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Abstract � We present an information�theoretic approach to obtain

an estimate of the number of bits that can be hidden in still images� or�

the capacity of the data�hiding channel� We show how addition of the message

signal in a suitable transform domain rather than the spatial domain can

signi�cantly increase the channel capacity� We compare the capacities

achievable with di�erent decompositions like DCT� DFT� Hadamard� and

subband transforms�

INTRODUCTION

Data hiding or Steganography� is a rapidly growing �eld with potential
applications for copyright protection �watermarking	� hiding executables for
access control of digital multimedia data� embedded captioning� secret com

munications� etc� It is therefore of signi�cant interest to have a theoretical
estimate of the number of bits that can be hidden in multimedia data� In this
paper we provide an information
theoretic approach to estimate the number
of bits that can be hidden in still images�

Let I be the original �cover	 image� to which a message S �a representation

for a few bits of information	 is added� such that �I 
 I � S� the modi�ed

image� is visually indistinguishable from I � The image �I may typically be
subjected to lossy compression� like JPEG� �I 
 C��I	� where C��	 denotes the
compression � decompression operation� The buried bits in image I are to be
extracted from �I � Under this scenario we would like to know the maximum
number of bits that can be buried and recovered from the image with an
arbitrarily low probability of error� or in other words� the capacity of the

data�hiding channel� A block diagram of the data hiding channel is shown in
Figure ��a	� S is the message to be transmitted through the channel which
has two sources of noise� I � the noise due to the cover image� and P � the
noise due to processing �compression � decompression	� �S is the �corrupted�
message� Note that the receiver does not have access to the cover image�
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Figure �� �a	 The Data Hiding Channel� �b	 Decomposition of the Data

Hiding Channel into L Parallel Channels� �c	 A Simple Additive Noise Chan

nel� �d	 Channel of �c	 Modi�ed to Obtain Equivalent Additive Gaussian
Noise� �e	 Schematic Block Diagram of Data Hiding � Retrieval �f	 Channel
Capacities of �� Band Decompositions for various processing noise scenarios�

Figure ��e	 is a block diagram of a typical data
hiding scheme� In this
paper� we use the schematic of Figure � �e	 to determine the capacity of the
data hiding channel� The �rst attempt in obtaining an information theoretic
view
point of the capacity of the data
hiding channel was reported in ����
However� the attempt was limited in scope� in that it was implicitly assumed
that the message is added in the spatial domain� We show how the capacity
of the data
hiding channel can be improved by a suitable choice of transform�

CAPACITY OF THE DATA HIDING CHANNEL

Capacity of Additive Noise Channels
Before we consider the data
hiding channel of Figure ��a	� we shall consider

a simpler channel shown in Figure ��c	� Here�X � �fX�x	� �
�
x� is the message

to be transmitted� Z � �fZ�z	� �
�
z � is the additive noise in the channel� and

Y � �fY �y	� �
�
y � is the received signal at the output of the channel� We shall

also assume thatX and Z are independent� implying that ��y 
 ��x���z � The
channel capacity is given by ���

C 
 max
fX �x�

I�X�Y 	 
 max
fX �x�

h�Y 	� h�Y jX	 
 max
fX �x�

h�Y 	� h�Z	 bits� ��	

where I�X �Y 	� is the mutual information between X and Y � For a given
statistics fZ�z	 and ��x� one should maximize the entropy of Y � h�Y 	 




�
R
fY �y	 log��fY �y		dy �bits	� by choosing a suitable distribution fX�x	 of

the messageX� For a given ��y � the maximum value of h�Y 	 
 �
� log����e�

�
y	

bits is achieved when Y has a normal distribution� For instance� the maxi

mum value of h�Y 	 is achievable if both fZ�z	 and fX�x	 are normally dis

tributed� However� for an arbitrary distribution fZ�z	� and a �xed ��x� it is
not immediately obvious what the maximum achievable value of h�Y 	 is� In
order to �nd that� we pass Z through an ideal information processor �Fig

ure � �d		� which does not alter the amount of information in Z� but changes
its statistics� to a Gaussian distributed Zg� As the output of the processor
has the same entropy as the input� the variance of the output� ��

zg
� can be

obtained by solving h�Zg	 
 h�Z	 
 �
� log����e�

�
zg
	 bits� For the purpose of

calculating the channel capacity� we can replace fZ�z	 by N ��� ��
zg
��

C 
 max
fX �x�

h�Y 	� h�Zg	 

�

�
log��� �

��x
��
zg

	 bits� ��	

Going back to Figure ��a	� as the processing noise is usually a result of many
independent operations� we call upon the Central Limit Theorem ���� and
assume a Gaussian distribution for the processing noise P � The two noise
sources in the channel �I of variance ��i per pixel and P of variance ��p per
pixel	� can be substituted with a single Gaussian noise source of variance
��
ig
���p� where �

�
ig
is the equivalent Gaussian variance of the noise due to the

cover image� If ��s is the energy of the message signal �per pixel	� the capacity
of the data
hiding channel can be expressed as

Ch 

�

�
log��� �

��s
��
ig
� ��p

	 bits per pixel� ��	

Decomposition into Multiple Channels
In Figure � �b	 the channel of Figure � �a	 is decomposed into multiple

channels� The decomposition is performed by the Forward and Inverse Trans

form blocks of Figure � �e	� The decomposition of the image into L bands
results in L parallel channels with two noise sources in each channel� Let
��ij � j 
 � � � �L be the variances of the coe�cients of each band �or the vari


ances of the image noise in each channel	 of the decomposition� Let their
corresponding equivalent Gaussian variances be ��

igj
� If ��pj is the variance

of the processing noise in the jth channel� then� the total capacity of the L
parallel channels is given by

Ch 

MN

�L

LX

j��

log��� �
v�j

��
igj

� ��pj
	 bits ��	

for an image ofMN pixels� In the above equation� vj is the visual threshold of
band j� In other words� v�j is the maximum message signal energy permitted
in band j�

Modeling Channel Noise
The cover image �or the image noise I	 is decomposed into L bands using

an orthonormal transform� Let fIj �ij	 be the distribution of the jth band



with variance ��ij � Having obtained the variances of the image noise in each
channel� the next step is to obtain their equivalent Gaussian variances� This
is achieved by plotting a histogram of the coe�cients for each band� and
calculating the entropy� If �x is the width of the n bins of the histogram
g�m	� m 
 � � � �n� and p is the total number of coe�cients in the band� the
entropy Hj and the equivalent Gaussian variance ��

igj
are obtained as

Hj 
 �

nX

i��

g�i	

p�x
log��

g�i	

p�x
	�x ��

igj



��Hj

��e
� ��	

The image noise in channel �band	 j can now be substituted by Gaussian
noise of variance ��

igj
�

Let the noise due to compression in each channel be ��pj � j 
 � � � �L� As
in the Section ���� we assume Gaussian distribution for the processing noise
in each channel� We obtain MNni

L
samples of each band from ni test images

of size M � N � Let ijk � k 
 �� � � � � MNni
L

� be the coe�cients of the band j

of the decomposition of the original images� Let �ijk � k 
 �� � � � � MNni
L

be the
corresponding coe�cients of the images subjected to some lossy compression
scheme� We obtain the equivalent additive noise in each channel as noise un

correlated with ij � that would cause the same reduction in correlation between

ij and �ij � We de�ne the intra
band correlation as

hij ��iji

jij jj�ij j



hij � �ij � nj	i

jij jjij � nj j

 �j � ��	

where nj is a vector of Gaussian �zero mean	 random variables uncorrelated
with ij � Then ��nj 
 jnj j

� is the variance of the equivalent additive noise due

to compression� Or �pj 
 �nj � As hij �nji 
 �� Eq� ��	 can be simpli�ed to
obtain

��pj 
 jnj j
� 
 �

�

��j
� �	jij j

� ��	

We obtain the coe�cient statistics �ij for various decompositions �� � � to
�� � �� size DCT� DFT� Hadamard and �� to ���� band uniform subband
�wavelet	 decomposition using �
tap Daubechies �lter	� and �pj for JPEG
�quality factors ��
��	 and SPIHT �bit rates ���� to � bpp	 compression
schemes� The ni 
 �� test images of size ���� ��� included Lena� Baboon�
Barbara� Goldhill� Airplane� Peppers and Boats�

Visual Threshold
The visual threshold vj in Eq� ��	 however� is highly subjective� As the

amount of message signal energy permitted in any band is determined by the
visual threshold� di�erent models for visual thresholds would yield di�erent
estimates of achievable capacity� To derive the model� we argue that JPEG�
at a reasonably good quality factor �like ��	 is optimal in distributing the
quantization errors amongst the bands� at least with respect to preserving



visual �delity of the compressed image� Let ijk be the coe�cients of some
decomposition of the original images� and �ijk the coe�cients of the same
decomposition of images that have undergone JPEG
�� compression and de

compression� Let ��qj be the variance of the quantization error� eqj 
 �ij � ij �

for each band j� If quantization error �due to JPEG
��	 of variance ��qj in
band j of the decomposition� results in an image that is visually satisfactory�
we can argue that addition of message signal of energy ��qj in band j� would

still render the image �I of acceptable visual quality� However to maintain
the PSNR of �I between ��
�� dB �so that the �I is visually indistinguishable
from I	� we choose the visual thresholds as v�j 
 K��

�
qj
� where K� � ��

�The average PSNR of JPEG
�� images is only about �� dB� So a choice of

K� 
 � would yield images �I of PSNR �� dB� which might not be accept

able�	 Our simulations show that �qj s are independent of j� Or in other
words� �qj 
 K�j�

Channel Capacity vs Choice of Transform
For the no
processing noise case �or if the processing noise is very low	� if

we assume that the all channels have the same pdf �such thatK�ij 
 K��igj
	�

the channel capacity is given by

Ch 

MN

�L

LX

j��

log�
�
� �

K

��ij

�
�

MN

�L
log�

�
� �

LX

j��

K

��ij

�
� ��	

It is obvious that the minimum channel capacity is obtained when �ij 
 ��j�
or when no decomposition is employed� A transform with good energy com

paction or higher Transform Coding Gain �GTC	 ��� would result in more
imbalance of the coe�cient variances� resulting in increased channel capac

ity� So DCT and subband transforms would be good decompositions for low
processing noise scenarios� However� we should expect that the reduction

in capacity with increase in processing noise to be lower for transforms like
Hadamard and DFT� which are unsuitable for compression� While JPEG at
low quality is certain to remove almost all the high frequency components of
DCT coe�cients� it will not a�ect the high frequency DFT and Hadamard co

e�cients to the same extent� Thus decompositions unsuitable for compression
would in general be more immune to processing noise than decompositions
with high GTC�

RESULTS AND CONCLUSIONS

The channel capacities of di�erent �� Band decompositions �for ���� ���
images� or for ����� pixels	� DFT� DCT� subband �SB	� Hadamard �Had	 and
Identity �Id	 transformations� are shown in Figure � �f	 for various processing
noise scenarios� For example if the processing noise is from �JPEG
�� and
SPIHT ��� bpp� it implies we consider the worst of the two cases for each
band� This is to ensure that the message survives JPEG
�� or SPIHT at ���
bpp� For the DFT decomposition� we use the magnitude DFT coe�cients�



Note that this causes a reduction in the number of available channels from L
to L����� as only L���� magnitude coe�cients are unique �the magnitudes
of L��� � complex and � real coe�cients	� In addition� this also reduces the
message energy available to each channel by a factor of �approximately	 half

 only half the message signal energy distributed among the L � � complex
coe�cients is available for detection� But by sacri�cing some channels� �or by
reducing the degrees of freedom	� we obtain smaller noise variances in each
channel�

From the plots in Figure ��f	� we see that the bit
rates for all decompo

sitions fall with increased processing noise� as expected� All transformations
perform much better than no
transformation or Identity �Id	 transformation�
DCT and subband decompositions are better than Hadamard for detection
of the message signal when there is no processing noise� and Hadamard turns
out to be better than DCT and Subband transforms when processing noise
is high� as Hadamard Transform is more resistant to processing noise� How

ever� it is surprising that the magnitude DFT decomposition is as good or
better than DCT and Subband transforms even when there is no processing

noise� In this case a reduction in the entropy of the image noise is achieved
by ignoring the phase of the DFT coe�cients� The reduction in entropy is
precisely the �information content� in DFT phase� The signal power available
for detection is also �divided� between magnitude and phase� So only half
the signal power is available for detection� Yet magnitude DFT decomposi

tion performs better than other decompositions because DFT phase contains

disproportionately more information than DFT magnitude� In addition� DFT
is also robust to processing noise as it is not a high GTC transform� It has
also been observed that the channel capacities increase with increase in the
number of bands �L	 of the decomposition� However the increase in capacity
is marginal when processing noise is high� Also� for all L ���� ��� ��� and
����	� it has been found that magnitude DFT decomposition performs better
than the other decompositions�
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