
A.V.Gerbessiotis CIS 668 Fall 2000
BSPlib Intro 10-16-2000 Handout 11

Introduction to the BSPlib library

1 Introduction / Setup

Each student has been assigned a (case sensitive) user name on a Unix workstation of the form bspX, where X is a
single or two-digit decimal. User name and password assignments were discussed in class. All accounts are set to
expire at 23:59 (EST) on May 21, 1999. Make sure that files that are of interest to you are retrieved from that site
before the expiration date. The machine name and address will be e-mailed to you separately. It is very likely that
this machine will be logic.njit.edu, a SparcCenter 2000 with 4 CPUs. All required software is installed in account
bsp0. You can view the directory structure of this account by typing.

% ls /home/bsp0

One of the directories there is BSP that contains the executables (in subdirectory bin) as well as the source of
the library. In another directory, Examples, BSP related program examples can be found and a sample Makefile.
In directory, Info, BSPlib related documents (including this one) can be found. Documents with the .ps suffix are
Postscript documents that can be viewed with a Postscript viewer (such as ghostcript, ghostview, etc). Documents with
a .tex suffix are ASCII text documents that need to be processed by the LaTeX document preparation system. One
can view them, however, with any word processor (like WORDPAD, under Win98) or editor (vi, emacs). Documents
with a .pdf suffix are Adobe Portable Document Formant (PDF) documents.

Attention
Make sure that your shell (or the default shell) path variables are properly set. There are two ways you can achieve

this. The simplest is to copy SAMPLE.cshrc from bsp0 into your own .cshrc file.

% cp /home/bsp0/SAMPLE.cshrc .cshrc

And reinitialize by issuing the following command from directory /home/bspX, where bspX is your account.

% source .cshrc

Alternatively, you can follow the instructions below.
Make sure that your shell (or the default shell) path variables include directory /home/bsp0/BSP/bin because

otherwise BSPlib related material will not be located properly. Make also sure that the current working directory
is accessible (some manufacturers consider execution of programs from the current working directory a security risk
and the default values of path variables do not include it) in case you are compiling files there. To ensure the proper
settings of you path variables execute the following command.

% echo $path

The output should include various pathnames including the /home/bsp0/BSP/bin one. If not, include this path
by issuing the following command,

% set path=($path /home/bsp0/BSP/bin)

or the following one if the current working directory needs to be included (and place it in the initialization script
of your shell).

% set path=($path /home/bsp0/BSP/bin .)

BSPlib manual pages are available for all library functions and tools. These reside in directory /home/bsp0/BSP/man.
They can be made available by issuing a command such as the following one.

% man bspcc

In this example, bspcc is the equivalent of the ordinary cc. It calls the locally available C compiler and automatically
handles inclusion of the appropriate libraries in the compilation/linking phase. If no information is printed, then the
environment variable MANPATH has not been set-up properly. Check first that such a variable actually exists,

% echo $MANPATH

and set it in one of the following two ways,

% setenv MANPATH ${MANPATH}:/home/bsp0/BSP/man

% setenv MANPATH /home/bsp0/BSP/man

depending on whether MANPATH is already set or not, and issue again a man bspcc to check whether everything
works fine now. Manual pages provide an additional source of information on BSP and BSPlib in particular.
Skip this discussion during a first reading.
In directory /home/bsp0/BSP a uniprocessor version of the library will be installed.
In directory /home/bsp0/multicpu/BSP a multiprocessor (four-processor) version of the library will also be in-

stalled.
I suggest that you use the first version while you debug the code. If you are interested in examining the behavior of

your parallel program, use the multiprocessor version. By default, the path variable would point to the uniprocessor ver-
sion. Adjust it as fit to access the multiprocessor version of the library. (ie. set path=(/home/bsp0/multicpu/BSP/bin
$path)

If you have problems with make, make sure you are using the /usr/local/bin/make one and not the /usr/ccs/bin/make
one. You can test which one you are using by typing

% which make

and set it appropriately by using a statement like the following one in your .cshrc.

set path=(/usr/local/bin/make $path)

2 BSPlib

The BSP model, unlike other models of parallel computation, is not just an architectural-oriented theoretical model;
it can also serve as a paradigm for programming parallel computers. The fundamental concept introduced by the BSP
model is the notion of the superstep, and that all remote memory accesses occur between supersteps as part of a global
operation among the processors; the results of these accesses become effective at the end of the current superstep. In
each superstep local computations in each processor involve data that are locally available (in that processor’s memory).
Processors initiate communication during a superstep to transfer data but only after the synchronization step at the
end of the superstep can these data become available in the local memories of the destination processors. The BSP
programming paradigm can be used in distributed and shared memory models as well as networks of workstations.

