
A. V. Gerbessiotis CIS 435
March 23, 2006 Spring 2006

Reb-black tree operations Handout 5

1 Insertion in red-black trees

Insertion of a node z in an r-b tree is similar to insertion in a BST tree.
Case 1. If node z is inserted into an empty tree, we color z BLACK, and make z the root of the tree.
Otherwise, the tree is not empty and,
Case 2. We perform the standard BST-Insert operations and color z red.
Possible Problem. When we color z red, if the parent pz of z is also red, we have a problem. Note that in

that case the grandparent of z must be black. Towards this we need to apply a function FIX(z) to fix the RED
color of z. If z is the root, fixing z is straightforward!

1.1 Case 1: LLr, LRr and RRr, RLr

Case 1. The first case involves the Insertion subcases LRr and LLr which are shown. Cases RRr and RLr
are not shown but are symmetric. These cases require node recolorings only. Note that if gz is the root its color
cannot change; this causes an increase to the blackheight of descendant nodes. FIX may cause a total of O(lg n)
recursive calls higher in the tree.

// LRr, LLr shown (RRr, RLr symmetric and not shown)
Case 1a: LRr ::gz b->r; gz and p(gz) may become red; Call Fix(gz) next.

gz/b *gz/r :FIX(gz) next if parent r
/ \ / \
/ \ / \

pz/r uz/r pz/b uz/b
/ \ / \ / \ / \
1 *z/r 4 5 1 z/r 4 5

/ \ / \
2 3 2 3

Case 1b: LLr :: Same as before (gz: b-->r)

gz/b *gz/r :FIX(gz) next if parent r
/ \ / \
/ \ / \

pz/r uz/r pz/b uz/b
/ \ / \ / \ / \

z/r* 3 4 5 z/r 3 4 5
/ \ / \
1 2 1 2

1



1.2 Case 2: LRb, and Case 3: LLb

Case 2 covers the case of LRb, and Case 3 the case of LLb. Case 2 is ALWAYS FOLLOWED by Case 3. RLb
and RRb are symmetric(not shown).

***** A star (*) shows the node on which FIX is run.
Case 2:LRb is reduced to Case 3:LLb and resolved.

gz/b gz/b
/ \ / \

pz/r uz/b z/r uz/b REDUCTION TO Case 3
/ \ / \ ----LRo(pz)--> / \ / \
1 z/r* 4 5 *pz/r 3 4 5 <<< This is LLb case
/ \ / \ Run Fix(pz)
2 3 1 2 by applying case 3.

Case 3:LLb
gz/b pz/b
/ \ / \

pz/r uz/b ----RRo(gz)--> z/r gz/r
/ \ / \ / \ / \

z/r 3/b4 5 1 2 3/b uz/b
/ \ / \
1 2 4 5

After the single rotation is performed there can be no way that there are two consecutive RED nodes in a
path from the root to pz (root of the subtree in Case 3). Therefore after a single rotation we are done.

Conclusion. Insertion requires O(lg n) recolorings (Case 1) and O(1) rotations (Cases 2 and 3).

2



2 Deletion in red-black trees

Deletion in an r-b tree is identical to a Deletion in a BST tree. When we perform Delete(z), a node is spliced
out; this node is called x. If z has no or one child, then x is z otherwise x is the successor (or the predecessor)
of z. In any of these three cases we call y the only child of x, and p(y) the new parent of y which was previously
the parent of x.

1. If x is red, then y must be black and p(y) must be black or otherwise x should have been black. Splicing
out x causes no violations whatsoever.

2. If x is black, we have a violation of RB3. We distinguish the following subcases.

3. If y is red, we recolor y black and the violation is resolved.

4. If y is black and y becomes the root of the tree, no RB3 violation occurs, because all the paths from
the root y will have black height one less.

5. If y is black but not the root, we have a violation of RB3 that can not be resolved immediately. We
“transfer” the BLACK color of x to y by coloring y DOUBLE-BLACK. We then need to fix y by
calling FIXDELETE(y), i.e. a node calling FIXDELETE is a node “colored” BLACK twice.

2.1 Cases 1 and 2

Comment: Lr1 and Lr2 are not possible; a red node CANNOT have red children.
Case 1: Lr0 : A left rotation is performed and then Case 2a or 3 or 4 applies.

py/b v/b REMARK 1:
/ \ / \ [ v and py switch colors]

** y/b *v/r ---LRo(py)--> py/r B/b
/ \ / \ / \
A/b B/b **y/b A/b* 5 6

5 6

Case 2. Lb0
Subcase 2a. If py is r (Case 1) color py with b and color v with r and stop

py/r py/b
/ \ / \

** y/b *v/b y/b v/r and stop
/ \ / \
A/b B/b A/b B/b

Subcase 2b, If py is b FIXDELETE(py) py plays the role of y and py
also carries the extra black inherited by y due to the x splice out.
py/b ** py/b
/ \ / \

** y/b *v/b y/b v/r
/ \ / \
A/b B/b A/b B/b

3



2.2 Cases 3 and 4

Case 3: Lb1rb : Is transformed into case 4 immediately A,v exchanging colors.
py/? py/?
/ \ / \ The suffix rb in Lb1rb

** y/b *v/b ---RRo(v)--> **y/b A/b * denotes the children of v
/ \ / \ / \ / \

1 2 A/r B/b 1 2 3 v/r
/ \ / \ / \
3 4 5 6 4 B/b

/\
5 6

Case 4: Lb2 and Lb1br (there is neither Lb1bb=Lb0 neither Lb1rr=Lb2)
py/? v/? Case4 terminates Case3
/ \ / \

** y/b *v/b ---LRo(py)-> py/b B/b
/ \ / \ / \ / \

1 2 A/? B/r y/b A/? 5 6
/ \ / \ /\ /\
3 4 5 6 1 2 3 4

Running time is O(lg n) as well. Cases 1, 2a, 3, 4 terminate in O(1) time, Case 2b advances (moves towards
the top) one level every time it is executed, and the height of the RB tree is O(lg n).

4


