A. V. Gerbessiotis
CIS 485/Spring 1999
Handout 2

Week 2

The PRAM model

Introduction

The Parallel Random Access Machine (PRAM) is one of the simplest ways to model a parallel computer. A PRAM
consists of a collection of (sequential) processors that can synchronously access a global shared memory in unit time.
Each processor can thus access its shared memory as fast (and efficiently) as it can access its own local memory. The
main advantages of the PRAM is its simplicity in capturing parallelism and abstracting away communication and
synchronization issues related to parallel computing. Processors are considered to be in abundance and unlimited in
number. The resulting PRAM algorithms thus exhibit unlimited parallelism (number of processors used is a function
of problem size). The abstraction thus offered by the PRAM is a fully synchronous collection of processors and a
shared memory which makes it popular for parallel algorithm design. It is, however, this abstraction that also makes
the PRAM unrealistic from a practical point of view. Full synchronization offered by the PRAM is too expensive and
time demanding in parallel machines currently in use. Remote memory (i.e. shared memory) access is considerably
more expensive in real machines than local memory access as well.

Depending on how concurrent access to a single memory cell (of the shared memory) is resolved, there are various
PRAM variants. ER (Exclusive Read) or EW (Exclusive Write) PRAMs do not allow concurrent access of the shared
memory. It is allowed, however, for CR (Concurrent Read) or CW (Concurrent Write) PRAMs. Combining the rules
for read and write access there are four PRAM variants: EREW, ERCW, CREW and CRCW PRAMs. Moreover, for
CW PRAMs there are various rules that arbitrate how concurrent writes are handled.

(1) in the arbitrary PRAM, if multiple processors write into a single shared memory cell, then an arbitrary
processor succeeds in writing into this cell,

(2) in the common PRAM, processors must write the same value into the shared memory cell,

(3) in the priority PRAM the processor with the highest priority (smallest or largest indexed processor) succeeds
in writing,

(4) in the combining PRAM if more than one processors write into the same memory cell, the result written
into it depends on the combining operator. If it is the sum operator, the sum of the values is written, if it
is the mazimum operator the maximum is written.

The EREW PRAM is the weakest among the four basic variants. A CREW PRAM can simulate an EREW one.
Both can be simulated by the more powerful CRCW PRAM. An algorithm designed for the common PRAM can be
executed on a priority or arbitrary PRAM and exhibit similar complexity. The same holds for an arbitrary PRAM
algorithm when run on a priority PRAM.

Assumptions

In this handout we examine parallel algorithms on the PRAM. In the course of the presentation of the various
algorithms some common assumptions will be made. The input to a particular problem would reside in the cells of
the shared memory. We assume, in order to simplify the exposition of our algorithms, that a cell is wide enough (in
bits or bytes) to accommodate a single instance of the input (eg. a key or a floating point number). If the input is of
size n, the first n cells numbered 0, ...,n — 1 store the input. In the discussion below, we assume that the number of
processors of the PRAM is n or a polynomial function of the size n of the input. Processor indices are 0,1,...,n — 1.

PRAM algorithms

Parallel sum

Value z; is initially stored in shared memory cell ¢. The sum zg+ 21+ ...+ z,_1 is to be computed in Ign parallel
steps. Without loss of generality, let n be a power of two. If a combining PRAM with arbitration rule sum is used to
solve this problem, the resulting algorithm is quite simple. In the first step processor ¢ reads memory cell ¢ storing x;.
In the following step processor ¢ writes the read value into an agreed cell say 0. The running time of the algorithm is
O(1), and processor utilization is O(n).

A more interesting algorithm is the one presented below for the EREW PRAM. The algorithm consists of 1gn
steps. In step 4, processor j < n/2¢ reads shared-memory cells 2j and 2j + 1 combines (sums) these values and stores
the result into memory cell j. After Ign steps the sum resides in cell 0.

// pid() returns the id of the processor issuing the call.
begin PARALLEL_SUM (n)
L i=1;j=pid();

2. while (j < n/2%)
3. a = C[2j§];

4. b=C[25 +1];
5. Cljl=a+b;

6. 1 =141

7. end

end PARALLEL_SUM

Algorithm PARALLEL_SUM can be easily extended to include the case where n is not a power of two. PARALLEL_SUM
is the first instance of a sequential problem that has a trivial sequential but more complex parallel solution. Instead of
operator Sum other operators like Multiply, Mazximum, Minimum, or in general, any associative operator could have
been used.

