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Abstract— Constant modulus transforms like discrete Fourier 

transform (DFT), Walsh transform, and Gold codes have been 
successfully used over several decades in several engineering 
applications, including discrete multi-tone (DMT), orthogonal 
frequency division multiplexing (OFDM) and code division 
multiple access (CDMA) communications systems. In this paper, 
we present a generalized framework for DFT called Generalized 
DFT (GDFT) with nonlinear phase by exploiting the phase space. 
We show that GDFT offers sizable correlation improvements 
over DFT, Walsh, Oppermann and Gold codes, leading to better 
performance in all multi-carrier communications scenarios 
investigated. We also highlight how known constant modulus 
orthogonal transforms are special solutions of the proposed 
GDFT framework. Moreover, we introduce practical design 
methods offering computationally efficient implementations of 
GDFT as enhancements to DFT. We conclude the paper with 
examples of communications applications where GDFT is shown 
to outperform DFT and other known constant modulus bases. 
 

Index Terms— Discrete Fourier Transform, Generalized 
Discrete Fourier Transform, Walsh Codes, Gold Codes, OFDM, 
DMT, CDMA, auto-correlation function, cross-correlation 
function. 
 

I. INTRODUCTION 
 

Constant modulus function sets have always been of great 
interest in various applications including communications 
where efficient implementation is a major concern. Among 
known binary spreading code families, Gold codes have been 
successfully used for asynchronous communications in direct 
sequence CDMA (DS-CDMA) systems due to their low cross-
correlation features. Walsh, Gold, Walsh-like [1]-[3] and 
several other binary spreading code sets are designed to 
optimize so called even correlation functions. However, the 
odd correlations are as important as even correlations. 
Therefore, Fukumasa, Kohno and Imai proposed a new set of 
complex pseudo-random noise (PN) sequences, called equal  

 
 

 
 

 
odd and even (EOE) sequences, with good odd and even 
correlations [4]. EOE sequences are generated by using one of  
the binary code sets like Gold or Walsh.  

Spreading codes with non-binary real chip values were also 
proposed in the literature in order to improve auto- and cross-
correlations of the set. More recently, research has refocused 
on constant modulus spreading codes for radio 
communications applications due to the efficiency limitations 
of non-linear gain characteristics of commonly used power 
amplifiers in transceivers. Hence, the complex roots of unity 
are widely proposed as complex spreading codes by several 
authors in the literature. All codes of such a set are placed on 
the unit circle of the complex z plane. Frank-Zadoff, Chu and 
Oppermann have forwarded a variety of complex spreading 
codes [5]-[8]. Moreover, Oppermann has shown that Frank-
Zadoff and Chu Sequences are special cases of his family of 
spreading sequences [9]. 

This paper introduces Generalized Discrete Fourier 
Transform (GDFT) with nonlinear phase. GDFT provides a 
unified theoretical framework where popular constant 
modulus orthogonal function sets including DFT and others 
are shown to be special solutions. Therefore, GDFT provides 
a foundation to exploit the phase space in its entirety in order 
to improve correlation properties of constant modulus 
orthogonal codes. We present GDFT and demonstrate its 
improved correlations over the popular DFT, Gold, Walsh and 
Oppermann families leading to superior communications 
performance for the scenarios considered in the paper. 

II. MATHEMATICAL PRELIMINARIES 
 

An Nth root of unity is a complex number z  satisfying the 
polynomial equation  
 

1 0      {1,2,3,...}Nz N− = ∈                                           (1) 
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Moreover, pz  is defined as the pth primitive Nth root of unity 
if 1   {1,2,.., 1}m

pz m N≠ ∈ − , where m and N must be coprime 
integers. The complex number 

1
(2 / )j Nz e π=  is the primitive 

Nth root of unity with the smallest positive argument. There 
are N distinct  Nth roots of unity for any primitive and 
expressed as  
 

)(   1,2,3,  ... ,k
pkz z k N= =                                                  (2) 

 
where pz  is any of the primitive Nth root of unity. As an 

example, 
2
4

1

j
z e

π

=  and 
3
2

2

j
z e

π

=  are the two primitive Nth 
roots of unity for N=4. All primitive Nth roots of unity satisfy 
the unique summation property of a geometric series 
expressed as follows 
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Now, define a periodic, constant modulus, complex sequence 
{ ( )}re n  as the rth power of the first primitive Nth root of unity 

1z  raised to the nth power as 
 

1
(2 / )( ) ( )   

0,1,2,... ,  -  1  and  0,1,2,... ,  -  1

r j r N nne n z er
n N r N

π=

= =
                           (4) 

 
The complex sequence (4) over a finite discrete-time interval 
in a geometric series is expressed according to (3) as follows 
[10]-[11] 
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Then, (5) is rewritten as the definition of the discrete Fourier 
transform (DFT) set { ( )}ke n  satisfying the orthonormality 
conditions 
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The notation (*) represents the complex conjugate function of 
a function. One might rewrite the first primitive Nth root of 

unity as 1
0jez ω=  where 0 2 /  Nω π= , and it is called the 

fundamental frequency defined in radians. We are going to 
extend the phase functions in (6) in order to define the 
nonlinear phase GDFT in the following section. 

