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Abstract—Empirical correlation matrix of asset returns has
its intrinsic noise component. Eigen decomposition, also called
Karhunen-Loeve Transform (KLT), is employed for noise filtering
where an identified subset of eigenvalues replaced by zero. The
filtered correlation matrix is utilized for calculation of portfolio
risk and rebalancing. We introduce Toeplitz approximation to
symmetric empirical correlation matrix by using auto-regres-
sive order one, AR(1), signal model. It leads us to an analytical
framework where the corresponding eigenvalues and eigenvectors
are defined in closed forms. Moreover, we show that discrete
cosine transform (DCT) with implementation advantages provides
comparable performance as a good approximation to KLT for
processing the empirical correlation matrix of a portfolio with
highly correlated assets. The energy packing of both transforms
degrade for lower values of correlation coefficient. The theoretical
reasoning for such a performance is presented. It is concluded
that the proposed framework has a potential use for quantitative
finance applications.

Index Terms—Karhunen-Loeve transform, discrete cosine
transform, AR(1) model, empirical correlation matrix, portfolio
management, risk management.

I. INTRODUCTION

A PORTFOLIO is comprised of multiple financial assets.
The standard deviation of portfolio return is a widely used

risk metric in finance [1]. A desirable portfolio delivers max-
imum return on investment with minimum risk. Therefore, the
return of each asset is individually assessed, and also compared
against competing assets in the portfolio. Pair-wise correlations
of asset returns populate the empirical correlation matrix that re-
veals significant information on portfolio risk and its variations
in time. A portfolio manager monitors these variations and re-
balances portfolio in order to keep the risk within allowed range
for the desired return.
Severe non-stationarity with high level of intrinsic noise is

common in asset returns of a portfolio. Hence, empirical cor-
relation matrix needs to be tamed accordingly. Eigen analysis,
also called principal component analysis (PCA) or KLT, has
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been successfully employed to filter out this undesirable noise
component from the measured correlations [2]. The caveat is
the computational cost of KLT operations. Therefore, we re-
visit DCT as an approximation to KLT, and compare their per-
formance for noise cleaning of empirical correlation matrix of
asset returns. DCT is quite attractive over KLT due to its com-
putational efficiency. The filtered empirical correlation matrix
is represented by its eigenvectors and eigenvalues that lead us
to creation of eigenportfolios. Our goal is to compare perfor-
mances of fixed transform DCT and input dependent KLT for
empirical correlation matrices of various portfolios in order to
justify the use of the former as an efficient replacement to the
latter in practice.
Mathematical preliminaries are given in Section II. We intro-

duce the basics of orthogonal transforms and performance met-
rics to compare their merit. We briefly discuss about modeling
of random signal sources and focus on auto-regressive model
of order one, AR(1). Its Toeplitz correlation matrix is defined.
We also describe eigendecomposition of a matrix, and present
closed form expressions for eigenvalues and eigenvectors of an
AR(1) source. Moreover, we give the kernel of DCT in this sec-
tion. In Section III, symmetric empirical correlation matrix is
approximated by employing AR(1) model with Toeplitz corre-
lation matrix in two different ways. Namely, the first one uti-
lizes only one AR(1) model approximation for the entire em-
pirical correlation matrix. In contrast, the second one uses one
AR(1) model per row (asset). The merit of these Toeplitz ap-
proximations and the use of DCT as a fast KLT implementation
in finance applications are highlighted [3], [4]. Then, we intro-
duce portfolio risk and its calculations through KLT and DCT
based methods in Section IV. Our conclusions are presented in
Section V.

II. MATHEMATICAL PRELIMINARIES

In this section, we present theoretical foundations of orthog-
onal transforms that provide underlying mathematical steps uti-
lized in many applications including financial signal processing.

A. Orthogonal Transforms

A family of linearly independent orthonormal discrete-
time sequences on the interval satisfies [5]

(1)
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Orthonormality may also be expressed on the unit circle of the
complex plane where as follows

(2)

In matrix form, are the rows of the transform matrix,
and they are also called as basis functions

(3)

with orthogonality

(4)

where indicates conjugated and transposed version of a ma-
trix. A signal vector is mapped into the orthonormal space
through forward transform operator

(5)

where is transform coefficients vector. Similarly, the inverse
transform yields the signal vector

(6)

The vector is populated by a wide-sense stationary (WSS)
stochastic process that satisfies the properties

(7)

where is the expectation operator. The correlation and co-
variancematrices of such a random vector process are defined,
respectively,

...
...

