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ABSTRACT
We present an information-theoretic approach to obtain an esti-
mate of the number of bits that can be hidden in compressed image
sequences. We show how addition of the message signal in a suit-
able transform domain rather than the spatial domain can signifi-
cantly increase the data hiding capacity. We compare the data hid-
ing capacities achievable with different block transforms and show
that the choice of the transform should depend on the robustness
needed. While it is better to choose transforms with good energy
compaction property (like DCT, Wavelet etc.) when the robustness
required is low, transforms with poorer energy compaction prop-
erty (like Hadamard or Hartley transform) are preferable choices
for higher robustness requirements.

1. INTRODUCTION

Data hiding or Steganography, is a rapidly growing field with po-
tential applications for copyright protection (watermarking), hid-
ing executables (e.g., for access control of digital multimedia data),
embedded captioning, secret communications, etc. It is therefore
of significant interest to have a theoretical estimate of the number
of bits that can be hidden in multimedia data. In this paper we
provide an information-theoretic approach to estimate the number
of bits that can be hidden in video sequences. In Ref. [1] we ob-
tained estimates of the data hiding capacity for compressed still
images for JPEG and SPIHT compression schemes. In this pa-
per we extend our work to video sequences employing MPEG-2
compression at different bit rates.

2. PROBLEM STATEMENT

Let I k be an original frame of the video sequence, to which a
message signal Sk (a representation for a few bits of information)
is added, such that

�I k � I k � S k� (2.1)

the modified frame, is visually indistinguishable from Ik. The
frames �I k, k � � � � �Nf would then be subjected to lossy com-
pression (MPEG). Let �I k � C��I k�, where C��� denotes the com-
pression / decompression operation. The buried bits in image Ik
are to be extracted from �I k. Under this scenario we would like
to know the maximum number of bits that can be buried and re-
covered from an image frame with an arbitrarily low probability of
error, or in other words, the capacity of the data-hiding channel.
A block diagram of the data hiding channel is shown in Figure 1.
S is the message to be transmitted through the channel which has
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two sources of noise; I , the noise due to the original frame, and
P , the noise due to processing (compression / decompression). �S
is the “corrupted” message.
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Figure 1: The Data Hiding Channel.

It is relevant to point out here, that data hiding schemes can be
broadly classified into two categories. The first category is called
cover image escrow hiding techniques, where, the original image
(or frame) is needed for extracting the hidden information, (for
example, see Ref. [2]). In the second category, we have the obliv-
ious detection techniques [3], or techniques for which the original
frame is not required for extraction of the hidden message. For the
schemes in the first category, there is only one source of noise - due
to processing, as the image noise can be subtracted before extract-
ing the hidden information. We can expect such schemes there-
fore to have higher capacity than the oblivious detection schemes.
However the schemes in the first category are of limited use. For
most data hiding applications, the receiver does not have access to
the original image or frame.

3. CAPACITY OF THE DATA HIDING CHANNEL

In Figure 1, the two (independent) noise sources in the channel I �
�fI �i�� �

�

i 	, and P � �fP �p�� �
�

p	, can be substituted with a single
Gaussian noise source as follows. We first obtain the differential
entropy,

H � h�I � � �

Z
fI �i� log��fI �i��di bits� (3.2)

and then obtain the variance ��ig of the equivalent Gaussian noise,
which has the same entropy as I . It is well known that the Gaus-
sian distribution has the lowest variance for a given entropy. For
the purpose of calculating the capacity of the channel, we can now
replace I � �fI�i�� �

�

i 	 with Ig � N �
� ��ig	. As the processing
noise is usually a result of many independent operations, we shall
call upon the Central Limit Theorem [4] and assume Gaussian dis-
tribution for the processing noise P . The two independent noise
sources in the channel can now be substituted by a single Gaussian
noise source of variance ��ig � ��p .
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Figure 2: Typical Frequency Distribution of Image and Processing
Noise

If ��s is the energy of the message signal S, then the channel
capacity is given by [1, 5]

Ch �
�

�
log

�
�� �

��s
��ig � ��p

� bits� (3.3)

Typically, the image noise I , (image pixels) is uniformly distributed.
The (differential) entropy, h�I�, and the equivalent Gaussian vari-
ance ��ig of a uniformly distributed random variable I with variance
��i , are given by [5]

h�I� �
�

�
log

�
�����i � bits� and��ig �

��

��e
�
�

i � (3.4)

In order to be more explicit, let us derive the capacity of the data
hiding channel quantitatively. We would expect the variance of
I , the pixel values to be given by ��i � ���

�

��
(or �i � ���).