III. GENERALIZED DISCRETE FOURIER 
TRANSFORM 

 
Let’s generalize (5) by rewriting the phase as the difference 

of two functions ( ) ( ) ( )   k lkl n n n r nϕ ϕ ϕ= − = ∀ , and 
expressing a constant modulus orthogonal set as follows, 
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Therefore, by inspection 
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Hence, the basis functions of the new set are defined as 
 

(2 / ) ( )
( )    , 0,1, ... , - 1}{ k

j N n nkn k n Ne e π ϕ
=                          (8) 

 
We call this orthogonal function set as the Generalized 
Discrete Fourier Transform (GDFT). It is observed from (7) 
and (8) that there are infinitely many sets of constant modulus 
and nonlinear phase functions available. Therefore, we might 
methodically design such functions. As an example, one can 
define the discrete time function ( )k nϕ  in (8) as the ratio of 
two polynomials, 
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Note that any function pair ( ), ( )}{ k ln nϕ ϕ  must satisfy the 
orthogonality requirements of ( ) ( )k ln n k l mNϕ ϕ− = − =  

0 1 1integer, { , , } { , , .., - }k l n Nm = ∈ as stated in (7).  
Let’s assume that the denominator polynomial ( ) 1kD n =  and 
the numerator polynomial is defined as follows 
 

1
1 2 3

2 3
1( ) ( ) ...k

k k k kN
kj k k kNb b b bb

kjk
N
jk n N n a n a n a n a na nϕ
=

= = = + + + +∑      (10) 

 
In general, the polynomial coefficients }{ kja  and }{ kjc  are 

complex, the powers }{ kjb  and }{ kjd  are real numbers. Now, 

we make several remarks that link the proposed GDFT 
framework to the other known transforms in the literature, and 
its potential impact on a multicarrier communications system. 
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Remark 1: DFT is a special solution of GDFT 
where 1 2 3 ... 0( )   and  k k k k kNn a k a a aϕ = = = = == , and 

1 2 ... 0k k kNb b b= = = =  in (9) and (10) for all k . Note that 
having constant valued { ( )}k nϕ  functions for all k makes 
DFT a linear-phase transform where 

(2 / ){ ( )}     , 0,1,..., 1j N kne n ek k n Nπ = − . 

 
Remark 2: There are infinitely many possible GDFT sets 
with constant modulus available due to the introduction of the 
nonlinear phase as formulated in (10) and later in (30).  
Therefore, one can design the optimal basis (phase) for the 
desired figure of merit. As an example, if the application at 
hand requires a function set with minimized correlation and 
does not mind the linearity of phase, naturally, DFT is not the 
optimal solution for this specs. One might exploit the phase to 
design various GDFT’s where CDMA and OFDM 
performances in a multicarrier communications system might 
be improved over the existing solutions like discrete-time 
Walsh transform and DFT. 
 
Remark 3: Since DFT is a special solution of GDFT, it offers 
only one unique set to be used in a multicarrier 
communications system. Therefore, the carrier level (physical 
layer) security is vulnerable to a potential intrusion to the 
system. In contrast, the proposed GDFT provides many 
possible constant modulus carrier sets of various lengths with 
comparable or better correlation performance than the DFT. 
The additional flexibility of changing phase functions of the 
GDFT set allows us to design adaptive systems where carrier 
allocations and basis assignments (basis hopping) are made 
dynamically in order to better match channel spectrum as well 
as for improved physical layer security. The phase shaping 
function ( )nψ  of (30) behaves as the security key of the 
system and is known in advance by the receiver. 

IV. GDFT DESIGN METHODS 
 

Let’s define the DFT matrix of size NxN  as 
 

(2 / )

( , )
[ ] [ ]  , 0,1, 2, ..., -1j N kn

DFT DFT k n
k n NA A e π

== =              (11) 

 
Now, we will define a GDFT by relaxing the linear phase 
property of DFT without compromising the orthogonality. 
This is a marked departure from the traditional Fourier 
analysis including DFT where any set regardless continuous 
or discrete in time has its linear phase functions. Hence, we 
express the square GDFT matrix as a product of the three 
orthogonal matrices as follows 

1 2

1 1 2 2

1

1 *

* *     

   

GDFT DFT

GDFT GDFT

GDFT GDFT
T

T T

G A G

A I

A

G G I G G I
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A

A

−

−

= =

=

=
=                                        (12) 

 
where 1G  and 2G  are constant modulus diagonal matrices and 
written as follows 
 

1

,
( , ) 0,
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G k n k n

k n N
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⎨ ⎬
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=                                                (13.a) 
and 
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k n N
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=
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=                                         (13.b) 
 
The notation (* )T  indicates that conjugate and transpose 
operations applied to the matrix, and I is the identity matrix. 
Therefore, the transform kernel generating GDFTA  matrix 
through this methodology is expressed as follows 
 

, 0,1,  . . . , -1
(2 / )[ ]{ ( )}    nnkk

k k n N
k N nje n e π θ γ

=
+ +        (14) 

 
1G  and 2G  are the diagonal complex orthogonal 

generalization matrices yielding GDFTA  in (12) with the 

desired time and frequency domain features. Note that 1G  

allows us to phase shift kth  DFT basis function by kkje θ  while 

2G  adds the nonlinear phase terms,    0,1,.., 1nn n Nje γ = − , to the 
linear phase functions of the DFT set. The latter is 
independent of the function index k and will be discussed in 
detail in Sec. V. We are going to introduce several 
generalization matrix families that are useful to design GDFTA  

out of DFTA . GDFT extensions with diagonal generalization 
matrices are efficient to implement with simple modifications 
to the celebrated fast Fourier transform (FFT) algorithms. 
 