Broadcasting

A message (say, a word) is stored in cell 0 of the shared memory. We would like this message to be read by all
n processors of a PRAM. On a CREW PRAM this requires one parallel step (processor i concurrently reads cell 0).
On an EREW PRAM broadcasting can be performed in O(lgn) steps. The structure of the algorithm is the reverse
of the previous one. In lgn steps the message is broadcast as follows. In step ¢ each processor with index j less than
2¢ reads the contents of cell j and copies it into cell j + 2¢. After [lgn] steps each processor i reads the message by
reading the contents of cell i.

begin BroADCAST (M)

L. i=0;j=pid(); C[0]=M;
2. while (2 < P)

3. if (j < 20)

5. Cli+2=Cljl;

6. 1 =14 1;

6. end

7.

Processor j reads M from C[j].
end BROADCAST

Parallel Prefix
Given a set of n values zg, z1,...,z,—1 and an associative operator, say +, the parallel prefix problem is to compute
the following n results/“sums”.

0: xo,
1: To + I,

2: g+ x1 + T9,

nfls 1’0+l’1+...+l‘n_1.

Parallel prefix is also called prefix sums or scan. It has many uses in parallel computing such as in load-balancing
the work assigned to processors and compacting data structures such as arrays. An algorithm for parallel prefix on an
EREW PRAM would require lgn phases. In phase i, processor j reads the contents of cells j and j — 2¢ (if it exists)
combines them and stores the result in cell j.

Matrix Multiplication

A simple algorithm for multiplying two n x n matrices on a CREW PRAM with time complexity T'= O(lgn) and
P = n3 follows. For convenience, processors are indexed as triples (i, j, k), where 7,5,k = 1,...,n. In the first step
processor (4, j, k) concurrently reads a;; and bj, and performs the multiplication a;;b;;. In the following steps, for all
i, k the results (4, , k) are combined, using the parallel sum algorithm to form c¢;, = Zj ai;bj,. After 1gn steps, the
result ¢;; is thus computed.

The same algorithm also works on the EREW PRAM with the same time and processor complexity. The first step
of the CREW algorithm need to be changed only. We avoid concurrency by broadcasting element a;; to processors
(1,7, *) using the broadcasting algorithm of the EREW PRAM in O(lg n) steps. Similarly, b;y, is broadcast to processors
(*,7, k).

The above algorithm also shows how an n-processor EREW PRAM can simulate an n-processor CREW PRAM
with an O(lgn) slowdown.

Pointer Jumping

We examine a technique called pointer jumping that finds many applications in designing algorithms for linked list
and graph theory problems.

For an undirected graph G = (V, E), V denotes the set of vertices of G and F the set of edges. Two vertices u,
v are connected by an edge if (u,v) € E. The degree of node v is the number of edges incident on v, ie number of u
such that (v,u) € E. A directed graph G is represented by G = (N, A) and is a graph whose each edge is assigned
a direction. The set of vertices N is sometimes called the set of nodes and the set of directed edges, the set of arcs
A. If u, v are connected by an arc from u to v, then < u,v >€ A. For simplicity, we may write (u,v) € A as well.
The out-degree of a node w is the number of vertices v such that < u,v >€ A. The in-degree of v is the number
of vertices w such that < w,v >€ A. For an undirected/directed graph G, a path is a sequence of vertices/nodes
V1,2, ..,0; such that (vi,v2), (v2,v3),..., (vj_1v;) are edges of G/ < v1,v9 >, < v9,v3 >,...,< vj_1v; > are arcs of
G. The length of the path is the number of edges/arcs on the path (eg. j —1). For undirected graphs discussed in this
handout we assume that they are simple i.e. they have no self-loops (edges (v,v)) or multiple edges. An undirected
graph G is connected if there is a path connecting every pair of vertices. If a simple connected undirected graph has
n — 1 edges it is called a tree. A collection of trees forms a forest.