. . .
...

(8)

where

...
...
. . .

...

Note that for a zero mean WSS process where
. Hence, one can derive the covariance matrix of transform
coefficients as follows

(9)

Energy preserving property of an orthonormal transform yields
the relationship between signal variance and variances of corre-
sponding coefficients

(10)

It is noted that the linear transformation of a stationary random
vector process results in a non-stationary random vector
process. In practice, the variance values of transform coef-
ficients are desired to have smaller geometric mean in
order to justify the transform domain processing of random
signals. KLT provides optimal geometric mean of coefficient
variances with a diagonal correlation matrix with best
possible repacking of signal vector energy into as few trans-
form coefficients as possible. The compaction efficiency of a
transform is defined as

(11)

This is an importantmetric to assess the efficiency of a transform
for the given signal type. The gain of transform coding over
pulse code modulation (PCM) performance of an unitary
transform for a given input correlation is particularly significant
and widely utilized in transform coding applications as defined
[5]

(12)

Similarly, decorrelation efficiency of a transform is defined as

(13)

Note that for KLT where transform coefficients are per-
fectly decorrelated (pairwise), and signal energy is optimally
packed as measured in (12) and (13) for the given and trans-
form size . Therefore, KLT is the optimal block transform for
a given input statistics offering the best possible performance
with high computational cost. Its basis set needs to be recalcu-
lated whenever signal statistics changes. In contrast, fixed trans-
form DCT with efficient implementation is an attractive alter-
native to KLT particularly for highly correlated processes. We
highlight this point in the following section.

B. AR(1) Signal Model

Random signal sources are mathematically described by a va-
riety of models including auto-regressive (AR), moving average
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(MA), and auto-regressive moving average (ARMA) types. AR
source models, also called all-pole models, have been success-
fully used in speech compression and recognition applications
for decades. AR source model with order one, AR(1), is a first
approximation to many natural signals, and it has been widely
employed in various engineering applications. AR(1) signal is
generated through the regression formula as written [5]

(14)

where is a white noise with zero mean. The first order
correlation coefficient is in the range of , and the
noise variance is related to the variance of as follows

(15)

Auto-correlation sequence of is expressed as

(16)

The resulting Toeplitz correlation matrix of size is de-
fined as

...
...

...
. . .

...

(17)

AR(1) model is utilized to approximate empirical correlations
of asset returns in the following sections of the paper with the
purpose of developing an analytical framework, and also a fast
KLT approximation by using DCT as a replacement.

C. Eigen Decomposition of AR(1) Process

An eigenvalue and an eigenvector of a matrix with size
must satisfy the eigenvalue [5], [6]

(18)

It is rewritten as

(19)

such that is an invertible matrix. Namely,

(20)

This determinant requirement leads us, in general, to the char-
acteristic polynomial

(21)

where

(22)

This results in the eigenpair set where
for a single eigenvector. It is emphasized that if more than one
eigenvector share the same eigenvalue, those eigenvectors along
with the zero vector form a linear subspace of the vector space,
and it is called an eigenspace. Moreover, the eigenvectors with
different eigenvalues are linearly independent, and matrix
with size is called defective if it does not have linearly
independent eigenvectors. For the case of diagonal matrix, its
eigenvectors are basis vectors and eigenvalues are its compo-
nent values on the diagonal. Now, for a non-defective matrix
with distinct eigenvectors one can write the following eigenma-
trix equation

(23)

where , and kth column
of matrix is the kth eigenvector of with the corre-
sponding eigenvalue . Note that for the given signal
statistics as in (8). The eigenvalues for anAR(1) source
model of (14) is calculated in closed form as follows [3]

(24)

where are the positive roots of the polynomial

(25)

and the resulting matrix of size is
calculated as

(26)

where . KLT is the signal dependent unique
transform with jointly optimal energy packing and perfect
decorrelation features for a given . The computation of the
KLT transform is difficult in practice. Therefore, fixed trans-
forms are preferred in many applications that are concerned
with the implementation cost of KLT. In contrast to input
dependent KLT, Discrete Cosine Transform (DCT) is a fixed
transform and offers efficient implementation algorithms. DCT
matrix of size is defined as [7]

(27)

where and

It has been shown in the literature that the basis vectors of DCT
approach to the eigenvectors of AR(1) process as the correlation
coefficient goes to one [4]. It was reported that the DCT basis
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functions are eigenvectors of a symmetric tridiagonal matrix as
defined

...
...

