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Brief Notes on Asymptotic Notation and Recurrences Handout 4

A1. f(n) = o(g(n)), iff limn→∞
f(n)
g(n) = 0.

A2. f(n) = ω(g(n)), iff limn→∞
f(n)
g(n) =∞.

A3. If f(n) = o(g(n)), then f(n) = O(g(n)).
A4. If f(n) = ω(g(n)), then f(n) = Ω(g(n)).
A5. If f(n) = Θ(g(n)), iff f(n) = Ω(g(n)) and f(n) = O(g(n)).
B1. f(n) = Θ(g(n)) iff ∃ positive constants c1, c2, n0 : 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) ∀ n ≥ n0.
B2. f(n) = Ω(g(n)) iff ∃ positive constants c1, n0 : 0 ≤ c1g(n) ≤ f(n) ∀ n ≥ n0.
B3. f(n) = O(g(n)) iff ∃ positive constants c2, n0 : 0 ≤ f(n) ≤ c2g(n) ∀ n ≥ n0.

Master Method. T (n) = aT (n/b) + f(n), such that a ≥ 1, b > 1.

M1 If f(n) = O(nlgb a−ε) for some constant ε > 0, then T (n) = Θ(nlgb a).

M2 If f(n) = Θ(nlgb a), then T (n) = Θ(nlgb a lg n).

M3 If f(n) = Ω(nlgb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1 and for large
n, then T (n) = Θ(f(n)).
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1 Short Notes on Asymptotic Notation

• NEVER FORGET THAT O(f(n)) is not a function, it is a SET. Therefore a relation of the form
1 ≤ O(n) is nonsense as you compare a constant function (1) to a set using ≤ a symbol that we use to
compare numbers.

• ω vs o? Take the limit of the two functions f(n)/g(n). If the limit is 0, then f(n) = o(g(n)). If it is ∞,
then f(n) = ω(g(n)).

• If little o is true then O is also true; if f(n) = o(g(n)), then f(n) = O(g(n)). Prove it.

• If little ω is true then Ω is also true; if f(n) = ω(g(n), then f(n) = Ω(g(n)). Prove it.

We review the following relationships (n is positive).

• Remember 2lgn = n and algn = nlg a and n1/ lgn = 2.

• n = ω(lg n), n = ω(lg2 n) = ω((lg n)2). Note that lg2 n means (lg n)2.

• In general nk > lgl n for any constant k, l and large enough n. It is also true that nk = ω(lgl n).

• In general 2n > nk for any constant k and large enough n. It is also true that 2n = ω(nk).

• n! > nk for any constant k and large enough n.

• n! ≈ (n/e)n
√

2πn (Stirling’s approximation formula for the factorial). It is also true that lg (n!) = O(n lg n).

• Again note that n1/ lgn = 2. n1/ lgn seems to grow fast but it does not! It is a constant, the constant 2.

Example 1 Which of a0 + a1n+ a2n
2 + a3n

3 and n2 is asymptotically larger, where ai > 0 for all i?

Proof. Consider a0 + a1n+ a2n
2 + a3n

3. As all ai are positive, then a0 > 0 and a1n > 0 and a2n
2 > 0 and

thus a0 + a1n+ a2n
2 + a3n

3 > a3n
3.

Hint. When we intend to prove f(n) = Ω(g(n)), it sometimes helps to find a lower bound h(n) for f(n) ie one
such that f(n) ≥ h(n) and then show that h(n) = Ω(g(n)). In our case a lower bound for a0 +a1n+a2n

2 +a3n
3

is a3n
3.

We now show that our lower bound a3n
3 is Ω(n2). As a3 > 0, it is obvious that a3n

3 > 1 ·n2 for any n > 1/a3

(note that a3 > 0 DOES NOT MEAN THAT a3 > 1, as a3 is real and not necessarily an integer).
Therefore for c = 1 and n0 = 1/a3 we have shown that a0 + a1n+ a2n

2 + a3n
3 = Ω(n2).