A rooted directed tree T' = (V, A) is a directed graph with a special node r called the root such that (a) Yo € V—{r}
node v has out-degree 1, and r has out-degree 0, and (b) Vv € V — {r} there exists a directed path from v to r. In
other words, T is rooted if the undirected graph resulting from T is a tree. The level of a vertex/node in a tree is the
number of edges on the path to the root.

Let F be a forest consisting of a set of rooted directed trees. Forest F' is represented by an array P (P stands for
“parent”) of length n such that P(i) = j if < ¢,j > is an arc of F. For a root 4, it is P(i) = i.

Problem Given forest F' and array P construct array S where S(j) is the root of the tree containing node j.
Proof. We use pointer jumping, that is, iteratively the successor of any node i becomes the successor of its successor.
This way the successor of a node comes closer to its root 7. After k iterations the distance between i and S(i) is 2*
unless S(i) is the root (in the original forest represented by P). The PRAM algorithm works as follows.

If h is the maximum height of any tree in F', the number of parallel time steps is T'= O(Igh) on a CREW PRAM
and the work W = O(nlgh). From this point on, we use the alternative definition of work W (in most cases it doesn’t
make a difference which definition is used) to mean the actual number of operations performed by all the processors
(which is not necessarily P -T).

begin FIND_RooT (P,S)
1. in parallel: S(i) = P(i) ;
2. while (S(3) # S(S(7)))

3. S(i) = S(S(2)).

end FIND_RoOT

Problem Assume that associated to node i of F' is a value V(¢). Compute W (i), for all i, where W (%) is the sum of
the V(j) over all nodes j in the path from 7 to its root (a parallel prefix-like operation in a list/tree).
Proof. The PRAM algorithm works as follows.

begin PJ (P,S,V)
1. in parallel: S(i) = P(i), W (i) = V(i) ;
2. while (S(i) # S(5(1)))

4. S(i) = S(S(1)).
end PJ

Maximum Finding on a CRCW PRAM

The maximum of n numbers can be found on a EREW PRAM by utilizing the algorithm for parallel sum, if the
+ operator is replaced by a max operator. On a CRCW PRAM maximum finding can be computed faster in parallel
time T = O(1) and work W = O(n?).

As a sidenote, we first solve a simpler problem. Let binary value X; resides in the local memory of processor i.
The problem is to find X = X7 A Xo A... A X, in constant time on a CRCW PRAM. Processor 0 first writes an 1 in
shared memory cell 0. If X; = 0, processor ¢ writes a 0 in memory cell 0. The result X is then stored in this memory
cell.

begin Max1l (X;...X,)
in proc (i,j) if X;> X; then z;; =1;
else z;; =0;

Processor i reads Y; ;
if Y; = 1 processor ¢ writes ¢ into cell 0.
end Max1

1
2.
3. Yi=xa A . ANz
4
5

Algorithm MAX1 is a time optimal algorithm for maximum finding on a CRCW PRAM. Its complexity is T = O(1)
and W = O(n?).

Coloring

Definition 1 A directed cycles is a directed graph G = (V, E) such that the in-degree and out-degree of every node is
one. Then, for every u,v € V there is a directed path from u to v (and from v to u as well). A k-coloring of G is a
mapping ¢ : V — {0,...,k — 1} such that c(i) # c(j), Vi # j and < i,j >€ E.

We are interested in 3-colorings of directed cycles. In the sequential case, this problem is easy to solve. Color
vertices of the cycle alternately with two colors 0 and 1 and at the end, a third color may be required for the last
node of the cycle, if the first and the node before the last are colored differently. In a parallel setting this problem
looks difficult to parallelize because it looks so symmetric! All vertices look alike. In order to solve this problem in
parallel we represent the graph by defining V' ={0,...,n — 1} and an array S, the successor array, so that S(i) = j if
<1i,j >€ E. A predecessor array can be easily derived from the identity P(S(i)) = i. For a number i let i = iy, . .. 1241
be its binary representation. Then i is the k-th Isb bit of <.

Claim After a single call to COLORI a valid coloring is derived from a previously valid coloring.