(28)

Similarly, the covariance matrix of an AR(1) process with the
correlation coefficient has the form

...
...

(29)

where

Therefore, it is shown that

This very nature of DCT has made it a popular transform that
is successfully employed for decomposition of highly corre-
lated signal sources. In particular, image and video compres-
sion standards like JPEG and MPEG use DCT based 2-D trans-
form coding. In Fig. 1(a) of KLT and DCT as defined in
(11) are displayed for various values of correlation coefficient
and transform size . Similarly, Fig. 1(b) depicts relative

performance of (12) for KLT and DCT as a function of
for . This figure verifies the use of DCT as a replace-
ment to KLT in image and video processing applications where
signals are highly correlated. Moreover, it is noted that the en-
ergy packing performance of both transforms degrade for lower
values of correlation coefficient. The readers of more interest on
the theory of signals and transforms are referred to [5].

III. TOEPLITZ APPROXIMATION TO EMPIRICAL
CORRELATION MATRIX

In this section, we attempt to approximate empirical corre-
lations of asset returns by utilizing AR(1) signal source model
as discussed earlier. The main motivation here is to incorpo-
rate the closed form expressions of eigenvalues and eigenvectors
of AR(1) sources as expressed in (24)–(26) that are utilized for
eigenfiltering of empirical correlation matrix accordingly. This
procedure will be explained later in Section IV. Moreover, we
highlight potential use of DCT for noise filtering of empirical
correlation matrix as a replacement to KLT where the former is
very efficient to implement.
We consider 30 stocks of the index Dow Jones Industrial Av-

erage (DJIA) along with the exchange traded fund (ETF) called
Dow Jones Industrial Average (DIA) that mimics DJIA (total of

assets) for most experiments reported in this section.

Fig. 1. (a) � ��� performance of KLT and DCT for various values of � and
� � ��, (b)� performance of KLT andDCT as a function of � for� � ��.

Return of the kth asset of the portfolio at discrete-time is de-
fined as follows

(30)

where is its price. The mean and variance of are
calculated for a measurement window size of with the er-
godicity assumption as written

(31)

where and is called the volatility of the
kth asset at time that is a widely used risk metric in finance.
The return vector of all assets at time is written as

(32)

The empirical correlation matrix of returns at time is defined
as

...
...

. . .
...

(33)

where
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Fig. 2. (a) Rows of � matrix displayed in descending order, (b) KLT and
DCT coefficient variances for � of DJIA & DIA EOD returns calculated at
time � � �� � �� with � � ��.

represents measured correlation between returns of kth and lth
assets with a measurement window of samples. Note that
the returns are normalized to be zero mean and unit variance.
The empirical correlation matrix is real, symmetric and
positive definite. Fig. 2(a) displays its elements for each row in
a descending order for 31 assets being considered in this section
and calculated at the end of day (EOD) for days. The
kth sequence represents pairwise correlations of the kth asset
with all assets of the portfolio. For simplicity, we drop the time
variable in (33) and rewrite it as

...
...

. . .
...

(34)

is normalized such that . Fig. 2(b) shows
variances of corresponding KLT and DCT coefficients for the
empirical correlation matrix of DJIA & DIA EOD returns
for days as displayed graphically in Fig. 2(a). This
figure confirms their similar behavior for financial signals of this
type.
We consider two cases where AR(1) signal model with

Toeplitz correlation matrix is employed to approximate sym-
metric matrix as follows.

A. AR(1) Approximation to Empirical Correlation Matrix

We find the optimal correlation coefficient of AR(1)
source as stated in (16) that minimizes the approximation error

(35)

Fig. 3. Variations of optimal correlation coefficient and the resulting error of
AR(1) approximation, (35), as a function of timewith 15minute sliding intervals
with� � �� days for 24 hour returns of 31-asset portfolio (DJIA & DIA) in
the interval � � � � ��� �� � ��.

Accordingly, symmetric empirical correlation matrix is approx-
imated by a Toeplitz matrix as

...
...

. . .
...

(36)

Therefore, one can calculate the resulting eigenvalues and
eigenvectors of AR(1) model according to (24) and (26) as
approximations to their measured values, respectively. Fig. 3
displays variations of correlation coefficient for 31 assets
of DJIA & DIA under consideration along with approximation
errors of (35). The returns are measured for 24 hour intervals
with sliding time intervals of 15 minutes and measurement
window of trading days for a trading day of 6.5 hours
in this figure. The last sample corresponds to EOD return of an
asset. This figure shows highly correlated nature of EOD and
24 hour returns along with the merit of Toeplitz approximation
to empirical correlation matrix.