Example 2 Which of the two functions is asymptotically larger a0 + a1n+ a2n
2 + a3n

3 or n4, where ai > 0 for
all i?

Hint. When we intend to prove f(n) = O(g(n)), as is the case here, it sometimes helps to find an upper
bound h(n) for f(n) ie one such that f(n) ≤ h(n) and then show that h(n) = O(g(n)).

Since in a0 + a1n+ a2n
2 + a3n

3 all ai are positive we take the maximum of all ai and we call it A. Then we
have that ai < A for all i. Also, Ani < An3 for i ≤ 3. Then

a0 + a1n+ a2n
2 + a3n

3 ≤ A+An+An2 +An3 ≤ An3 +An3 +An3 +An3 = 4An3

Finally 4An3 ≤ n4 for all n > 4A.
We have shown that

a0 + a1n+ a2n
2 + a3n

3 ≤ 4An3 ≤ 1 · n4

for all n ≥ n0 = 4A, where A is the maximum of a0, a1, a2, a3. As all ai are constant, so is 4A. Therefore the
constants in the O definition are c = 1 and n0 = 4A, where A = max{a0, a1, a2, a3}.

2



Examples on Recurrences

Example 3 Solve the recurrence T (n) = 2T (n/2) + n using the substitution (a.k.a. guess-and-check) method.
Implicit assumption: T (n) is nonnegative for all n.

Proof. This recurrence has already been solved in Handout 3 (strong induction) where a very tight upper

bound for T (n) was given. We observe that no boundary condition is given; we can thus assume T(constant) =
some-constant.
Guess a solution. We guess T (n) ≤ cn lg n for all n0 ≤ n where c, n0 are positive constants. This is equivalent

to showing that T (n) = O(n lg n). We call this the predicate P (n). We are going to show that P (n) is true for
all n ≥ n0, ie. we are going to show that the guessed solution is the solution to the recurrence. We shall prove
our claim by using strong induction. In the inductive proof we shall delay the proof of the BASE CASE until
the very end.

Base Case. Proof at the end (let us assume that base case is true for the remainder).
Induction Hypothesis. Assume P (n0)∧P (n0 + 1)∧ . . . P (n− 1) are true. We assume that the guessed

solution is true for all integer values less than n ie that for all i ≤ n− 1 we have that

T (i) ≤ ci lg i for all n0 ≤ i < n− 1,

(Here we renamed the variable in T (.) to i from n to avoid confusion).
Inductive Step: Show that P (n0) ∧ P (n0 + 1) ∧ . . . P (n− 1)⇒ P (n).
In the inductive step we show the correctness of our guess for i = n i.e. for the next largest value of i (by

the induction hypothesis the inequality is true for i ≤ n− 1).

T (i) ≤ ci lg i for i = n

which is equivalent to showing that
T (n) ≤ cn lg n

Step 1.
As n/2 < n, the induction hypothesis applies to i = n/2. Therefore,

T (n/2) ≤ c(n/2) lg (n/2) (1)

Step 2.
In order to prove the inductive step we use the only piece of information that we have available for T (n).

This is the recurrence relation. The inequality below is a result of the induction hypothesis.

T (n) = 2T (n/2) + n

≤ 2(c(n/2) lg (n/2)) + n

= 2(c(n/2)(lg n− 1)) + n

= cn lg n− cn+ n

Step 3.
In order to show that T (n) ≤ cn lg n, the last expression cn lg n− cn+n must be less than or equal to cn lg n.

This is so provided that c ≥ 1. (a condition on c is thus established).
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Therefore for c ≥ 1 we have that

T (n) = 2T (n/2) + n

≤ cn lg n− cn+ n

≤ cn lg n

We have thus shown the inductive step. This completes the induction, i.e. we have proved that T (n) ≤ cn lg n
for any c ≥ 1, AS LONG AS THE BASE CASE IS TRUE. We show now the base case.