Single Diagonal G  Matrix:  
 

The diagonal G  matrix is constant modulus and defined 
from (12) 

 1

2

G I
G G

=
=                                               (15) 

offering two types of GDFT matrices as follows. 
 

a. Constant Valued Diagonal Elements:  
The elements of this diagonal matrix are the same constant 

modulus complex number as expressed in 

( , )
,

0,
, 0,1,... 1

j

G k n
e k n

k n
k n N

θ⎧ ⎫
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⎨ ⎬
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=
= ≠

= −

                                              (16) 

 
This type of G  matrix generates θ  radians phase shifted 
version of the DFT matrix. Moreover, the linear phase 
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property of DFTA  is still preserved in this case. This is a well 
known property of traditional Fourier analysis and included 
here for the completeness of presentation [12]-[13]. 
 

b. Non-Constant Diagonal Elements: 
The non-zero, non-constant and constant modulus diagonal 

elements of G  matrix are defined as 
 

,
( , ) 0,

, 0 ,1,..., 1

nnje k n
G k n k n

k n N

θ⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

=
= ≠

= −

                                          (17) 

The rows--basis functions-- of GDFTA  in (12) are obtained as 

the element by element products of DFTA  rows with the 
elements of diagonal G  matrix in this scenario. Each sample 
of a basis function in DFTA  is phase shifted independently of 
the other samples. Therefore, the resulting basis function set is 
entirely different from DFT set. One might design a linear 
phase--phase shifted version of DFT-- or nonlinear phase 
GDFT by designing elements of the diagonal G  matrix, 

}{ nnje θ . This form of GDFT is further studied in Sec. V for 

the design of phase shaping function where ( ) nnnψ θ= . 
The overall computational burden of GDFTA  is the 

combined implementation cost of the DFTA  and the G  
matrices. Since DFT has its efficient fast algorithms, FFT, the 
complexity of G  matrix indicates the required additional 
computational resources to implement GDFT. Therefore, this 
point needs to be further studied in applications where one 
might generalize DFT into GDFT as presented in this section. 

 
Remark 4: Oppermann forwarded a new group of constant 
modulus orthogonal spreading codes, and also showed in [9] 
that the well-known Frank-Zadoff and Chu Sequences [5]-[7] 
are the special cases of his code family. It is shown below that 
the orthogonal Oppermann codes are also special solutions to 
the proposed GDFT framework. The Oppermann codes in an 
NxN square matrix notation are defined as [8], [9] 
 

  ( )( , ) ( 1) exp , 1,2,....,
pm n

ki
OPP

j k i iA k i k i N
N

π⎛ ⎞
⎜ ⎟
⎝ ⎠

+= − =                   (18) 

 
In [8], it was proven that Oppermann codes are orthogonal 
only for the case of p=1 and m is any positive nonzero integer. 
Note that if one defines the parameters of (10) for this case as 

0  3, 4,.....,j j Na = =  and 
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= =
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                                                      (19) 

Then, we obtain the equality DFTGDFT OPP OPPA A A G= = . As 
an example, OPPG  for the Oppermann set of N=7 with the 
parameters { }7,  1,  1,  2.98N m p n= = = =  is expressed as 
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Remark 5: The term Generalized DFT was also used by other 
authors [14]-[19]. Their focus was only on linear phase sets. 
Therefore, the non-linear phase GDFT is the superset of those 
techniques. Note that any linear phase extensions of DFT 
yield the same auto- and cross correlation performance as 
DFT, and hence provide no enhancements of these metrics. 

V.  DESIGN AND PERFORMANCE OF GENERALIZED 
DFT 

A. Performance Metrics: 
In order to compare performance of code families, several 

objective performance metrics were used in the literature. All 
the metrics used in this study depend on aperiodic correlation 
functions (ACF) of the spreading code set. The ACF metric 

, ( )k ld m  is defined for the complex sequences { ( )}ke n  and 

{ ( )}le n  [18], 
 

1
*

0
1

*
,

0

1 ( ) ( ), 0 1

1( ) ( ) ( ), 1 0

0 ,

N m

k l
n

N m

k l k l
n

e n e n m m N
N

d m e n m e n N m
N

m N

− −

=
− +

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

+ < ≤ −

= − − < ≤
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∑

∑
                          (21) 

Out-of-phase autocorrelation sequence of the complex 
sequence ( )ke n  is defined also from (21) as the absolute 
sequence of , ( )k kd m  as , ( )k kd m . Similarly, out-of-phase 

cross-correlation of two complex sequences ( )ke n and ( )le n  is 
defined as the absolute function of , ( )k ld m  and expressed 

with
, ( )k ld m . 

In this paper, the following correlation metrics are used for 
optimal GDFT design and performance comparisons of 
various code families [20] where M  is the set size and N  is 
the length of each spreading code. 

 
a. Maximum Value of Out-of-Phase Auto-correlation, amd : 

{ },max ( )
0
1

am k kd d m
k M
m N

=
≤ <
≤ <

                                                            (22) 

b. Maximum Value of Out-of-Phase Cross-correlation, cmd : 

{ },max ( )
0 ,
0

cm k ld d m
k l M k l
m N

=
≤ < ≠
≤ <

                                                           (23) 

{ }max max ,am cmd d d=                                                        (24) 
 

The relationship between the maximum out-of-phase auto-
correlation amd  and the maximum out-of-phase cross-
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correlation cmd  was shown by Sarwate in [21],  
 

2 2(2 1)(2 1) 1
( 1)cm am

NN d d
M

−
− + ≥

−
                                          (25) 

 
and leading to the Welch bound for complex spreading 
sequences expressed as [22], 

{ }max
1max ,

(2 1) 1am cm
Md d d

M N
−

= =
− −

                                     (26) 

 
c. Mean Square Value of Auto-correlation, ACR : 

1 2
,

1 1
0

1 ( )
M N

AC k k
k m N

m

R d m
M

−

= = −
≠

= ∑ ∑                                                       (27) 

 
d. Mean Square Value of Cross-correlation, CCR : 

1 2
,

1 1 1

1 ( )
( 1)

M M N

CC k l
k l m N

l k

R d m
M M

−

= = = −
≠

=
− ∑∑ ∑                                         (28) 

 
e. The merit factor (F): The merit factor for the kth code is 
the ratio of the energy in the main lobe of the autocorrelation 
function over the total energy in its side lobes and 
mathematically expressed as [23] 

1

,
1 2

,

(0)

2 ( )
m

k k
k N

k k

d
F

d m
=

−=
∑

                                                             (29) 

 
In CDMA communications systems, merit factor is desired to 
be as large as possible in order to improve the code 
synchronization and amiability [23]. 
 

