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Denote the joint pdf of the n-variate normal random vector X 
with mean p and variance matrix C by +,(x I p,  E). 

Theorem: Let e be the n-variate normal random vector with 
mean 0 and covariance matrix 6’1. Then, the joint pdf minimizing 
the time-domain KL information number 

subject to the first p + 1 autocovariance constraints 

a(0)  = (Yo, a(1) = ( Y I ,  * * , . ( p )  = ap 

is +,(e10, %I. 
Proof: The KL information number can be decomposed into 

two parts: 

The first integral of the RHS is greater than or e ual to 0 by 
Jensen’s inequality. It equals 0 if the joint pdf is ,,,(eqO, Vn) .  The 
second integral of the RHS satisfies the following: 

‘ S  1 
= I f I n 6 2 - - l n d e t ( V n )  - -  f ( e ) ( e ‘ V ; ’ e - e ‘ e ) d e  

2 2 2 

= n I n 6 2 - - I n d e t ( V n )  1 --{tr(V;’V,,) 1 - tr(V,)} 
2 2 2 

1 
2 2 

= - - Inde t (V, )  - I f ( I n 6 ’ -  1 +ao). 

Thus, our problem becomes to maximize det ( V,,) subject to the 
first p + 1 autocovariance constraints. It is known [SI that the max- 
imumofdet(V,,)isattainedwhena(j) = a j f o r j  = p  + 1 , p  + 
2, * a .  It finishes the proof. Q.E.D. 

111. COMMENTS 

The theorem means that the Gaussian AR ( p )  process is the clos- 
est in the time-domain Kullback-Leibler sense to independently, 
identically, and normally distributed random variables subject to 
the first p + 1 autocovariance constraints. Thus, if the residuals 
found from parametric time series modeling or regression modeling 
are autocorrelated, the theorem implies that it would be better to 
regard them as from an AR process. Also, it implies that the KL 
spectrum estimate is theoretically more reasonable than the initial 
estimate in the time-domain Kullback-Leibler sense. 
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A Class of Fast Gaussian Binomial Filters for Speech 
and Image Processing 

Richard A. Haddad and Ali N. Akansu 

Abstract-The Gaussian Binomial filters are a family of one- and two- 
dimensional FIR filters with binary-valued coefficients ( -1, 1). The 
family can function as a bank of filters, with taps corresponding to low- 
pass, band-pass with differing center frequencies, and high-pass filters. 
The low-pass filter (1D and 2D) has a Gaussian shaped amplitude fre- 
quency response and a binomial impulse response which approximates 
a Gaussian point spread function in the (time) spatial domain. 

We present an efficient, in-place algorithm for the batch processing 
of linear data arrays. These algorithms are efficient, easily scaled, and 
have no multiply operations. 

They are suitable as front end filters for a bank of quadrature mirror 
filters, and pyramid coding of images. In the latter application, the 
Binomial filter was used as the low-pass filter in pyramid coding of 
images, and compared with the Gaussian filter devised by Burt. The 
Binomial filter yielded a slightly larger SNR in every case tested. More 
significantly, for an ( L  + 1)  x ( L  + 1)  image array processed in ( N  
+ 1)  x ( N  + 1 )  subblocks, the,fast Burt algorithm requires a total of 
2 ( L  + 1)’Nadds and 2 ( L  + 1)‘ ( N / 2  + 1 )  multiplies. The Binomial 
algorithm requires 2L2N adds and zero multiplies. 

I. INTRODUCTION 

Over the past decade and half, several investigators have sought 
to design FIR filters with finite precision coefficients. The extreme 
case is the class of FIR filters with coefficients quantized to the 
ternary set ( - 1, 0, I ) .  The binary transversal filter of Lockhart 
[3], and the one-dimensional Binomial filters introduced by Had- 
dad [4] were early members of this class. These efforts were fol- 
lowed by the papers of Van Gerwen et al. [ 5 ] ,  Benvenuto et al. 
[6], and Bateman and Liu [7]. 