Base Case Proof. As lg 0 is not defined, we don’t define a base case for T (0). The base case is defined for
an n = n0, where n0 is some constant. For n = n0, the recurrence T (n0) = 2T (n0/2) +n0 and the claim we want
to establish T (n0) ≤ cn0 lg n0 must both hold.

We first attempt to prove the base case for an n0 = 1. To show that T (1) ≤ c · 1 · lg 1, as c · 1 · lg 1 = 0, we
must have that T (1) ≤ 0. As T (1) ≥ 0 (T (n) is assumed to be non-negative), then we must have T (1) = 0 as
the boundary condition.

Conclusion 1 (Case T (1) = 0)
A solution to the recurrence T (n) = 2T (n/2) + n, T (1) = 0 is T (n) ≤ cn lg n for any c ≥ 1 and n ≥ 1.

What if the boundary condition is T (1) = 3 and not T (1) = 0?
Then, from the previous discussion T (1) = 3 and T (1) ≤ 0 must BOTH hold, a contradiction. This means

that a base case cannot be established for n0 = 1. The next largest value for n0 is 2.
We thus try the next available integer value n = 2. From the recurrence we have that T (2) = 2T (1) + 2 =

2 · 3 + 2 = 8, as T (1) = 3. Then T (2) < c · 2 · lg 2 = 2c is true provided that 8 ≤ 2c, i.e. c ≥ 4.

Conclusion 2 (Case T (1) = 3)
A solution to the recurrence T (n) = 2T (n/2) + n, T (1) = 3 is T (n) ≤ cn lg n for any c ≥ 4 and n ≥ 2.

We now solve the same recurrence using the iteration (a.k.a recursion tree) method, a frequently occurring
exam problem. We change the boundary condition from the one used in class.
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Iteration Method (Recursion-tree method).

Example 4 Solve the recurrence T (n) = 2T (n/2) + n, T (2) = 5 using the itera-
tion/recursion tree method.

Proof.
We rename variables in the recurrence relation substituting i for n (it doesn’t matter

whether we have i or n, but the discussion below will be become less confusing).

T (i) = 2T (i/2) + i

Substituting n/2 for i we get.

T (n/2) = 2T ((n/2)/2) + n/2 = 2T (n/22) + n/2

Substituting n/4 for i we get.

T (n/22) = T (n/4) = 2T ((n/4)/2) + n/4 = 2T (n/23) + n/4

Similarly we can substitute n/23, n/24, . . . , n/2i, . . . , n/2lgn = 1 for i and get similarly
stated recurrences.

We use all the derived recurrences to expand T (n) below. The objective is to sum
the equalities and observe in the expansion sequence some symmetries and repetitions
for the purpose of combining as many terms as possible to derive a closed form solution
for T (n).

T (n) = 2T (n/2) + n

= 2(2T (n/22) + n/2) + n

= 22T (n/22) + 2 · n/2 + n

= 22(2T (n/23) + n/22) + 2 · n/2 + n

= 23T (n/23) + 22(n/22) + 2 · n/2 + n

= 23T (n/23) + n+ n+ n

= 23T (n/23) + 3n

= . . .

= 2iT (n/2i) + i · n

From the boundary condition for m = 2, which is T (2) = 5, we decide when to stop
the expansion. The expansion ends so that n/2i = 2 and then T (n/2i) = T (2) = 5. We
solve for i by taking logarithms base two of both sides. Then we get that lg n − i = 1
ie i = lg n− 1.
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Then, for i = lg n− 1, we get that.

T (n) = 2T (n/2) + n

= 2iT (n/2i) + i · n
= 2lg n−1T (n/2lg n−1) + (lg n− 1) · n
= (n/2)T (2) + (lg n− 1) · n
= (n/2)5 + (lg n− 1) · n
= (3n/2) + n lg n

Thus we have obtained the following solution to the recurrence: T (n) = 3n/2+n lg n.