B. Phase Shaping Function and Optimal Design: 
 
The phase shaping function ψ(n) is formally defined, and 

its optimal design based on a performance metric is presented 
in this section. The phase function ( ) { }

k
n nϕ  of (8) is now 

decomposed into two functions in the time variable n as 
follows 

 
(

(

( ) ) ( )

( ) ( ) [ ) ]

{0,1, ..., - 1},  {1, ..., -1};  (0)    (0) (0)

k k

k k

k

n n n kn n

n n kn n k n

k N n N

ϕ

ϕ

ϕ

ϕ ψ

ψ ϕ

ψ ψ

= = +

= − = −
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  (30) 

 
The linear term kn  of phase function in (30) is highlighted 
due to its significance in the orthogonality requirements of (7). 
Note that there are infinitely many possibilities for 
{ψ(n)}∈R  in (30) and, generally speaking, it might be linear 
or non-linear function of time. The GDFT framework offers 
us the flexibility to define the phase shaping function ( )nψ  
according to the design requirements. Note that any ( )nψ  
function will give us an orthogonal GDFT set as stated in (8) 
and (30). 

The cross-correlation sequence of a GDFT basis function 
pair (k, l) with length N is defined as  

21 ( ) ( )
( )  

0
21 ( )[ ( ) ( ) ( )]

0

2( ) ( )lN j nkR m N
nk l

N j lm k l n n n m
N

n

j n mNe

e

e
π ϕ

ϕ ϕ

π ψ ψ

π ϕ−
∑=
=

− − + − + − +
∑
=

− +

=
                           (31) 

 
where  ( ) 0;   R m m

k lϕ ϕ = ∀  for the ideal case, and 

(0) 0R
k lϕ ϕ =  implies the orthogonality of the function pair. 

Similarly, we can define the auto-correlation function of a 
GDFT basis function as 

21 ( ) ( )
( )  

0
21 ( )[ ( ) ( )]

0

2( ) ( )kN j nkR m e N
nk k

N j km n n m
e N

n

j n mNe
π ϕ

ϕ ϕ

π ψ ψ

π ϕ−
∑=
=

− − + − +
∑
=

− +

=
                          (32) 

 
where ( ) ( )R m m

k k
δϕ ϕ =  for the ideal case. The correlation 

sequence of a basis pair is incorporated in ACR and CCR  
metrics of (27) and (28), respectively, in the following design 
example. 

Now, we focus on the optimal design of the phase shaping 
function, ψ(n) , by utilizing a performance metric. Since there 
is no optimal closed form solution for ψ(n) , we used the 
numerical optimization software tools in Mathematica and 
MATLAB to obtain optimal phase shaping functions of (30) 
with respect to the metrics of (27) and (28). Note that the 
entire set uses the same phase shaping function and there are 

!
2 ( 2)!2!N
N NP

N
⎛ ⎞

= =⎜ ⎟ −⎝ ⎠
 basis function pairs in a set of size N to be 

considered in the design of an optimum ( )nψ  yielding the best 
cross-correlation performance. Similarly, any basis function 
might have its own optimal phase shaping function optimizing 
the auto-correlation sequence. Therefore, one needs to pick 
the sequence providing the best auto-correlation for the entire 
set as the phase shaping function. 

Fig. 1a and Fig. 1b display the optimal phase shaping 
functions which minimize the correlation metrics ACR  and 

CCR , respectively, for the first two functions of the GDFT 
with size N=8. The resulting ACR  and CCR  values for these 
optimal GDFT designs are tabulated in Table I along with 
their DFT counterparts for comparison purposes. 

Note the consistency of the two numerical search tools, and 
the improvements in correlation metrics 

ACR  and 
CCR  are 

shown in this table. The optimal design method explained in 
this section can be generalized for any performance metric and 
for any size GDFT. In Sec. V.E, we will present examples of 
communications applications employing the proposed GDFT 
framework where correlations dictate the system performance. 
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Fig. 1.  Optimal phase shaping functions minimizing the correlation metrics a) 

ACR  and b) CCR  for the first two functions of GDFT set with N=8. 
 

TABLE I 

ACR  AND CCR  VALUES FOR THE FIRST TWO FUNCTIONS OF OPTIMAL GDFT 

SETS WITH N=8 ALONG WITH THEIR DFT COUNTERPARTS 
Numerical Search 
Tool and Optimal 

Phase Shaping 
Function 

OPTIMIZATION METRIC (N=8) 

ACR  

 
CCR
 

GDFT (Mathematica, 
FindMin) 0.0877 0.4219 

( )nψ  
{ -1.37  -2.53  -2.21 
3.39  0.0  -4.21 -3.19 

-0.83 } 

{ 1.637 -0.79 -0.54 2.01 
1.59 -0.83 1.73 2.44} 

GDFT (MATLAB, 
fminsearch) 0.086 0.4205 

( )nψ  
{ -1.38  -2.56  -2.24 
3.42  0.07  -4.27 -

3.27 -0.80 } 

{ 1.673 -0.87 -0.51 2.02 
1.51 -0.86 1.70 2.46 } 

DFT 4.375 0.8536 

 
C. Design of Optimal GDFT Based on Brute Force Search: 
 

We use two terms in (10) 