Proof. Before the call to COLOR1 adjacent vertices are colored differently by a coloring say C;. Let us assume for the
sake of contradiction that an application of COLORI results in a coloring Cs that fails to color properly two vertices
i,7,1.ec(i) = c(j) for < i,j >€ E. These colors were obtained after an application of step 3, i.e. ¢(i) = 2(k—1)+c(i)|x

begin CoLOR1 (P,S,c)

1. in parallel VO <: < n

2. Let k be the Isb position that ¢(i) and ¢(S(¢)) differ;
3. Set c(i) =2(k — 1) + (k-th 1sb of ¢(7);

end COLORI1

and ¢(j) = 2(1—1) +¢(j)];. Since ¢(i) = ¢(j) (because of the Cs coloring) we must have that k =1 and ¢(4)|x = ¢(J)|x,
i.e the previous colors of ¢ and j (in C7) agreed in the k-th Isb. This contradicts the assumption that k is the first Isb
position where ¢() and ¢(j) differ under Cj.

Repeated application of COLORI1 results as it is proved below in a 6-coloring of a directed cycle as described in
algorithm COLOR2A. Initially a trivial coloring of the n vertices with n colors is found, i.e. a mapping ¢ such that
c(i) = 4. After a call to COLOR1, an initial n-coloring of a directed cycle gives rise to a (21gn + 1)-coloring. If at some
point a coloring uses 3 bits (up to 8 colors) then a new coloring after another application of COLOR1 would require at
most six colors (¢(i) = 2(k — 1) 4 ¢(i)|x < 5, for k < 3).

Claim Algorithm COLOR2A 6-colors a directed cycle.

begin CoLOR2A (P,S,c)

1. in parallel V0 < i < n set ¢(i) = i;
2. repeat

3. call Algorithm COLORLI ;

4. until at most 6 colors are used.
end COLOR2A

Proof. Algorithm COLOR2A initially colors the vertices with n colors using ¢ bits, i.e 2671 < n < 2¢. After the first
iteration, [lgc] + 1 bits are only used (colors 0, ..., 2¢— 1 are used). Let us define g™ (z) = 1gz, 1g® (z) = Iglgx and
in general 1g' (z) = 1g (1g" "V (x)). We then define lg*(z) = min{i : 1g'” (x) < 1}. After the first iteration of Loop 2-4
an O(lgn)-coloring is derived. After the second iteration an O(lglgn)-coloring is derived. After O(lg*(n)) iterations
a G-coloring is derived. The complexity of the algorithm is thus 7' = O(lg*(n)) and W = O(nlg"(n)).

A question arises whether a 3-coloring is possible. As soon as a 6-coloring is obtained, a 3-coloring can be derived
by perturbing the 6-coloring as in step 3 of COLOR2 below that colors the vertices of a directed cycles with 3 colors.

begin CoLOR2 (P,S)

1. Call COLOR2A;

2. do for each3<i<5;

3. if a vertex is colored i recolor it with the smallest
possible color from {0, 1, 2};

end COLOR2

Step 3 is realized in O(1) parallel steps, loop 2 is repeated 3 times and COLOR2 has the same asymptotic time
complexity as COLOR2A.

List Ranking

Consider a linked list L of n nodes whose order is specified by the use of a successor array (S(¢) is the successor
of ¢ in the linked list, 0 < 4 < n). If ¢ is the tail of the list, S(¢) = 0. The problem of list-ranking is to determine
the distance of each node from the tail of the list. The sequential complexity of list ranking is linear in n and the
sequential problem is a prefix-like problem. Parallel List-ranking has many applications in parallel graph algorithms.
We first present a non-optimal parallel algorithm for list-ranking (L1sT1).

The time complexity of LisT1 on an EREW PRAM is T'= O(lgn) and W = O(nlgn).

begin Listl (P,S)
0. Input S(.) matrix
Output V (¢) is distance from tail of node i;
V0 <7 < n do in parallel
if (S(@) #0) V(i) =1;
else V(i) =0;
V0 < i < n do in parallel
B(i) = S(i):
while (B(i) # 0 A B(B(i)) # 0) do
V(i) = V(i) + V(BG);
B(i) = B(BG));

O N W=

end LisTl

