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Abstract - We present an information-theoretic approach to obtain
an estimate of the number of bits that can be hidden in still images, or,
the capacity of the data-hiding channel. We show how addition of the message
signal in a suitable transform domain rather than the spatial domain can
significantly increase the channel capacity. We compare the capacities
achievable with different decompositions like DCT, DFT, Hadamard, and
subband transforms.

INTRODUCTION

Data hiding or Steganography, is a rapidly growing field with potential
applications for copyright protection (watermarking), hiding executables for
access control of digital multimedia data, embedded captioning, secret com-
munications, etc. It is therefore of significant interest to have a theoretical
estimate of the number of bits that can be hidden in multimedia data. In this
paper we provide an information-theoretic approach to estimate the number
of bits that can be hidden in still images.

Let I be the original (cover) image, to which a message S (a representation
for a few bits of information) is added, such that I=1+8 , the modified
image, is visually indistinguishable from I. The image I may typically be
subjected to lossy compression, like JPEG; I = C(I), where C(.) denotes the
compression / decompression operation. The buried bits in image I are to be
extracted from I. Under this scenario we would like to know the maximum
number of bits that can be buried and recovered from the image with an
arbitrarily low probability of error, or in other words, the capacity of the
data-hiding channel. A block diagram of the data hiding channel is shown in
Figure 1(a). S is the message to be transmitted through the channel which
has two sources of noise: I, the noise due to the cover image, and P, the
noise due to processing (compression / decompression). S is the “corrupted”
message. Note that the receiver does not have access to the cover image.
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Figure 1: (a) The Data Hiding Channel. (b) Decomposition of the Data-
Hiding Channel into L Parallel Channels. (¢) A Simple Additive Noise Chan-
nel. (d) Channel of (c) Modified to Obtain Equivalent Additive Gaussian
Noise. (e) Schematic Block Diagram of Data Hiding / Retrieval (f) Channel
Capacities of 64 Band Decompositions for various processing noise scenarios.

Figure 1(e) is a block diagram of a typical data-hiding scheme. In this
paper, we use the schematic of Figure 1 (e) to determine the capacity of the
data hiding channel. The first attempt in obtaining an information theoretic
view-point of the capacity of the data-hiding channel was reported in [1].
However, the attempt was limited in scope, in that it was implicitly assumed
that the message is added in the spatial domain. We show how the capacity
of the data-hiding channel can be improved by a suitable choice of transform.

CAPACITY OF THE DATA HIDING CHANNEL
Capacity of Additive Noise Channels

Before we consider the data-hiding channel of Figure 1(a), we shall consider

a simpler channel shown in Figure 1(c). Here, X ~ [fx (), 02] is the message

to be transmitted, Z ~ [fz(z), 02] is the additive noise in the channel, and

Y ~ [fy(y), o7] is the received signal at the output of the channel. We shall

also assume that X and Z are independent, implying that o) = 02 +02. The
channel capacity is given by [2]

C=maxZ(X,Y) = max h(Y) — h(Y|X) = max h(Y) — h(Z) bits. (1)

fx (2) Ix (2) fx (2)

where Z(X,Y), is the mutual information between X and Y. For a given
statistics fz(z) and o2, one should maximize the entropy of Y, h(Y) =



— [fy(y)logy(fy (y))dy (bits), by choosing a suitable distribution fx(z) of
the message X . For a given 07, the maximum value of h(Y') = : log, (2meay)
bits is achieved when Y has a normal distribution. For instance, the maxi-
mum value of h(Y') is achievable if both fz(z) and fx(z) are normally dis-
tributed. However, for an arbitrary distribution fz(2), and a fixed o2, it is
not immediately obvious what the maximum achievable value of h(Y ) is. In
order to find that, we pass Z through an ideal information processor (Fig-
ure 1 (d)), which does not alter the amount of information in Z, but changes
its statistics, to a Gaussian distributed Z,. As the output of the processor
has the same entropy as the input, the variance of the output, Uf , can be
obtained by solving h(Z,) = h(Z) = § log,(2mes?) bits. For the purpose of
calculating the channel capacity, we can replace fZ( 2) by N[0,02];