1 2
1 2( ) k k

k kk
b b

n a n a nϕ = +                                     (33) 

with 1 1,   0k ka k b= =  leading to  2
2( ) k

kk
b

n k a nϕ = + . Therefore, 
the basis functions of the set are defined according to (8) as 
follows 
 

2 2
2 2

2
2

]

]

(2 / ) ( )
( )

( 1)(2 / )( ) (2 / )[( )

( 1)(2 / )[(2 / )( )    , 0,1,..., -1

k k
k k

k
k

j N n nke n ek
b bj N k a n n j N kn a ne n e ek

bj N a nj N kne n e e k n Nk

π ϕ

π π

ππ

=

++ += =

+
= =

     (34) 

 
Note that the first exponential term in (34) is the DFT kernel 
with linear phase while the second defines the G  matrix, and 

{ ( )}e nk
 are the row sequences of GDFTA  as expressed in the 

matrix form 
 

GDFT DFTA A G=                                          (35) 

 
In this representation, varying the values of the 2ka  and 2kb  
coefficients generate a medley of GDFT sets along with their 
associated nonlinear phase functions and auto- and cross-
correlation properties. This suggests that a brute force search 
algorithm can scan the phase space with various grid 
resolutions to find optimum G  matrices with respect to given 
performance metric. 

The search grid resolution is defined by the binary values of 
coefficients 2 2ka a=  and 2 2kb b=  for all k. Table II tabulates 
the optimal values of the metric maxd  along with other 
performance metrics for various search grid resolutions 
defined as 

2 2, ( 1) / 2b
a b NΔ = −  where b is in bits per coefficient 

and 2 20 , 7a b< ≤  for the code length of 8N = . Note that as the 
search grid resolution is improves, the search yields better 
performance with respect to design metric maxd . 

 
TABLE II 

CORRELATION PERFORMANCE OF OPTIMAL GDFT DESIGNS BASED ON maxd  

FOR 8N = . 

 
Table III compares the GDFTA  with other known constant 

modulus code sets on the basis of the metrics indicated. In this 
case, GDFTA  is obtained through a brute force search based on 
minimization of maxd  for N=8. 
 
 
 

Search Grid 
Resolution 
(bits/c) 

amd  cmd  maxd  
(OPT) 

ACR  CCR  F 
 

4 0.301 0.442 0.442 0.526 0.925 1.90
0 

6 0.376 0.409 0.409 0.854 0.878 1.17
1 

8 0.341 0.387 0.387 0.576 0.918 1.73
8 

9 0.376 0.387 0.387 1.095 0.843 0.91
2 

Achievable 
Welch Bound 
[8x8] [22] 

----- ----- 0.243 ----- ----- ---- 
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TABLE III 

CORRELATION PERFORMANCE COMPARISONS OF VARIOUS CODE FAMILIES FOR 
N=7 OR 8. 
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Fig. 2.a.  Variation of the auto-correlation metric ACR  as a function of the 

design parameters 2a and 2b , N=8. 

 
Figures 2.a and 2.b demonstrate the interdependence of the 

auto- and cross-correlation metrics ACR  and CCR , 
respectively, on design parameters 2a  and 2b  defined in (33). 
Note that in a multi-carrier communications application, be 
they OFDM or CDMA based, one can choose values of 2a  
and 2b  to realize desired values of auto- and cross-correlation 
metrics, ACR  and CCR , respectively. In OFDM systems, 
frequency localization is more important and the optimization 

on CCR  parameters is emphasized whereas in a DS-CDMA 
system, ACR  and CCR  are each equally significant. The low 
values of ACR  is desirable for synchronization of the system. 
In contrast, the low values of CCR is required to minimize 

multi-user interference (MUI) that dictates BER performance 
of the system. However, these two parameters cannot be 
minimized at the same time due to their interaction as reported 
in [24]; 
 

( 1) 1CC ACR M R M− + ≥ −                                                  (36) 
 
where M is the number of simultaneous users or codes in the 
multiuser communications channel. 
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Fig. 2.b.  Variation of the cross-correlation metric CCR  as a function of the 

design parameters 2a and 2b , N=8. 

 
D. A Closed Form Phase Shaping Function for GDFT: 
 
We would like to define a closed form expression for the 

phase shaping function (PSF) ( )nψ  of (30) which 
approximates the brute force based optimal GDFT solutions 
obtained in the previous section via curve fitting. We used the 
signal processing software tool Table Curve 2D and fitted the 
following PSF to the nonlinear phase function of the optimal 
GDFT previously obtained via the brute force search 

 
2 2

        1 2( ) exp exp  0,1,....., -11 2
1 2

n b n b
n a a n N

c c
ψ

⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

− −
= − + − =

    (37) 

 
This is a second degree Gaussian function defined with six 
parameters 1 1 1 2 2 2{ , , , , , }a b c a b c . The values of the parameter 
set, 1 1 1 2 2 2{ , , , , , }a b c a b c  are then chosen to fit the brute force 
based optimal solution for a given criterion. Our simulation 
studies showed that the phase shaping function of (37) 
provides low values of cmd  and ACR  regardless of the GDFT 
size N. 