However, statistics obtained from many frames show that �i �
��. Therefore we assume that I has a uniform distribution with
�i � ��. From Eq.(3.4) �ig � ��� ��

��e
���� � ����. If we allow

a degradation of the image frame after the addition of the message
to a PSNR of 42 dB, then ��s � �. Furthermore, if the image frame
goes through MPEG compression (say 50 fold compression), then
it is measured for test sequences that �p � ���. This would yield
a Ch value of 0.0013 bits/pixel. Even if the processing noise is
increased to say �p � �
, (the resulting frames would be barely
recognizable) Ch would still be 0.0011 bits/pixel.

4. DECOMPOSITION OF THE DATA HIDING CHANNEL

4.1. Need for a Decomposition
Figure 2 shows the typical distribution of image and processing
noise in the channel, as a function of frequency. At low frequen-
cies the image noise is high and the processing noise is low, while
at high frequencies the image noise is low and processing noise
is high. At midband frequencies however, we strike a compro-
mise. Obviously, we could make better utilization of the data
hiding channel if we decompose the channel into multiple sub-
channels. It is also clear that if the processing noise is negligible,
a decomposition with good energy compaction property or high
Transform Coding Gain (GTC) [6], would concentrate the image
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Figure 3: The Energy Compaction Scale
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Figure 4: Schematic of Data Hiding / Retrieval

noise in a small number of sub-channels, leaving a large num-
ber of sub-channels with very little image noise. However if the
processing noise is high (low quality MPEG), the high frequency
sub-channels would be affected drastically, leaving very few useful
sub-channels. On the other hand, a transform with inferior energy
compaction property may still have midband frequencies relatively
unaffected by compression. Figure 3 shows the position of differ-
ent transforms in the “scale” of energy compaction. At the left end
we have the Identity transform which has no energy compaction
(GTC� �). At the right extreme we have the the best energy com-
pacting transform, or KLT [6]. In this paper we obtain the achiev-
able capacities for 2 block transforms at various positions in the
scale- DCT and Hartley transform, and Identity transform.

4.2. Capacity of Multiple Channels

Figure 4 displays the block diagram of a typical data hiding scheme.
The Forward and Inverse Transform blocks decompose the single
channel of Figure 1 into multiple sub-channels of Figure 5. The
decomposition of a frame into its L sub-bands results in L paral-
lel sub-channels with two noise sources in each sub-channel. Let
��ij � j � � � � �L, be the variances of the coefficients for each sub-
band (or the variances of the image noise in each sub-channel) of
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Figure 5: Decomposition of the Data Hiding Channel



the decomposition. Similarly, let their corresponding equivalent
Gaussian variances be ��igj . If ��pj is the variance of the processing
noise (Gaussian) in the jth sub-channel, then, the combined total
capacity of the L parallel sub-channels is given by

Ch �
MN

�L

LX
j��

log
�
�� �

v�j

��igj � ��pj
� bits (4.5)

for a frame of size MN pixels. In the above equation, vj is the
visual threshold of band j. Inm other words, v�j is the maximum
message signal energy permitted in band j. The term visual thresh-
old however, is highly subjective. To derive a reasonable model we
argue that JPEG, at a reasonably good quality factor (like 75) is
well tuned visually in distributing the quantization errors amongst
the bands, at least with respect to preserving the visual fidelity of
the compressed image. Let ijk be the coefficients of some origi-
nal images, and �ijk the coefficients of the same images that have
gone through JPEG compression and decompression. Let ��qj be

the variance of the quantization error, eqj � �i j � i j , for sub-band
j. If quantization error (due to JPEG) of variance ��qj in sub-band
j, results in an image that is visually satisfactory, we can argue that
addition of message signal with energy ��qj in sub-band j, would

still render the image �I with an acceptable visual quality. How-
ever, in order to maintain the PSNR of �I k in the range of 40-50 dB
(so that the �I k is visually indistinguishable from Ik), we choose
the sub-band visual thresholds as

v
�

j � K��
�

qj
(4.6)

where K� � �.

4.3. Modeling Channel Noise
In order to model the channel noise (The noise sources Ij � j �
� � � �L and P j � j � � � � �L in Figure 5), we obtain their statis-
tics from 90 frames of monochrome video sequences, and their
MPEG-2 compressed versions.

The original frames (or the image noise I ) is decomposed into
L bands using an orthonormal transform. Let fIj �ij� be the dis-
tribution of the jth band with variance ��ij . Having obtained the
variances of the image noise in each sub-channel, the next step is
to obtain their equivalent Gaussian variance. This is achieved by
plotting a histogram of the coefficients for each band, and calculat-
ing the entropy. If �x is the width of the n bins of the histogram
g�m�� m � � � � �n, and p is the total number of coefficients in the
band, the entropy Hj and the equivalent Gaussian variance ��igj are
obtained as

�
�

igj
�

��Hj

��e
� Hj � �

nX
i��

g�i�

p�x
log

�
�
g�i�

p�x
��x� (4.7)

The image noise in sub-channel j can then be substituted by Gaus-
sian noise of variance ��igj .

