351 3.2026
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