B. AR(1) Approximation to Each Row of Empirical Correlation
Matrix

In this method we approximate each row of empirical cor-
relation matrix by the optimal correlation sequence of AR(1)
signal model with the correlation coefficients . Hence,
the rows are approximated as

...
...

. . .
...

(37)
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where the optimum for the kth row of (kth asset of a
portfolio) is obtained by minimizing the approximation error as
defined

(38)

and, is the element of matrix located at the kth
row and lth column. Then, each row is AR(1) approximated
independently and we rewrite (37) as

(39)

where the selection matrix is defined as

(40)

and, the resulting matrix is a Toeplitz matrix as expressed

...
...

. . .
...

(41)

for . Similarly, we decompose each to its
eigenvectors individually as shown

(42)

Therefore, we can rewrite the Toeplitz approximation of (39) as

(43)

where and are comprised of the kth set of eigen-
vectors and eigenvalues, respectively. Then, we calculate the
resulting eigenvalues and eigenvectors according to the closed
form expressions of (24) and (26) for the given set of AR(1) cor-
relation coefficients . Fig. 4 displays variations of cor-
relation coefficients and resulting approximation errors of this
method for 31 assets under consideration. Similarly, the returns
are for 24-hour intervals with 15 minute sliding windows for
a trading day of 6.5 hours in these figures. It is noted that the
approximation error of this method is lower than the first one.
The trade-off is the increased computational cost of the multiple
Toeplitz approximations. The histogram for correlation coeffi-
cients of Fig. 4 is shown in Fig. 5. The resulting mean and vari-
ance values are 0.8756 and 0.0125, respectively. These correla-
tion coefficient values coupled with the KLT and DCT perfor-
mance comparisons displayed in Fig. 1 suggest the use of DCT
as fast KLT approximation for this type of signals.

IV. PORTFOLIO RISK AND EIGENFILTERING OF EMPIRICAL
CORRELATION MATRIX

Eigen decomposition of empirical correlation matrix of asset
returns in a portfolio has been widely employed for risk analysis

Fig. 4. Variations of correlation coefficients and the resulting errors of AR(1)
approximations as a function of timewith 15minute sliding intervals for 24 hour
returns of 31-asset portfolio (DJIA & DIA) with� � �� days in the interval
� � � � �� � �� � ��.

Fig. 5. Histogram of correlation coefficients displayed in Fig. 4.

and rebalancing [2], [8]. The return of an N-asset portfolio at
time is calculated as

(44)

where is the return vector, and is the normalized investment
vector of the portfolio with

(45)

Therefore, we can calculate mean of portfolio return at time
as

(46)

Elements of vector are expected returns of assets in the port-
folio. We can also calculate the variance of portfolio return at
time as

(47)
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Fig. 6. (a) Portfolio risk for symmetric empirical correlation matrix � ���,
and its Toeplitz approximations �� of (36), and �� of (37) as a function of
time with 15 minute sliding intervals for 24 hour returns and� � �� trading
days of 31-asset portfolio (DJIA & DIA) in the interval � � 	 
 ��� �� 
 ��,
(b) Portfolio risk calculated from (48) using two versions of filtered empirical
correlation matrix � ��� for 5 factors as a function of time with 15 minute
sliding intervals and� � �� trading days for 24 hour returns of DJIA & DIA
in the interval � � 	 
 ��� �� 
 ��.

where . Now, we introduce eigendecom-
position of as defined in (23), and rewrite the portfolio vari-
ance as follows

(48)

where

(49)

One may utilize Toeplitz approximation to symmetric matrix
as described in Section III. This provides an analyt-

ical framework for further studies. Moreover, it suggests to
reduce computational cost of eigen decomposition, particu-
larly for large values of , by employing DCT as a fast KLT
approximation.
Fig. 6(a) displays portfolio risk calculated from (48)

for empirical correlation matrix , and its Toeplitz ap-
proximations of (36), and of (43) as a func-
tion of time with 15 minute sliding intervals and a measurement
window of trading days for 24 hour returns of 31-asset
portfolio DJIA & DIA.
Eigenfiltering utilizes eigen decomposition where a subset of
most significant eigenvalues, , along with eigenvec-

tors are kept to represent filtered empirical correlation matrix as
expressed

(50)

