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1 How to find sums without using induction?

Proposition 1 For all n ≥ 0,
n∑
i=0

i =
n(n+ 1)

2
.

Proof. One can show this proposition by using induction. But what if we don’t know how much the sum is?
How can we find the answer n(n+ 1)/2?

We use the following trick to find sums of the following form

Sk =
n∑
i=0

ik.

First consider (i+ 1)k+1 and expand it. Substitute in the expansion i = 1, i = 2, . . ., i = n, a total of n times
and write the resulting n equalities one after the other. Then, sum these n equalities by summing up the left
hand sides and the right hand sides. Solve for Sk and Sk can then be found as a function of n.

For the sum in question k = 1. Therefore we consider

(i+ 1)2 = i2 + 2i+ 1

We substitute for i = 1, 2, . . . , n writing one equality after the other

(1 + 1)2 = 12 + 2 · 1 + 1
(2 + 1)2 = 22 + 2 · 2 + 1
(3 + 1)2 = 32 + 2 · 3 + 1
(4 + 1)2 = 42 + 2 · 4 + 1

. . . = . . .

(n+ 1)2 = n2 + 2 · n+ 1

When we sum up the n equalities we realize that say, (3 + 1)2 of the third line is equal to 42 of the fourth
line and therefore.

(1 + 1)2 + (2 + 1)2 + . . .+ (n+ 1)2 = (12 + 22 + 32 + . . .+ n2) + 2 · (1 + 2 + . . .+ n) + (1 + . . .+ 1)

We note that 2 · (1 + 2 + . . .+ n) = 2S1 and (1 + . . .+ 1) = n (number of ones is number of equations). Then,

(n+ 1)2 = 1 + 2S1 + n

Solving for S1 we get that S1 = ((n+ 1)2− n− 1)/2, ie S1 = (n2 + 2n+ 1− n− 1)/2 = (n2 + n)/2 = n(n+ 1)/2,
which proves the desired result.

Example 1 For all n ≥ 0, find
i=n∑
i=0

i2

Example 2 For all n ≥ 0, find
i=n∑
i=0

i3



2 Logarithms and Exponentials

When we describe the performance of computer algorithms we frequently use logarithms base two and powers
of two. A brief review of topics related to logarithms and exponentials is given below. For more details, one can
review section 3.2 (page 52).

1. The floor function bxc : denotes the largest integer smaller than or equal to x, i.e. b3.5c = 3, b−3.5c =
−4, and b3.0c = 3.

2. The ceiling function dxe : denotes the smallest integer greater than or equal to x, i.e. d3.5e = 4,
d−3.5e = −3, and d3.0e = 3.

Properties of exponentials. Let a,m, n be real numbers such that a 6= 0.

3. a0 = 1, a1 = a, a−1 = 1/a.

4. am · an = an+m, am/an = am−n.

5. (am)n = (an)m = a(mn).

6. Let c ≥ 1, d ≥ 1 be constants. There is a constant n0 such that for all n ≥ n0 we have that cn > nd.

Definitions and Properties of logarithms.

7. The natural (Neperian) logarithm log (also ln) of x denoted by log x is the real number y such that ey = x.
e is the well known constant e = 2.7172 . . .. In this course we prefer to write and use log x to lnx.

8. For all real x, ex ≥ 1 + x.

9. For all x such that |x| < 1, 1 + x ≤ ex ≤ 1 + x+ x2.

10. The base-2 logarithm of x, denoted by lg x (or sometimes log2 x), is the real number y such that 2y = x.

Properties of base-2 logarithms (See page 53 for generalization to any base other than two).

11. lgk n = (lg n)k. Note that lg(k) n with a parenthesized exponent means something else (see page 55 of
CLRS).

12. lg lg n = lg (lg n).

13. For all a > 0, b > 0, c > 0 and n we have that

a. a = 2lg a,

b. lg (ab) = lg a+ lg b,

c. lg (a/b) = lg a− lg b,

d. lg an = n lg a,

e. lg a = log a
log 2 .

Fact 1 The expression “for large enough n ” means “there is a positive constant n0 such that for all n > n0 ”.