 Fig. 3 displays ( )nψ  of (37) which approximates the brute 
force GDFT designs based on cmd . The resulting parameter 
values are 1 1 1 2 2 2{ 1, 1.75, 3.75, 1.75, 6, 0.5}a b c a b c= = = = = = . 
Moreover, Fig. 4 displays the nonlinear phase functions of 
GDFT basis generated by using this ( )nψ  along with linear 
phase functions of DFT for N=8. Relaxing the linear phase 

Code amd  cmd  maxd  ACR  CCR  F 

Walsh [8x8] 0.875 0.875 0.875 2.375 0.661 0.421 

Walsh-like 
[8x8], [3] 0.625 0.625 0.625 0.875 0.875 1.143 

DFT [8x8] 0.875 0.327 0.875 4.375 0.375 0.220 

7/8 Gold 0.714 0.714 0.714 0.857 0.878 1.167 

Oppermann 
Set, [8] 

(opt maxd ) 

(m=1, p=1, 
n=2.98, N=7) 

0.425 0.419 0.465 1.278 0.787 0.783 

AGDFT  
[8x8] 
(opt maxd ) 

0.376 0.387 0.387 1.095 0.843 0.912 

Achievable 
Welch Bound 

[8x8] [22] 
----- ----- 0.243 ----- ----- ----- 
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condition of DFT offers GDFT solutions with significantly 
improved correlation properties. Hence, one may obtain many 
orthogonal GDFT bases by changing the set of 6 parameters in 
(37) according to the design metric of interest. 
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Fig. 3.  Closed form phase shaping function ( )nψ of (37) for N = 8. 

 
In this section, we limit our discussions to the optimal 

GDFT designs based on cmd  and ACR . It is observed that BER 
performance of a multiuser system with small number of users 
and additive white Gaussian noise (AWGN) channel model is 
closely coupled with the cmd  metric. In contrast, its BER 
performance for multipath fading channel model is related to 
the ACR  metric. The goal of an engineer is to define the 
parameters of GDFT kernel in (37) yielding BER performance 
improvements for both AWGN and multipath channel models. 
These observations are quantified by several system 
performance simulations presented in the following section. 
 

 
Fig. 4.  The linear phase functions of DFT along with the non-linear phase 
functions of GDFT set obtained from (37) for N=8. 
 

We used Genetic Search Algorithm [25] to find optimum 
PSFs for different sizes and design types. The number of 
initial population, the number of population, the probability of 
crossover, and the probability of mutation for the search 
algorithm were chosen as 1000, 100, 0.9 and 0.1, respectively. 
The phase shaping function of (37) is used in the GDFT phase 
function defined in (30) for different values of parameters 

1 1 1 2 2 2{ , , , , , }a b c a b c . They are obtained through the search with 
the parameter value resolution of 0.25 for the given transform 
size N. The algorithm is run for the three different transform 

sizes, N=8, 16, 32. The resulting correlation performances are 
displayed in Tables IV and V.  

It is observed from Table IV that cmd  of GDFT decreases 
faster than DFT as code size increases. ACR  of the DFT 
increases significantly faster than the GDFT for higher values 
of N as tabulated in Table V. These correlation improvements 
lead us to superior BER performance of GDFT in multicarrier 
communications that will be highlighted in the following 
section. 

The main advantage of the proposed method is the ability to 
design a wide collection of constant modulus orthogonal code 
sets based on the desired correlation performance mimicking 
the specs of interest. Moreover, the proposed GDFT technique 
can also be considered as a natural enhancement to DFT to 
obtain improved performance. Note that the auto-correlation 
magnitude functions of the codes in any GDFT set are the 
same. Fig. 5 displays auto-correlation function of a size 16 
GDFT code optimized based on ACR  along with size 16 DFT 
set for comparison purposes. 
 

TABLE IV 
CORRELATION PERFORMANCES OF DFT AND OPTIMAL GDFT BASED ON cmd  

FOR N = 8, 16, AND 32. 
 

Size (N) Corresponding correlation metrics  
optimized  based on cmd  along with DFT 

amd  cmd  maxd  ACR  CCR  

8 GDFT 
8 DFT 

0.703 
0.875 

0.288 
0.327 

0.703 
0.875 

3.261 
4.375 

0.534 
0.375 

16 GDFT 
16 DFT 

0.744 
0.938 

0.248 
0.321 

0.744 
0.938 

6.653 
9.688 

0.557 
0.354 

32 GDFT 
32 DFT 

0.794 
0.969 

0.233 
0.319 

0.794 
0.969 

13.68 
20.34 

0.559 
0.344 

 
TABLE V 

CORRELATION PERFORMANCES OF DFT AND OPTIMAL GDFT BASED ON ACR  

FOR N = 8, 16, AND 32. 
 

Size (N) 

Corresponding correlation metrics 
optimized based on ACR  along with DFT 

amd  cmd  maxd  ACR  CCR  

8 GDFT 
8 DFT 

0.125 
0.875 

0.679 
0.327 

0.679 
0.875 

0.089 
4.375 

0.987 
0.375 

16 GDFT 
16 DFT 

0.242 
0.938 

0.700 
0.321 

0.700 
0.938 

0.234 
9.688 

0.984 
0.354 

32 GDFT 
32 DFT 

0.604 
0.969 

0.746 
0.319 

0.746 
0.969 

1.165 
20.34 

0.962 
0.344 

 
Similarly, cross-correlation functions (CCF) of the first and 
second codes of optimal GDFT design based on cmd  metric 
and DFT set for N=16 are displayed in Fig. 6. These figures 
highlight the merit of the proposed GDFT framework over the 
traditional DFT. 
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Fig. 5. Auto-correlation magnitude functions (ACF) of optimal GDFT design 
based on ACR  (solid line) and DFT (dashed line) for N=16. 
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Fig. 6. Cross-correlation magnitude functions (CCF) of optimal GDFT design 
based on cmd  (solid line) and DFT (dashed line) for N=16. 