Fig. 7. (a) Compaction efficiencies of KLT and DCT for multiple intervals (fre-
quencies) of 31-asset portfolio DJIA & DIA, (b) Compaction efficiencies of
KLT and DCT for multiple intervals of 100-asset portfolio NASDAQ100.

and with the remaining noise matrix

(51)

where one can write the equation

(52)

In order to preserve the total energy in transform domain where
we introduce the diagonal matrix

as included in the modified version of as

(53)

Fig. 6(b) compares portfolio risks of 24 hour returns of 31-asset
portfolio DJIA&DIA calculated from (48) employing KLT and
DCT filtering methods with five factors as a func-
tion of time for 15 minute sliding intervals in a given 6.5 hour
long trading day. It is observed from the figure that their per-
formances are very similar. Fig. 7 displays compaction efficien-
cies, (11), of KLT and DCT for three different empirical corre-
lation matrices calculated for sampling (rebalancing) periods of
24 hours (EOD), 30 minutes, and 5 minutes, and for two dif-
ferent portfolios. Namely, they are of 31-asset DJIA & DIA and
100-asset NASDAQ100 portfolios. It is observed from these fig-
ures that KLT and DCT perform similarly for the filtering of
empirical correlation matrices of asset returns experimented in
various frequencies [2], [8]–[11] and two portfolios. It is noted
that their energy compaction performance degrades when the
sampling interval is reduced where the value of correlation co-
efficient drops due to the Epps Effect [12], [13].
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V. CONCLUSION

In this paper, we introduced two methods for Toeplitz
approximation to symmetric empirical correlation matrix of
asset returns in a portfolio with corresponding closed form
expressions for eigen decomposition. We showed the merit of
the proposed framework through two portfolios, DJIA & DIA
and NASDAQ100. Furthermore, we forwarded and verified the
use of DCT as a fast and effective KLT approximation for the
analysis of an empirical correlation matrix. It is concluded that
the proposed analytical framework and easy implementation
may be used in data-intensive finance applications.

REFERENCES

[1] H. M. Markowitz, Portfolio Selection: Efficient Diversification of In-
vestments. New York: Wiley, 1959.

[2] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr,
and H. E. Stanley, “Random matrix approach to cross correlations in
financial data,” Phys. Rev. E, vol. 65, pp. 066 126-1–066 126-18, Jun.
2002.

[3] W. Ray and R. Driver, “Further decomposition of the Karhunen-Loeve
series representation of a stationary random process,” IEEE Trans. Inf.
Theory, vol. IT-16, no. 6, pp. 663–668, Nov. 1970.

[4] A. Jain, “A fast Karhunen-Loeve transform for a class of random
processes,” IEEE Trans. Communications, vol. COM-24, no. 9, pp.
1023–1029, Sep. 1976.

[5] A. N. Akansu and R. A. Haddad, Multiresolution Signal Decompo-
sition: Transforms, Subbands, and Wavelets. New York: Academic,
1992.

[6] K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Philosoph. Mag. no. 2, pp. 559–572, 1901 [Online]. Available:
http://stat.smmu.edu.cn/history/pearson1901.pdf

[7] N. Ahmed, T. Natarajan, and K. Rao, “Discrete cosine transfom,” IEEE
Trans. Comput., vol. C-23, no. 1, pp. 90–93, Jan. 1974.

[8] M. U. Torun, A. N. Akansu, and M. Avellaneda, “Portfolio risk in
multiple frequencies,” IEEE Signal Process. Mag., Spec. Iss. Signal
Process. for Finan. Applicat., vol. 28, no. 5, pp. 61–71, Sep. 2011.

[9] J. Bouchaud and M. Potters, Theory of Financial Risk and Derivative
Pricing. Cambridge, U.K.: Cambridge Univ. Press, 2003.

[10] T. Conlon, H. Ruskin, and M. Crane, “Cross-correlation dynamics in
financial time series,” Physica A: Statist. Mech. and its Applicat., vol.
388, no. 5, pp. 705–714, 2009.

[11] N. El Karoui, “Concentration of measure and spectra of random
matrices: Applications to correlation matrices, elliptical distributions
and beyond,” Ann. Appl. Probab., vol. 19, no. 6, pp. 2362–2405,
2009.

[12] T. W. Epps, “Comovements in stock prices in the very short run,” J.
Amer. Statist. Assoc., vol. 74, no. 366, pp. 291–298, 1979.