Fact 2 For any positive constant k,m and integer n > 0, we have that nm > lgk n for large enough n.

Fact 3 For any positive constant m and integer n > 0, we have that 2n > nm for large enough n.
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Example 3 lg 1 = 0 as 20 = 1. lg 2x = x. lg 2x+y = x+ y.

Example 4 How much is (n1/ lgn)?

As we don’t know the answer, let x = n1/ lgn. We take logarithms of both sides of this equality. We get
lg x = (1/ lg n) lg n = 1 by rule (13.d), ie lg x = 1. We then take powers of two for both sides i.e. lg x = 1 implies
that 2lg x = 21. The left hand side is x by the definition of the logarithm base two, i.e. x = 2. Since x = n1/ lgn,
we have that n1/ lgn = 2. 2

Example 5 For any integer n > 0 and constant k > 0, show that for large enough n 2n > nk, ie show that there
is a constant n0 such that for all n > n0, we have that 2n > nk.

Proof (read the proof if you want to brush up on your calculus skills).
Step 1 We intend to show that 2n > nk for large enough n. We first take logarithms base two of both sides.
It then suffices to show that lg 2n > lg nk that is, n > k lg n. By taking logarithm we reduced our problem to a
simple problem.
Step 2 Before proving our claim or the equivalent n > k lg n that involves a logarithm base two we are going to
prove Proposition 2, ie to prove that n > k log n that involves a natural logarithm. In the proof of Proposition
2 we shall need the following result established in Proposition 1 below.

Proposition 2 For any real m > 0, it is m2 > 3 logm.

Proof (Proposition 1). Take g(m) = m2− 3 logm. The first derivative g′(m) = 2m− 3/m. A value of m that
makes 2m− 3/m = 0 is m =

√
1.5 ≈ 1.2247. The second derivative g

′′
(m) = 2 + 3/m2 is always positive for any

m, ie g(m) exhibits its minimum for m = 1.2247. The minimum value is g(1.2247) = 1.5−0.877 ≈ 0.623, ie g(m)
is always positive as its minimum value is more than zero. Therefore g(m) > 0 for all m > 0, ie m2 > 3 logm. 2

Step 3 We use Proposition 1 to prove Proposition 2 below. Note that by showing Proposition 2 we come close
to our final target of proving n > k lg n.

Proposition 3 For any integer n > 0 and constant m, for large enough n we have n > m log n (notice that we
have log not lg here). Large enough n would mean that n > m3.

Proof (Proposition 2). Let f(n) = n−m log n. The first derivative f ′(n) = 1−m/n which is zero for n = m.
We also observe that f ′′(n) = m/n2 which is positive for n = m.

Therefore the minimum value of f(n) is for n = m and it is f(m) = m−m logm. For larger values of n, f(n)
grows larger (it is an increasing function) and becomes zero for n−m log n = 0, ie when n/ log n = m. Therefore
for values of n such that n/ log n > m, f(n) is always positive.

Note thatm is a constant. Let us pick an n0 = m3. Asm is a constant, m3 is a constant and therefore n0 is also
constant. We note that n0/ log n0 = m3/(3 logm). But m3/(3 logm) > m as this is equivalent to m2 > 3 logm
of Proposition 1. Therefore f(n0) is positive and for all n > n0, f(n) is also positive as n > n0 > m.

Therefore we conclude that there exists a constant n0 = m3 such that for all n > n0, f(n) is positive, ie
f(n) = n−m log n > 0, ie n > m log n for all n > n0.

Note. Our objective was to find some constant n0, NOT the best possible value of n0.
Step 4. We have thus proved that for any constant m and any integer n > n0 = m3, n > m log n. Our objective
is to show that for any constant k, n > k lg n, for large enough n.

As n > m log n holds for any constant m, we choose constant m so that m = k/ log 2, which is also constant.
We substitute this for m in n > m log n and we get n > (k/ log 2) log n = k(log n/ log 2). But from an earlier
identity on logarithms we have that logn/ log 2 = lgn, ie n > k lg n.
Therefore for large enough n > n0 = m3 = (k/ log 2)3, we have that n > k lg n and our claim is proved.