1 o .
C = ;2?;() MY) - h(Z,) = 3 log, (1 + U—i) bits. (2)
Going back to Figure 1(a), as the processing noise is usually a result of many
independent operations, we call upon the Central Limit Theorem [3], and
assume a Gaussian distribution for the processing noise P. The two noise
sources in the channel (I of variance o7 per pixel and P of variance o per
pixel) can be substituted with a single Gaussian noise source of variance
0’ + 0’ , where a is the equivalent Gaussian variance of the noise due to the
cover 1mage If 02 is the energy of the message signal (per pixel), the capacity
of the data—hiding channel can be ex%ressed as
Cy = 110g;2(1 + 073) bits per pixel. (3)
2 o2 + o}

Decomposition into Multiple Channels

In Figure 1 (b) the channel of Figure 1 (a) is decomposed into multiple
channels. The decomposition is performed by the Forward and Inverse Trans-
form blocks of Figure 1 (e). The decomposition of the image into L bands
results in L parallel channels with two noise sources in each channel. Let
0’?]_, j =1---L be the variances of the coefficients of each band (or the vari-
ances of the image noise in each channel) of the decomposition. Let their
corresponding equivalent Gaussian variances be a?gj. If Uzj is the variance
of the processing noise in the j* channel, then, the total capacity of the L
parallel channels is glven by

“th

2

Z log, (1 + ) bits (4)

for an image of M N pixels. In the above equation, v; is the visual threshold of
band j. In other words, UJQ- is the maximum message signal energy permitted
in band j.

Modeling Channel Noise

The cover image (or the image noise I) is decomposed into L bands using
an orthonormal transform. Let fr,(i;) be the distribution of the j** band



with variance o? . Having obtained the variances of the image noise in each

channel, the next step is to obtain their equivalent Gaussian variances. This
is achieved by plotting a histogram of the coefficients for each band, and
calculating the entropy. If Az is the width of the n bins of the histogram
g(m), m =1---n, and p is the total number of coefficients in the band, the
entropy H; and the equivalent Gaussian variance o2  are obtained as

ig;
~ g(i) _ 2%
- pAzx

logy (2 )A; o2 = 5)

H; = .
J pAzx '8 2me

1=

The image noise in channel (band) j can now be substituted by Gaussian
noise of variance o7, .

Let the noise due to compression in each channel be agj, j=1---L. As
in the Section 2.1, we assume Gaussian distribution for the processing noise
in each channel. We obtain @ samples of each band from n; test images
of size M x N. Let ij,, k=1,..., MIZ’“, be the coefficients of the band j
of the decomposition of the original images. Let fjk, k=1,..., w be the
corresponding coefficients of the images subjected to some lossy compression
scheme. We obtain the equivalent additive noise in each channel as noise un-
correlated with 2, that would cause the same reduction in correlation between

i; and 3;. We define the intra-band correlation as

G tg) _ (g G+ my)) (6)
lill5;] 121145 +myl 7

where n; is a vector of Gaussian (zero mean) random variables uncorrelated
with ¢;. Then O’%j = |n;|? is the variance of the equivalent additive noise due
to compression. Or o, = 0,;. As (i;,n;) = 0, Eq. (6) can be simplified to
obtain .
oy, = Ini* = (= = Di; (7)
Pj
We obtain the coefficient statistics o;; for various decompositions (4 x 4 to
32 x 32 size DCT, DFT, Hadamard and 16 to 1024 band uniform subband
(wavelet) decomposition using 8-tap Daubechies filter), and o,; for JPEG
(quality factors 20-75) and SPIHT (bit rates 0.25 to 1 bpp) compression
schemes. The n; = 10 test images of size 256 x 256 included Lena, Baboon,
Barbara, Goldhill, Airplane, Peppers and Boats.

