A. V. GERBESSIOTIS CIS 435 Spring 2006
PROGRAMMING ASSIGNMENT 2 JANUARY 17, 2006 80 POINTS

1 What to turn in

Follow the guidelines of Handout 2. Handout 2, can be found in the handout section of the Web-page. The
source code cited in that handout can also be found in the handout section of the web-page, at the very bottom
of it. Submissions that deviate from these guidelines will be assigned 0 points.

2 What to implement

Implementation is required for the functions described in part A.

3 Part A: Implementation of Quick-Sort and Heap-Sort (60 points)

Provide an implementation of a quick-sort algorithm with the following syntax and behavior. The quick_sort
function is the one described in CLRS, the textbook. Do the same for heap-sort as described in CLRS. You are
also required to implement hoare_sort which is described in Problem 7-1 of the textbook.

void quick_sort (void *keys, int n, int size, int (*compare) (const void *, const void * ) );
void hoare_sort (void *keys, int n, int size, int (*compare) (const void *, comnst void * ) );
void heap_sort (void *keys, int n, int size, int (*compare) (const void *, const void * ) );

keys : is a pointer to the input array.

n : is the dimension (number of elements) of the array.

size : is the length in bytes of the datatype of each element of the array.

compare : is a function/pointer to a function that returns an integer. Its two arguments are pointers const

void * as well. Depending on whether the first argument of compare is greater, equal, or less than the second,
compare returns a positive (e.g. 1), zero (e.g. 0) or negative (e.g. -1) number.

The parameters of quick_sort and heap_sort are similar to those of the ANSI C standard library function
gsort also cited in Handout 3.



4 Part B: Experimental Results (20 points)

Run your implementations with the testing functions provided in main() of sortg.c in testing.tar on 4
different data-sets and 4 problem sizes.
1. Use the following problem sizes:

1. n = 4096.

2. n = 16384.
3. n = 100000.
4. n = 1000000.

2. The four different data sets consist of the following test instances.
1. An array of integers where all the element are the same (say n).
2. A sorted array of integers where the i-th element of the array is i, ¢ =1,...,n.
3. A reverse sorted array of integers where the i-th element of the array isn—i+1,i=1,...,n.

4. An array whose elements are randomly chosen using function random (see sortg.c on how to setup such
an array).

3. Describe in tabular form the running time of your implementation for each input instance. A timing of the
execution of any function can be obtained similarly to the one provided in sortg.c.

Remarks.

The table to be reported for part B should be included at the beginning of the submitted source code file as
comment, after your name.

Make sure that your algorithm works for all requested problem instances. It is conceivable,
if you use a purely recursive implementation, that you may run out of space. Then you should
reconsider the recursive implementation of quicksort or heap-sort (eg. Heapify).