A common theme among these structures is that the filter can be 
configured as a tapped delay line followed by a first- or second- 
order accumulator (or “resonator”) of various sorts. The tap coef- 
ficients were selected from the ternary set ( - 1, 0, 1 ) to cancel the 
poles in the accumulator and thus render the overall filter as FIR. 
Benvenuto et al. [SI described how the remaining coefficient values 
are determined by a dynamic programming algorithm to minimize 
some performance measure. The motivation behind these ideas can 
be traced to delta modulation signal encoding concepts [6], wherein 
the sampling frequency must be increased to compensate for coarse 
signal quantization. In the present context, the clock rate and the 
number of coefficients are increased considerably to obtain the de- 
sired filter response. 

The serial form of the Binomial filter [4] is shown in Fig. 1 .  Note 
that there is a cancellation of the poles in the resonator sections by 
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Fig. 1. Sequential canonic processor for Binomial filters. 

the zeros in the nonrecursive Binomial part. Each tap ouptut yr 
corresponds to a distinct filter. Hence this serial structure realizes 
a bank of filters. 

Burt [ l ]  and Burt and Adelson [2] devised a different kind of 
filter, the "hierarchical discrete correlation" filter, which is also 
capable of functioning as a low-pass or band-pass processor with 
Gaussian-like magnitude frequency response characteristics. The 
Burt filter which can provide fast correlations with nonternary val- 
ued coefficients, has been used in image pyramids [2]. The Bino- 
mial filter is compared with the Burt filter in an image pyramid 
application. The results show that the Binomial filter is slightly 
better than the Burt low pass in performance, but enormously su- 
perior in computational efficiency and speed. 

11. CANONIC REALIZATIONS OF THE BINOMIAL FAMILY 

The Binomial family of sequences x , ( k )  is defined in [4] by 

where (i) is the binomial coefficient, and { H , ( k ) }  is the family 
of discrete Hermite polynomials. 

The Binomial sequences { x,( k )  } and the Hermite polynomials 
{ H , ( k ) }  are orthogonal on [0, NI with respect to the weighting 
functions (:)-I and (:), respectively. 

where 6, - I  is the Kronecker delta. 

purposes is the recursion formula 
The key property of the Binomial family for signal processing 

x r + l ( k )  = - x r + l ( k  - 1) - x r ( k  - 1) + x r ( k )  

O s k s N ,  O a r s N - 1  ( 5 )  

with initial value, and initial sequence 

~ ~ ( - 1 )  = 0, 0 5 r 5 N 

x o ( k )  = (:), 0 I k 5 N. 

The transform of these 1D Binomial sequences is 

X , - , ( z )  = ( 1  - z- l )r( l  + z - y '  (7 )  
1 - z-I 

X ( z )  = (-) 
since 

The corresponding frequency response is 

X r ( e J w )  = Ar(w)e'Br(w) ( 8 )  

with magnitude and phase 

~ , ( w )  = (2)N(sin w/2)r(c0s 

O,(w) = r -  - N- .  (9) 
* w  

2 2  

In the foregoing, w is the normalized frequency w = QT, and T is 
the spacing between samples (or pixels). 

The phase characteristic is linear, and the magnitude response 
has a slightly asymmetric bandpass shape about a center frequency 

w, = 2 sin-' TN. (10) 

For N large, A,( w )  is almost Gaussian [4] with half-power band- 
widths 

2.34/dN, r > 0 

1.66/dN, r = 0. 
BW = [ 

The transfer functions of the Binomial family can be expressed 
in two alternate forms, each suggesting a different filter realization. 
The sequential representation 

suggests the network of Fig. 1 ,  in which the data stream { f ( O ) ,  
f( I ) ,  * * * } is fed sequentially in time and processed via the re- 
currences implicit in that network. The low-pass output is obtained 
at the y o ( n )  tap. The rth bandpass output is picked off at y , ( n )  
and the high-pass filtered signal at y N ( n ) .  Note that only additions 
and subtractions are performed here and that an entire bank of fil- 
ters is realized simultaneously. Because of the pole-zero cancella- 
tion implicit in Fig. 1, the initial states must be set to zero, i.e., 
U , ( - - l )  = 0 , j  = 1, . . .  , N a n d  y r ( - l )  = 0, for r = 1, 2, 
. . .  , N .  