As n > k lg n, then 2n > 2k lgn as well, ie 2n > nk as well. 2

Note. The proof above may seem complicated and it is so. It tells us how we can prove inequalities that
involve logarithms, exponentials and polynomials in one inequality. You may read or skip the proof as long as
you remember for the remainder of this course the three facts outlined above.
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3 Short Notes on Asymptotic Notation

• NEVER FORGET THAT O(f(n)) is not a function, it is a SET. Therefore a relation of the form
1 ≤ O(n) is nonsense as you compare a constant function (1) to a set using ≤ a symbol that we use to
compare numbers.

• ω vs o? Take the limit of the two functions f(n)/g(n). If the limit is 0, then f(n) = o(g(n)). If it is ∞,
then f(n) = ω(g(n)).

• If little o is true then O is also true; if f(n) = o(g(n)), then f(n) = O(g(n)). Prove it.

• If little ω is true then Ω is also true; if f(n) = ω(g(n), then f(n) = Ω(g(n)). Prove it.

We review the following relationships (n is positive).

• Remember 2lgn = n and algn = nlg a and n1/ lgn = 2.

• n = ω(lg n), n = ω(lg2 n) = ω((lg n)2). Note that lg2 n means (lg n)2.

• In general nk > lgl n for any constant k, l and large enough n. It is also true that nk = ω(lgl n).

• In general 2n > nk for any constant k and large enough n. It is also true that 2n = ω(nk).

• n! > nk for any constant k and large enough n.

• n! ≈ (n/e)n
√

2πn (Stirling’s approximation formula for the factorial). It is also true that lg (n!) = O(n lg n).

• Again note that n1/ lgn = 2. n1/ lgn seems to grow fast but it does not! It is a constant, the constant 2.

Example 6 Which of a0 + a1n+ a2n
2 + a3n

3 and n2 is asymptotically larger, where ai > 0 for all i?

Proof. Consider a0 + a1n+ a2n
2 + a3n

3. As all ai are positive, then a0 > 0 and a1n > 0 and a2n
2 > 0 and

thus a0 + a1n+ a2n
2 + a3n

3 > a3n
3.

Hint. When we intend to prove f(n) = Ω(g(n)), it sometimes helps to find a lower bound h(n) for f(n) ie one
such that f(n) ≥ h(n) and then show that h(n) = Ω(g(n)). In our case a lower bound for a0 +a1n+a2n

2 +a3n
3

is a3n
3.

We now show that our lower bound a3n
3 is Ω(n2). As a3 > 0, it is obvious that a3n

3 > 1 ·n2 for any n > 1/a3

(note that a3 > 0 DOES NOT MEAN THAT a3 > 1, as a3 is real and not necessarily an integer).
Therefore for c = 1 and n0 = 1/a3 we have shown that a0 + a1n+ a2n

2 + a3n
3 = Ω(n2). 2

Example 7 Which of the two functions is asymptotically larger a0 + a1n+ a2n
2 + a3n

3 or n4, where ai > 0 for
all i?

Hint. When we intend to prove f(n) = O(g(n)), as is the case here, it sometimes helps to find an upper
bound h(n) for f(n) ie one such that f(n) ≤ h(n) and then show that h(n) = O(g(n)).

Since in a0 + a1n+ a2n
2 + a3n

3 all ai are positive we take the maximum of all ai and we call it A. Then we
have that ai < A for all i. Also, Ani < An3 for i ≤ 3. Then

a0 + a1n+ a2n
2 + a3n

3 ≤ A+An+An2 +An3 ≤ An3 +An3 +An3 +An3 = 4An3

Finally 4An3 ≤ n4 for all n > 4A.
We have shown that

a0 + a1n+ a2n
2 + a3n

3 ≤ 4An3 ≤ 1 · n4

for all n ≥ n0 = 4A, where A is the maximum of a0, a1, a2, a3. As all ai are constant, so is 4A. Therefore the
constants in the O definition are c = 1 and n0 = 4A, where A = max{a0, a1, a2, a3}. 2
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