If you are not sure about the correctness of your calculations, you can do the following
to verify the correctness of your derivations.
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Checking the solution (THIS IS NOT PART OF A SOLUTION).
How can we be sure of the correctness of this solution? It suffices to show that the

derived solution (a) validates the recurrence, and (b) is consistent with T (2).
We start with (b).

T (2) = 3 · 2/2 + 2 lg 2 = 3 + 2 = 5 = T (2).

It is obvious that the boundary condition is consistent with the solution.
We proceed to showing (a). We obtained the solution

T (n) = 3n/2 + n lg n.

Substituting n/2 for n we get that

T (n/2) = 3n/4 + (n/2) lg n/2 = 3n/4 + (n/2)(lg n− 1) = n/4 + (n/2) lg n.

We start from the right hand side of the recurrence using the preceding equality.

2T (n/2) + n = 2(n/4 + n/2 lg n) + n = 3n/2 + n lg n.

The last term is T (n). We have thus proved that for T (n) = 3n/2 + n lg n, we have
that T (n) = 2T (n/2)+n, ie our solution satisfies both the recurrence and the boundary
condition, ie it is indeed a solution to the recurrence. .

7



Example 5 Solve the recurrence T (n) = 8T (n/2)+n using the iteration/recursion tree
method. Assume that T (1) = 5.

Proof.

T (n) = 8T (n/2) + n

= 8(8T (n/22) + n/2) + n

= 82T (n/22) + 8n/2 + n

= 82T (n/22) + (8/2)1n+ (8/2)0n

= 82(8T (n/23) + n/22) + (8/2)1n+ (8/2)0n

= 83T (n/23) + 82n/22 + (8/2)1n+ (8/2)0n

= 83T (n/23) + (8/2)2n+ (8/2)1n+ (8/2)0n

= . . .

= 8iT (n/2i) + (8/2)i−1n+ . . .+ (8/2)1n+ (8/2)0n

Again the boundary case is T (1) = 5. We set n/2i = 1, ie i = lg n. Then for i = lg n,
T (n/2i) = T (1) = 5. We therefore get for i = lg n.

T (n) = 8T (n/2) + n

= 8iT (n/2i) + (8/2)i−1n+ . . .+ (8/2)1n+ (8/2)0n

= 8lg nT (n/2lg n) +
(8/2)lg n − 1

8/2− 1
· n

= 23 lgnT (1) +
(4)lg n − 1

3
· n

= n3T (1) +
(4)lg n − 1

3
· n

= 5n3 +
n2 − 1

3
n

To verify our calculations we observe that T (1) = 5 + (1− 1)/3 = 5 and

T (n) = 8T (n/2) + n

= 8(5(n/2)3 +
(n/2)2 − 1

3
n) + n

= 5n3 +
n2 − 1

3
n

= T (n),

ie the recurrence is verified.
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Additional problems and exercices

Exercise 0.
Do the Exercides of the textbook for the chapters/sections covered in class. The

more you do of them the more you practice.

Exercise 1.
Calculate the following sum for any x 6= 1

x+ 2x2 + 3x3 + . . .+ nxn =
n∑
i=1

ixi.

(Hint: Consult the appendix (Appendix A) on page 1060.

Exercise 2.
Show that

n∑
i=1

i2 = Θ(n3).

What are the values of c1, c2 and n0? Justify your answer.

Exercise 3.
TRUE or FALSE?

1. lg (n!) = O(n2).

2. n+
√
n = O(n2).

3. n2 +
√
n = O(n2).

4. n3 + 2
√
n = O(n2).

5. 1/n3 = O(lg n).

6. n2 sin2(n) = Θ(n2). (sin is the well-known trigonometric function).

Exercise 4.
Prove the following.

1. (n− 10)2 = Θ(n2).