Visual Threshold

The wvisual threshold vj in Eq. (4) however, is highly subjective. As the
amount of message signal energy permitted in any band is determined by the
visual threshold, different models for visual thresholds would yield different
estimates of achievable capacity. To derive the model, we argue that JPEG,
at a reasonably good quality factor (like 75) is optimal in distributing the
quantization errors amongst the bands, at least with respect to preserving



visual fidelity of the compressed image. Let i; be the coefficients of some
decomposition of the original images, and i;, the coefficients of the same
decomposition of images that have undergone JPEG-75 compression and de-

compression. Let 0’3]_ be the variance of the quantization error, e,, = i; —1;,
for each band j. If quantization error (due to JPEG-75) of variance agj in
band j of the decomposition, results in an image that is visually satisfactory,

we can argue that addition of message signal of energy agj in band 7, would

still render the image I of acceptable visual quality. However to maintain
the PSNR of I between 40-50 dB (so that the I is visually indistinguishable
from I), we choose the visual thresholds as UJ2- = K2O’ZJ_. where K> < 1.
(The average PSNR of JPEG-75 images is only about 35 dB. So a choice of
K, = 1 would yield images I of PSNR 35 dB, which might not be accept-
able.) Our simulations show that o,;s are independent of j. Or in other
words, o, = KVj.

Channel Capacity vs Choice of Transform

For the no-processing noise case (or if the processing noise is very low), if
we assume that the all channels have the same pdf (such that Koy, = K0, ),
the channel capacity is given by

MN & K, MN " K
Ch:TZIOg2(1+a_2_)NTIOg2(1+ZU_’4’_)' (8)
j=1 %) j=1 "%
It is obvious that the minimum channel capacity is obtained when o;; = o'V},
or when no decomposition is employed. A transform with good energy com-
paction or higher Transform Coding Gain (GTC) [4] would result in more
imbalance of the coefficient variances, resulting in increased channel capac-
ity. So DCT and subband transforms would be good decompositions for low
processing noise scenarios. However, we should expect that the reduction
in capacity with increase in processing noise to be lower for transforms like
Hadamard and DFT, which are unsuitable for compression. While JPEG at
low quality is certain to remove almost all the high frequency components of
DCT coefficients, it will not affect the high frequency DFT and Hadamard co-
efficients to the same extent. Thus decompositions unsuitable for compression
would in general be more immune to processing noise than decompositions
with high GTC.

RESULTS AND CONCLUSIONS

The channel capacities of different 64 Band decompositions (for 256 x 256
images, or for 65536 pixels), DFT, DCT, subband (SB), Hadamard (Had) and
Identity (Id) transformations, are shown in Figure 1 (f) for various processing
noise scenarios. For example if the processing noise is from “JPEG-25 and
SPIHT 0.5 bpp” it implies we consider the worst of the two cases for each
band. This is to ensure that the message survives JPEG-25 or SPTHT at 0.5
bpp. For the DFT decomposition, we use the magnitude DFT coefficients.



Note that this causes a reduction in the number of available channels from L
to L/2+2, as only L/2+ 2 magnitude coefficients are unique (the magnitudes
of L/2 — 2 complex and 4 real coefficients). In addition, this also reduces the
message energy available to each channel by a factor of (approximately) half
- only half the message signal energy distributed among the L — 4 complex
coefficients is available for detection. But by sacrificing some channels, (or by
reducing the degrees of freedom), we obtain smaller noise variances in each
channel.

From the plots in Figure 1(f), we see that the bit-rates for all decompo-
sitions fall with increased processing noise, as expected. All transformations
perform much better than no-transformation or Identity (Id) transformation.
DCT and subband decompositions are better than Hadamard for detection
of the message signal when there is no processing noise, and Hadamard turns
out to be better than DCT and Subband transforms when processing noise
is high, as Hadamard Transform is more resistant to processing noise. How-
ever, it is surprising that the magnitude DFT decomposition is as good or
better than DCT and Subband transforms even when there is no processing
noise. In this case a reduction in the entropy of the image noise is achieved
by ignoring the phase of the DFT coefficients. The reduction in entropy is
precisely the “information content” in DFT phase. The signal power available
for detection is also “divided” between magnitude and phase. So only half
the signal power is available for detection. Yet magnitude DFT decomposi-
tion performs better than other decompositions because DF T phase contains
disproportionately more information than DFT magnitude! In addition, DFT
is also robust to processing noise as it is not a high GTC transform. It has
also been observed that the channel capacities increase with increase in the
number of bands (L) of the decomposition. However the increase in capacity
is marginal when processing noise is high. Also, for all L (16, 64, 256 and
1024), it has been found that magnitude DFT decomposition performs better
than the other decompositions.
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