The batch canonic representation shown in Fig. 2 is based on the 
purely nonrecursive representation 

( 1 3 )  X J z )  = ( 1  + z - y r ( 1  - Z-Ilr 

which depicts the bandpass filter as ( N  - r )  stages of the add op- 
erator ( 1 + z - ' ) ,  followed by r stages of the difference operator 
( 1  - z - ' ) .  This form lends itself to batch processing of the data, 
or, as it is termed in the literature [ IO] ,  [ I  I ] ,  to block implemen- 
tation of the FIR algorithm. Rather than applying the signal {f ( n )  } 
sequentially, to Fig. 2 ,  we instead store ( L  + I ) successive sam- 
ples as the linear array, 

f'= [ f ( O ) ? f ( l ) .  . . .  . f ( L ) ]  (13) 

and apply successive sum and difference matrix operators to this 
input vector. For the first stage we want 

~ ~ ( 0 )  = f ( O )  s incef ( -1)  = 0 

z , , ( L )  = f ( L )  + f ( L  - 1 )  

or 

& ( z )  = ( 1  + z - ' ) " .  VI  = Sf 
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Fug. 2. Batch canonic processor for Binomial filters. 

where 

S is the transmission matrix for a single add stage. For any differ- 
encing stage, ( 1  - z - ' ) ,  the transmission matrix derived from 

g ( k )  = h ( k )  - h ( k  - I ) ,  k = 0, 1, . . . , L 

g ( - I )  = 0 (17) 

g = D h  (18) 

is 

where 

hr = [ h ( O ) ,  h ( l ) ,  * * * , h(L)] 

g r  = [ d o ) ,  &?(I) ,  . . . 1 d L ) ]  
and 

Combining the add and difference operators gives the bandpass fil- 
ter 

y, = D r S N - r f  (20) 

shown in the flowgraph of Fig. 3. 
The transmission matrices, D and S, commute (as do the trans- 

mission matrices for all linear time-invariant systems). The signal 
after successive add operators could get large, with ( 2 )  as the 
upper bound. This can be reduced by combining add and difference 
operators wherever possible. Thus, for r < N/2, we can use 

- 

y, = (D'Sr )SN-* ' f  

= [ (DS  ) r S N -  2r ] f .  (21) 
The DS operator represents the symmetric bandpass filter ( 1  - 
z- ') ,  with normalized center frequency oo = r / 2 .  Explicitly, 

1 0 0 o - . . o  0 0 

0 1 0 0  0 0 0 

Fig. 3. Band-pass filter for batch-canonic processor. Unmarked branches 
have unity gain. 

Fig. 4. Bank of batch-canonic Binomial filters. 

A parallel bank of Binomial filters can be realized by imple- 
menting (20) for each r in parallel. A structure for achieving this 
is shown in Fig. 4.  The vector outputs yo, y l ,  . . * , yN can be 
obtained simultaneously. There is an inherent delay of ( L  + 1 ) 
clock pulses to fill the farray.  After which, the output vectors are 
available in the computation time required to execute the D and S 
oeprations, each of which can be done either in parallel, or in a 
time-shared mode. Great speeds are thus possible, since the entire 
structure consists only of add and subtract operations. 

111. THE TWO-DIMENSIONAL BINOMIAL BATCH ALGORITHM 

The 2D Binomial sequences, denoted as { x,( m ,  n )  } on the in- 
terval [ 0 I m,  n s N } are defined in [9] as the separable product 
of the 1D sequences 

x,(m,  n )  = x , ( r n ) x , ( n ) ,  0 5 r, s 5 N (23) 
Xrs(Z], z*) = Xr(ZI)Xs(Z2) = [ 1 - z; ' )r( l  + z ; ' ) N - r ]  

* [ 1 - z ; ' ) s (  1 + z ; y s l .  
(24) 

These constitute a family of low-pass, band-pass, and high-pass 
2D filters with almost Gaussian envelopes. Sample plots of the Bi- 
nomial filter responses in the spatial and frequency domains are 
shown in Figs. 5 and 6, for low-pass and band-pass filters, respec- 
tively. Observe that the low-pass filter spatial impulse response, as 
well as the frequency response, has a Gaussian look to it-as well 
as it should. For r = s = 0, the impulse response is just the product 
of two binomials 

each of which is almost one-dimensional Gaussian. 
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(a) (b) 
Fig. 5. (a) Magnitude frequency response and (b) impulse response of low- 

pass Binomial filter. 

(a) (b) 
Fig. 6.  (a) Magnitude frequency response and (b) impulse response of 

band-pass Binomial filter. 