 
E. BER on AWGN and Multipath Fading Channels: 
 
BER performance of a 2 user asynchronous CDMA 

communications system with AWGN channel model 
employing cmd  based optimal GDFT of various lengths and 
size 8 DFT are displayed in Fig. 7. 

0 2 4 6 8 10 12 14 16 18
10-7

10-5

10-3

10-1

SNR

B
E

R

 

 
DFT[8x8]
low-dcm AGDFT[8x8]
low-dcm AGDFT[16x16]
low-dcm AGDFT[32x32]

 
Fig. 7.  BER Performance of a 2 user asynchronous CDMA communications 
system with AWGN channel model employing cmd  based optimal GDFT of 
various sizes and size 8 DFT. 
 

Similarly, Fig. 8 displays BER performance of a 2 user 
asynchronous CDMA communications system with AWGN 
channel model employing various known code families and 

cmd  based optimal GDFT of length 8. Note that in CDMA 

communications, the multiuser interference (MUI) becomes 
the dominant factor defining BER performance as the number 
of users in the system increases. 
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Fig. 8.  BER performance of a 2 user asynchronous CDMA communications 
system with AWGN channel model employing various code sets of length 8 
(N=7 for Gold and Oppermann codes). 
 

We also simulated BER performance of a wireless CDMA 
communications system with Rayleigh channel model 
employing various code families. We assumed a two-ray 
“multipath channel” with the impulse response of [26] 
 

0 1( ) ( ) ( )h t t tβ δ β δ τ= + −                                                         (38) 
 
In BER simulations, the parameters { }0 1,β β  are the Rayleigh 
distributed random variables defining power of the desired 
and interfering paths, respectively. The sum of 2

0E β⎡ ⎤⎣ ⎦  and 
2

1E β⎡ ⎤⎣ ⎦  is set to be equal to one. Fig. 9 displays BER 

performance of a 2 user CDMA communications system with 
Rayleigh multipath channel model employing size 8 DFT and 
GDFT codes where the power of interfering path is 3dB 
( 3D dB

I
= ) and 5dB ( 5D dB

I
= ) less than the power of the 

desired path and the path delay,τ , is set to be equal to T/8. In 
this example, we used GDFT set designed by using PSF of 
(37) optimized based on minimization of ACR , and the 
resulting ACR  values are 4.375 and 0.089 for DFT and GDFT, 
respectively. For the Rayleigh multipath channel model BER 
curves show that GDFT set significantly outperforms DFT 
due to its superior ACR  characteristics. 

VI. CONCLUSIONS 
In this paper, we introduced a theoretical framework and 
several methods exploring the entire phase space for optimal 
design of constant modulus transforms. Correlations 
performance of the proposed GDFT is compared with the 
industry standard DFT and other code families. Superior 
correlations of GDFT result in improved BER performance 
over the known code families in CDMA communications 
scenarios considered herein. Some of the DFT based 
engineering applications might benefit from the proposed 
nonlinear phase GDFT in the future. 
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Fig. 9.  BER Performance of a 2 user asynchronous CDMA communications 
system with Rayleigh multipath channel model employing DFT and GDFT of 
length 8 with / 5D I dB=  and / 3D I dB= . 

REFERENCES 
[1] J. L. Walsh, “A Closed Set of Normal Orthogonal Functions,” American 

Journal of Mathematics, vol. 55, pp. 5-24, 1923. 
[2] R. Gold, “Optimal Binary Sequences for Spread Spectrum 

Multiplexing,” IEEE Trans. on Info. Theory, pp. 619-621, Oct. 1967. 
[3] A.N. Akansu and R. Poluri, “Walsh-like Nonlinear Phase Orthogonal 

Codes for Direct Sequence CDMA Communications,” IEEE Trans. on 
Signal Processing, pp. 3800-3806, July 2007. 

[4] H. Fukumasa, R. Kohno and H. Imai, “Design of Pseudo Noise 
Sequences with Good Odd and Even Correlation Properties for 
DS/CDMA,” IEEE Journal on Selected Areas in Communications, vol. 
12, no. 5, pp. 855-884, June 1994.  

[5] R.L. Frank, S.A. Zadoff and R. Heimiller, “Phase Shift Pulse Codes with 
Good Periodic Correlation Properties,” IRE Trans. on Information 
Theory, vol. IT-8, issue 6, pp. 381-382, 1962. 

[6] R.L. Frank, “Polyphase Codes with Good Non-periodic Correlation 
Properties,” IEEE Trans. on Info. Theory, vol. IT-9, pp. 43-45, 1963. 

[7] D.C. Chu, “Polyphase Codes with Good Periodic Correlation 
Properties,” IEEE Trans. on Information Theory, vol. IT-18, pp. 720–
724, July 1972. 

[8] I. Oppermann and B.S. Vucetic, “Complex Valued Spreading Sequences 
with A Wide Range of Correlation Properties,” IEEE Trans. on 
Communications, vol. 45, pp. 365-375, March 1997. 

[9] I. Oppermann, “Orthogonal Complex-valued Spreading Sequences with 
A Wide Range of Correlation Properties,” IEEE Trans. on 
Communications, vol. 45, pp. 1379-1380, Nov. 1997. 

[10] K. Ireland and M. Rosen, A Classical Introduction to Modern Number 
Theory. Springer-Verlag,   1993. 

[11] W. Narkiewicz, Elementary and Analytic Theory of Numbers. Springer-
Verlag, 1990. 