Let the noise due to compression in each sub-channel be ��pj � j �
� � � �L. As in Section 2, we are justified in assuming a Gaussian
distribution for the processing noise for each sub-channel. The
variance of the equivalent additive Gaussian noise is estimated as
follows. We obtain

MNnf
L

samples of each band from Nf frames.

Let ijk � k � �� � � � �
MNnf

L
, be the coefficients of the band j of the

decomposition of the original frames. Let�ijk � k � �� � � � �
MNnf

L

be the corresponding coefficients of the reconstructed frames. We
obtain the equivalent additive noise in each sub-channel as noise
uncorrelated with ij , that would cause the same reduction of cor-
relation between ij and �i j . We define the intra-band correlation
as

hi j ��i ji

ji j jj�i j j
�

hi j � �i j � n j�i

ji j jji j � n j j
� �j � (4.8)

where n j is a vector of Gaussian (zero mean) random variables
which is uncorrelated with ij . Then ��nj � jn j j

� is the variance of
the equivalent additive noise due to compression. Or �pj � �nj .
As hi j �n ji � 
, Eq.(4.8) can be simplified to obtain

�
�

pj
� jn j j

� � �
�

��j
� ��ji j j

� (4.9)

Note that for the purpose of calculating the processing noise, we
make the following two assumptions:

� The message signal added to some sub-channel is statis-
tically similar the the sub-channel coefficients themselves.
So, the message signal is treated in the same way as the
image coefficients by the compressor.

� The entropy of the image sub-channel coefficients is signif-
icantly larger than the entropy of the added message signal.
This is to make sure that the compressors performance is
not affected much by the addition of the signature.

5. RESULTS AND CONCLUSIONS

We calculate the data hiding capacity of 90 frames for 2 monochrome
image sequences, viz. Table Tennis and Football. The capacities,
calculated for 3 transforms - DCT, Hartley (HAR) and Identity
(ID) for 5 different processing noise scenarios are displayed in Fig-
ure 6 for I Frames (top row) and P/B Frames (bottom row). The
processing noise scenarios 1-5 are respectively MPEG-2 compres-
sion (30 frames/ sec, 15 frames in GOP and I/P frame distance of
3). at compression ratios 1 (lossless compression), 10, 25, 50 and
100 respectively. For our simulations we have chosen K� � 
�
in Eq. 4.6. From the plots in Figure 6, we can see that the bit-
rates for all decompositions fall with increased processing noise,
as expected (though the fall is barely noticeable for Identity trans-
form). Figure 7 shows the image and processing noise in the 64
sub-channels of the DCT and the Hartley decomposition (for Pro-
cessing Scenario 4 or compression ratio of 50). While the high fre-
quency DCT sub-channels suffer very high processing noise, the
high frequency Hartley transform sub-channels are not affected to
the same extent. As expected, DCT performs better than Hartley
transform for low processing noise scenarios (Scenarios 1 and 2).
However, the performance of DCT falls drastically if the process-
ing noise is increased. Thus Hartley transform is a better decom-
position to use for higher processing noise scenarios (3,4 and 5).
For even higher processing noise scenarios, it might turn out that
Identity transform is more suitable. However, for the processing
noise scenarios the message signal is usually expected to survive,
Hartley transform (or some other transform with similar data com-
paction property), would probably be the best decomposition to
use. Finally, there was not much difference between the perfor-
mance of I, P, and B frames, though the “processing” they undergo
is different. P and B Frames yielded slightly (10 %) higher capaci-
ties than I Frames (which is not surprising as typically the average
PSNR of P/B Frames where about 2 dB better than I Frames). The
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Figure 6: Channel Capacities of Different Decompositions. Top Row: I Frames; Bottom Row: P/B Frames. The Processing Scenarios 1-5
correspond to lossless compression, and compression ratios of 10, 25, 50 and 100 respectively.

difference between P and B Frames were however negligible. So
they have been grouped together in Figure 6.

Finally, it should be noted that there may be other factors apart
from the Transform Coding Gain which could affect the data hid-
ing capacity. For instance a transform with lower GTC than Hart-
ley transform may yield better capacity at lower processing noise
scenarios than Hartley transform. However, what is clear is that, in
general, high GTC transforms are not preferable choices for data
hiding.
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Figure 7: Image and Processing Noise for Various Sub-Channels
of DCT and Hartley Decomposition