The 2D Binomial filter can be implemented in the sequential 
mode or the batch canonic form. The sequential mode is described 
in [9], while the batch mode is developed here as a straightforward 
extension of the 1D case. The processing is very simple due to the 
separability of the operators. N batch row operations are followed 
by N batch column operations. This is illustrated for the low-pass 
filter defined by 

Y (ZI, Z Z )  = [ ( I  + z;’)(1 + z ; ’ ) ]”  S(zl, Z Z )  ( 2 5 )  

where S ( z l ,  z 2 )  and 3 ( z l ,  z 2 )  are the transforms of the 2 D  input 
and output s ignalsf(m,  n), y ( m ,  n ) ,  respectively. Equation ( 2 5 )  
can be decomposed into row and column operations as indicated in 
Fig. 7: 

V(Zl, z2) = ( 1  + Z ; ’ ) N F ( Z 1 ,  z 2 )  

Y (z,, z2) = ( 1  + Z ; ’ ) N V ( Z I ,  z2) (26)  
where V ( zI, z2) is the transform of the intermediate signal U ( m ,  
n). 

Equation (26) suggests that each row of the input array [ f( m,  
n ) ]  = F can be batch processed using S N ,  the low-pass batch can- 
onic operator of (8 ) ,  to obtain the intermediate array [ U( m,  n)] = 
V.  Then each column of I/ is processed by SN to obtain the final 
array [ y ( m ,  n ) ]  = Y. Thus 

or 

V = S N F  

Y = V ( q N  

Y = S N F ( S T ) N  

where the superscript T implies a matrix transpose. 

of images by separable image transforms [13]. 
These row and column operations are similar to the processing 

The band-pass algorithm can be expressed as 

Y ( Z 1 ,  z2) = [ ( I  - Z;y(1  + z ; ’ ) N - . y ]  

* [ ( I  - zF’ ) ‘ ( I  + z ; ’ ) ~ - ~ ]  5 ( z l ,  z2). (29) 

( I  + z;,) U N  = yo0 

I I I 
I 

N ROW Operations Ji- N Column Operations 

Fig. 7 .  Two-dimensional low-pass Gaussian filter for batch processing. 

Equation (29)  can be implemented by applying the band-pass op- 
erator ( D r S N - ‘ )  to the rows of [ f ( m ,  n ) ]  to form the intermediate 
array V.  Then the columns of V are operated on by (DSSN- ’ )  to 
produce the filtered output array Y: 

Y = [ D ‘ S N - r ] [ F ] [ D ” S N - ’ ] T .  (30) 

IV. BINOMIAL LOW-PASS FILTER FOR PYRAMID CODING OF 
IMAGES 

In pyramid coding, an image is successively reduced in size by 
low-pass filtering followed by decimated spatial sampling. As the 
image is successively reduced to form a pyramid, the difference 
between the two layers of the pyramid is also calculated. The pro- 
cess continues until the minimum reduced image size is reached. 
The reduced image on the top of the pyramid (the smallest size) 
can be used for initial transmission. It can be expanded progres- 
sively by adding the difference information between the two con- 
secutive layers of the pyramid. Since the introduction of progres- 
sive image transmission by Sloan and Tanimoto [I21 various 
implementation techniques have been developed. 

Burt has introduced fast filter transforms for use in image pro- 
cessing [I] .  These low-pass filters are used in the “reduce” and 
“expand” operations of the pyramid image coding technique [2]. 
In this study, the Binomial low-pass filter is also used in pyramid 
coding and compared with the low-pass structure proposed by Burt. 

In our simulations, the minimum image size is 16 x 16. A 4 X 
4 vector quantization is used for the two largest size difference im- 
ages and linear quantizers are employed in the rest of the structure. 
The test images used are 256 X 256 monochrome arrays, 8 b/pixel 
standard images, Lena, Building, etc. The 5 X 5 and 7 X 7 2D 
low-pass filters are used for the comparison of the two filter types 
in pyramid image coding applications. The impulse responses of 
the filters used here are given in Table I. The overall coding per- 
formance criterion is defined as 

where p (  m, n) is the reconstructed value of the pixel (m, n). 
In Table 11, a, b refer to the parameters in the Burt filter [I]. The 

test results shown in Table I1 also indicate that the Binomial filter 
matches the performance of the Burt filter in pyramid coding. For 
an (L + 1) X (L + 1)  image array processed by one pass of an 
( N  + 1 ) X ( N  + 1 ) separable filter block using row and column 
operations, the Burt algorithm requires 2 ( L  + 1 )’N adds and 2 ( L  
+ 1 )’ ( (  N / 2 )  + 1 ) multiplies, while the Binomial using the batch 
processing mode does the same filtering operation in 2NL2 adds 
and zero multiplies. Table 111 compares the computational burden 
for a 256 X 256 image and 5 X 5 filter. 