[12] A. Papoulis, Signal Analysis. McGraw-Hill, 1977. 
[13] A.N. Akansu and R.A. Haddad, Multiresolution Signal Decomposition: 

Transforms, Subbands and Wavelets, 2nd Edition. Elsevier, 2001. 
[14] G. Bongiovanni, P. Corsini and G. Frosini, “One-dimensional and Two-

dimensional Generalized Discrete Fourier Transform,” IEEE Trans. 
Acoust. Speech Signal Process. Vol. ASSP-24, pp. 97-99, Feb. 1976. 

[15] P. Corsini and G. Frosini, “Properties of the Multidimensional 
Generalized Discrete Fourier Transform,” IEEE Trans. on Computers, C-
28, pp. 819-830, Nov. 1979. 

[16] L. Rinaldi and P.E. Ricci, “Complex Symmetric Functions and 
Generalized Discrete Fourier Transform,” Rendiconti del Circolo 
Matematico di Palermo, vol. 45, no. 1, Jan. 1996. (Online: 
http://www.springerlink.com/content/6310t2352461n4u1/ ) 

[17] E. Stade and E.G. Layton, “Generalized Discrete Fourier Transforms: 
The Discrete Fourier-Riccati-Bessel Transform,” Computer Physics 
Communications, vol. 85, pp. 336-370, March 1995. 

[18] V. Britanak and K.R. Rao, “The Fast Generalized Discrete Fourier 
Transforms: A Unified Approach to The Discrete Sinusoidal Transforms 
Computation,” Signal Processing, vol. 79, pp. 135-150, Dec. 1999. 

[19] S.A. Martucci, “Symmetric Convolution and The Discrete Sine and 
Cosine Transforms,” IEEE Trans. on Signal Processing, vol. 42, pp. 
1038-1051, May 1994. 

[20] D. Sarwate, M. Pursley, W. Stark, “Error Probability for Direct-
Sequence Spread-Spectrum Multiple-Access Communications-Part I: 
Upper and Lower Bounds,” IEEE Trans. on Communications, vol. 30, 
pp. 975-984, May 1982. 

[21] D. Sarwate, “Bounds on Crosscorrelation and Autocorrelation of 
Sequences,” IEEE Trans. on Info.   Theory, vol. 25, pp. 724-725, 
November 1979. 

[22] L. Welch, “Lower Bounds on the Maximum Cross Correlation of 
Signals,” IEEE Trans. on Info. Theory, vol. 20, pp. 397-399, May 1974. 

[23] M. Golay, “The Merit Factor of Long Low Autocorrelation Binary 
Sequences,” IEEE Trans. on Info. Theory, vol. 28, pp. 543-549, May 
1982. 

[24] B. Natarajan, S. Das and D. Stevens, “Design of Optimal Complex 
Spreading Codes for DS-CDMA Using an Evolutionary Approach,” 
Proc. IEEE Globecom, vol. 6, pp. 3882-3886, 2004. 

[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and 
Machine Learning. Addison Wesley Publishing Company, 1989. 

[26] K. Fazel and S. Kaiser, Multi-carrier and Spread Spectrum Systems. 
Wiley 2003. 

[27] A.N. Akansu and H. Agirman-Tosun, “Generalized Discrete Fourier 
Transform: Theory and Design Methods,” Proc. IEEE Sarnoff 
Symposium, pp. 1-7, March 2009. 

[28] A.N. Akansu and H. Agirman-Tosun, “Improved Correlation of 
Generalized Discrete Fourier Transform with Nonlinear Phase for 
OFDM and CDMA Communications,” Proc. EUSIPCO European Signal 
Processing Conference, pp. 1369-1373, Aug. 2009. 

[29] A.N. Akansu and H. Agirman-Tosun, “Generalized Discrete Fourier 
Transform with Optimum Correlations,” Proc. IEEE ICASSP, pp. 4054-
4057, March 2010. 

Ali N. Akansu received his B.S. degree from the 
Technical University of Istanbul, Turkey, M.S. and Ph.D degrees from the 
Polytechnic University, Brooklyn, New York, all in Electrical Engineering. 
Since 1987, he has been on the faculty of the Department of Electrical and 
Computer Engineering at the New Jersey Institute of Technology. He was a 
Founding Director of the New Jersey Center for Multimedia Research (1996-
2000) and NSF Industry-University Cooperative Research Center for Digital 
Video (1998-2000). 

Dr. Akansu was the Vice President for Research and Development of IDT 
Corporation. He was the founding President and CEO of PixWave, Inc., and 
Senior VP for Technology Development of TV.TV (IDT subsidiaries). He was 
on the boards of several companies and an investment fund. He visited IBM 
T.J. Watson Research Center (1989 and 1996), GEC-Marconi Electronic 
Systems Corp. (1992), and Courant Institute of Mathematical Sciences at the 
New York University (2009-2010). Dr. Akansu has published numerous 
articles and several books on his research work over the last two decades. His 
current research interests include signal and transform theories, and 
applications in quantitative finance, information processing and next 
generation Internet in the fourth paradigm, wireless communications and RF 
engineering. Dr. Akansu is a Fellow of the IEEE. 

 Handan Agirman-Tosun received her B.S. degree 
in 2002 from Hacettepe University, Turkey, and her M.S. degree in 2005 from 
Middle East Technical University, Turkey, both in electrical and electronics 
engineering. She received her Ph.D. degree in electrical and computer 
engineering from the New Jersey Institute of Technology in 2010.  

She was with Aselsan Inc., Turkey in 2002-2005, and with the Technical 
Research Council of Turkey in 2006. Currently, she is a Research Associate at 
NJIT. Her research interests include transforms, wireless communications, 
radar signal processing and RF engineering. 