[13] M. U. Torun and A. N. Akansu, “On Epps effect and rebalancing of
hedged portfolio in multiple frequencies,” in Proc. 4th IEEE Int. Work-
shop Comput. Adv. in Multi-Sensor Adapt. Process., Dec. 2011.

Ali N. Akansu (F’08) received the B.S. degree from
the Technical University of Istanbul, Turkey, and
the M.S. and Ph.D. degrees from the Polytechnic
University, Brooklyn, New York, all in electrical
engineering. Since 1987, he has been with the New
Jersey Institute of Technology, where he is a Pro-
fessor of Electrical and Computer Engineering. Dr.
Akansu has administered and managed a number of
research programs and product development projects
in academia and private sector, funded by the State
& Federal Government agencies, and industry. He

was a Founding Director of the New Jersey Center for Multimedia Research
(NJCMR) between 1996–2000, and NSF Industry-University Cooperative Re-
search Center (IUCRC) for Digital Video between 1998–2000. Dr. Akansu was
the Vice President for Research and Development of IDT Corporation [NYSE:
IDT]. He was the founding President and CEO of PixWave, Inc., and Senior
Vice President for Technology Development of TV.TV, IDT subsidiaries. He
was an academic visitor at David Sarnoff Research Center, IBM T. J. Watson
Research Center and at GEC-Marconi Electronic Systems Corp. He was also a
Visiting Professor at the Courant Institute of Mathematical Sciences of NYU.
He regularly consults to the legal sector and industry, and has sat on the boards
of several companies.
Dr. Akansu has published numerous articles and books, gave invited talks,

guided theses on the theory of signals and transforms, and their applications in
image/video coding, digital communications, Internet multimedia and informa-
tion security, and quantitative finance. He is a co-author (with R. A. Haddad)
of the book Multiresolution Signal Decomposition: Transforms, Subbands and
Wavelets, Academic Press, 1992 and 2001 (2nd Ed.), and a co-editor (with M.
J. T. Smith) of a book entitled Subband and Wavelet Transforms: Design and
Applications, Kluwer, 1996. He is a co-editor of the book (with M. J. Medley)
Wavelet, Subband and Block Transforms in Communications and Multimedia,
Kluwer, 1999. He is also a co-author of a researchmonograph (with H. T. Sencar
and M. Ramkumar) Data Hiding Fundamentals and Applications: Content Se-
curity in Digital Multimedia, Elsevier-Academic Press, 2004.
Dr. Akansu is a Fellow of the IEEE. He served as an associate editor of

IEEE TRANSACTIONS ON SIGNAL PROCESSING, and IEEE TRANSACTIONS
ON MULTIMEDIA, as a member of the Signal Processing Theory & Methods,
and Multimedia Signal Processing technical committees of the IEEE Signal
Processing Society. He organized the first Wavelets Conference in the United
States in April 1990. He was the technical program chairman of IEEE Digital
Signal Processing Workshop 1996, Loen, Norway. He served as a member of
the Steering Committee and the Publications Chair of IEEE ICASSP 2000,
Istanbul, Turkey. He was the Lead Guest Editor of the two special issues of
IEEE TRANSACTIONS ON SIGNAL PROCESSING on Theory and Application of
Filter Banks and Wavelet Transforms (April 1998), and on Signal Processing
for Data Hiding in Digital Media and Secure Content Delivery (June 2003).
He is also the Lead Guest Editor of the special issue of the IEEE JOURNAL OF
SPECIAL TOPICS ON SIGNAL PROCESSING ON SIGNAL PROCESSING Methods in
Finance and Electronic Trading (August 2012).

Mustafa U. Torun (mustafa.torun@njit.edu) re-
ceived his B.S. and M.S. degrees from the Dokuz
Eylul University (D.E.U.), Izmir, Turkey, in 2005
and 2007 respectively, both in electrical and elec-
tronics engineering. He was a research assistant
in the Department of Electrical and Electronics
Engineering at D.E.U. from 2005 to 2008. Since
2008, he has been a Ph.D. candidate in the Depart-
ment of Electrical and Computer Engineering at
the New Jersey Institute of Technology, Newark,
NJ. His research interests include high-performance

computing, data-intensive research in signal processing, multi-resolution signal
processing, statistical signal processing, pattern classification, neural networks,
genetic algorithms; and their applications in quantitative finance, electronic
trading, digital communications, digital imaging, and biomedical engineering.