V. CONCLUSIONS 

The Binomial filters are a family of very fast low-pass, band- 
pass, and high-pass 2D filters. They are easy to implement in hard- 
ware or software, using only add and subtract operations. There 
are no multiply operations, and hence no roundoff. Signal bounds 
can be precalculated and the registers sized, or the operation scaled 
a priori to prevent overflow. 

The batch processing mode permits an entire row (or column) to 
be processed using the S and D operators. The order (or the filter 
width) determines the number of S and D stages used. 
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TABLE I 
IMPULSE RESPONSES OF BINOMIAL A N D  BURT FILTERS, FOR N = 5 ,  A N D  

N = 7  

n 0 1 2 3 4 5 6  

[ N =  51 BINOMIAL & & 6 & & 

[ N = 7 ]  BINOMIAL & & 8 8 & 
BURT .01 .02 .24 .46 .24 .02 

BURT .025 .25 .45 .25 .025 
I 

M 
- 
.01 

TABLE 11 
LENA IMAGE 

Bits/pel Burt’s LPF Binomial LPF 

5 X 5 FILTER 1.11 28.80 29.14 
a = 0.45 1.035 27.57 27.61 
7 X 7 FILTER 
a = 0.46 1.11 28.43 28.80 
b = 0.24 1.035 27.27 27.54 

TABLE 111 

Burt Binomial 

Number of Adds 524,288 520,200 
Number of Multiplies 393,216 zero 

This latter feature strongly suggests the possibility of coding and 
decoding images in real time using array processors and a pipeline 
architecture. 
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Computing Time-Frequency Distributions 

Brian Harms 

Abstract-Recently, numerous strategies have been proposed for 
computing discrete time-frequency distributions such as the Wigner 
distribution. The purpose of this correspondence is to point out an ef- 
ficient and straightforward strategy for computing time-frequency dis- 
tributions that are members of Cohen’s class. The strategy is based on 
the insightful work by Nuttall which has finally resolved the questions 
concerning aliasing and required sampling rate for the Wigner distri- 
bution. 

I. INTRODUCTION 
Interest in joint time-frequency distributions as tools for the study 

of nonstationary signals is growing [9]. Because the computation 
and presentation of these distributions nearly always requires a 
computer or special-purpose digital hardware, interest in efficient 
computational approaches is also on the rise [1]-[5], [8], [lo], [13], 
[14]. The purpose of this correspondence is to point out an efficient 
and straightforward strategy for computing time-frequency distri- 
butions that are members of Cohen’s class [7], [9]. 

To illustrate the apparent difficulties in computing discrete tirne- 
frequency distributions, we will first consider the specific case of 
the Wigner distribution function (WDF). The continuous-time def- 
inition of the WDF of a signal s ( t )  is 

Available to us are uniformly spaced samples of s ( t )  which have 
been acquired over the variable t ,  with a spacing A,. 

By defining 

R ( t ,  7 )  = s ( t  + i) s * ( r  - f )  
to be the temporal correlation function (TCF), we see that the WDF 
is a Fourier transform of the TCF. Consequently, we would expect 
to be able to use an FFT to obtain samples of the WDF from sam- 
ples of the TCF. However, there is a difficulty. Equation (1) is a 
Fourier transform over 7 not t .  For a given value o f t ,  the discrete 
values of 7 at which the TCF is available must necessarily be sep- 
arated by 2A, due to the symmetry of the arguments in the TCF 
and the factor of two which scales 7 .  Consequently, the effective 
sampling rate has been halved so far as the time variable 7 is con- 
cerned. This would seem to imply that the original sampling rate 
should be increased to four times the highest frequency present in 
the signal s ( t ) .  
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