2. n4 + 10n3 + 100n2 + 1890n+ 98000 = Ω(n4).

3. n4 + 10n3 + 100n2 + 1890n+ 98000 = Ω(n2).

4. n4 − 10n3 − 100n2 − 1890n+ 100000 = O(n4).

5. n2 − 20n− 20 = Ω(n).
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6. n2 + 20n = O(n2).

Exercise 5.
Solve the following recurrences. You may assume T (1) = Θ(1), where necessary.

Make your bounds as tight as possible. Use asymptotic notation to express your answers.
Justify your answers.
a. T (n) = 2T (n/8) + n

b. T (n) = 9T (n/3) + n lg2 n

c. T (n) = 3T (n/9) + n2

d. T (n) = 2T (n/4) +
√
n

e. T (n) = 4T (n/2) + n.

f. T (n) = 2T (n/16) + n1/4.

g. T (n) = T (n/2) + 1 , T (1) = 1.

Exercise 6.
Solve the following recurrences. Make your bounds as tight as possible. Use asymp-

totic notation to express your answers. Justify your answers.
a. T (n) = T (n/8) + T (7n/8) + n lg n T (1) = 100
b. T (n) = T (n/5) + T (3n/4) + 10n , T (1) = 20.

Exercise 7.
Find an asymptotically tight bound for the following recurrence. You may assume

T (1) = Θ(1). Justify your answer.
T (n) = T (n/8) + T (3n/4) + 8n.

Exercise 8.
Solve exactly using the iteration method the following recurrence. You may assume

that n is a power of 3, ie n = 3k.

T (n) = 3T (n/3) + n, where T (1) = 1.
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Solutions/Hints to selected problems.
Exercise 2.∑n
i=1 i

2 = n(n+ 1)(2n+ 1)/6. One can show this by induction, or refer to Handout 3,
pages 3 and 4, or use the technique of page 7. We thus focus ourselves on n(n+ 1)(2n+
1)/6.

Case 1.

n(n+ 1)(2n+ 1)/6 ≤ n(n+ 1)(2n+ 1) ≤ n(n+ n)(2n+ n) = n(2n)(3n) = 6n3

This shows that n(n+ 1)(2n+ 1)/6 is O(n3).
Case 2.

n(n+ 1)(2n+ 1)/6 ≥ n(n)(2n)/6 ≥ n3/3

This shows that n(n+ 1)(2n+ 1)/6 is Ω(n3).
The combination of Cases 1 and 2 shows the result.

Exercise 3.
1. n! by Sterling’s approximation formula is n! ≈ (n/e)n. Therefore lg n! = Θ(n lg n)

and the results follows (i.e. answer is TRUE).

Exercise 4.
1. (n− 10)2 = n2 − 2 · 10n+ 102 = n2 − 20n+ 100.
We first show the O(.) part.

n2 − 20n+ 100 ≤ n2 + 0 + 100n2 = 101n2

We have just shown that (n− 10)2 ≤ 101n2 for all n ≥ 0, ie. established c2 = 101 and
n2 = 0.

We then show the Ω(.) part.

n2 − 20n+ 100 ≥ n2 − 20n ≥ n2/2

For the second inequality to be true n2 − 20n ≥ n2/2 i.e. n2/2 ≥ 20n, i.e. n ≥ 40. I.e.
We have just shown that (n− 10)2 ≥ n2/2 for all n ≥ 40, ie. established c1 = 1/2 and
n1 = 40.

Therefore for the Θ(.) definition the constants are c1 = 1/2, c2 = 101 and n0 =
max{n1, n2} = 40.

Exercise 6.
a. Hint. Show that T (n) = O(n lg2 n). Can you show T (n) = Θ(n lg2 n)?
b. Hint. Show that T (n) = Θ(n).

Exercise 7.
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See 6b.

Exercise 8.
Similar to T (n) = 2T (n/2) +n, but do not forget that lg n was lg2 n in the former.
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