The BSP model has been realized as a library of functions for process creation and destruction, remote memory
access and message passing, and global, barrier-style, synchronization The BSP Toolset, BSPlib, that is being intro-
duced in this document and used in the Programming Assignment allows a SPMD style of programming by offering
two modes of communication, a message-passing approach and an one-sided direct remote memory access (DRMA)
approach. When a software engineer writes an SPMD program that implements and uses a data-structure of some
size n, then he creates p copies of the same program and splits the data-structure into p pieces of equal size so that
copy i of the program maintains the i-th piece of size about n/p. The communication primitives of BSPlib allow the
engineer to organize this data distribution efficiently and with the minimal effort by supplying him with those means
(function calls) that would make data copying from or into the memory of a remote processor easy.

For the purpose of the programming assignment the DRMA approach will be introduced. The principal function
calls that will be introduced are listed in the following table. As one physical processor (say, a workstation processor)
is able to simulate more than one processors, we shall use the term “process” to refer to the processors of the BSP
machine. Therefore one or more processes may be assigned to a single physical processor. Information that is available
to a single process will be referred to as “local” whereas information that is available to all processes is referred to as
“global”.

2.1 Initialization and Termination

void bsp_begin(int maxprocs);
void bsp_end(void);

2

Function Class Function Operation
Initialization bsp begin Start of SPMD code
and Termination bsp end End of SPMD code
Abnormal Stop bsp abort One process halts all
Process Control bsp nprocs Number of processes

bsp pid Identifier of Calling Process
bsp time Local (wall-clock) time

Synchronization bsp sync Global Synchronization
DRMA bsp push reg Make memory info global

bsp pop reg Undo global effect
bsp put Copy into remote memory
bsp get Copy from remote memory

bsp hpput High performance put
bsp hpget High performance get

Multiple processes from the same source are created by issuing the function bsp begin and these processes are
safely terminated by issuing a bsp end. Only one pair of these statements can appear in a program and must be the
first and last statements in a C function. The code fragment surrounded by these two statements will be executed
in SPMD style on a number of processes. A more complex approach to process initialization utilizes bsp init which
is not described here. The integer argument maxprocs indicates the number of processes requested. If that many
processes cannot be created, fewer will be. The actual number of processes spawn can be retrieved by issuing the call
bsp nprocs() which returns the actual number of processes. The simplest BSP program looks like the following one,
hello.c, found in the Examples directory.

#include "bsp.h"
int main(void) {
bsp_begin(bsp_nprocs());
printf("Hello World from process %d of total %d\n",bsp_pid(), bsp_nprocs());
bsp_end();

}

One can compile this BSP program as follows where instead of directly issuing the local C compiler, we call the
BSPlib frontend that handles all relevant work for us. Compilation is no more complicated than the compilation of
the corresponding sequential code.

% bspcc hello.c -o hello

BSPlib runs in three levels of efficiency. For the purpose of the programming assignment it is suggested that you
use the default low-performance level (library level 0). If the most efficient implementation is used, the compilation
line would look like the following one. In level 2, certain consistency checks in the BSP program are not performed.

% bspcc hello.c -flibrary-level 2 -o hello

We run program hello as follows.

% bsprun -npes 4 hello

The command bsprun runs a BSPlib linked program on a number of processes which are indicated as a parameter to
npes. In our case 4 processes are requested. When bsp begin(bsp nprocs()) is encountered the number of processes
that appear as an argument to npes is the value returned by bsp nprocs() and used as an argument to bsp begin.
This is an easy way a user can request a number of processes from the command line. After bsp begin is executed
subsequent calls to bsp nprocs() return the actual number of processes which can be less than the number requested.

If BSPlib were installed on a four processor machine, in our example one process would be allocated on each
processor. If it is a uniprocessor machine then all four processes will be allocated to the same processor. Function
bsp pid returns the identification number of the process issuing this call. The output of this program looks like the
following one.

3

Hello World from process 3 of total 4
Hello World from process 1 of total 4
Hello World from process 0 of total 4
Hello World from process 2 of total 4

This simple program illustrates how BSPlib handles I/O. If a number of processes writes on the standard out-
put/error, the write operations are performed in a non-deterministic way. The output of the printf statement (one
per process) is printed on standard output in a totally arbitrary order. For types of operations other than output
(i.e. input, file access, redirection from standard output to a file, etc), the only guarantee is that process zero (O) will
perform them correctly (the other processes may or may not work as expected).

Remarks
The total number of processes generated may be different than the argument to bsp begin. The correct value is

the one returned by bsp nprocs after the bsp begin call.
As there can be only one bsp begin BSPlib supports static allocation of processors only. The state of the program

before bsp begin is inherited by process zero. No other process normally inherits this state. For example, arguments
to main will be known to process zero only after bsp begin. One needs to replicate them to the remaining processes.

For a BSPlib program to terminate gracefully, every allocated process MUST execute a bsp end.
If intermediate files like bsp21370 pre.c and bsp21370 pre.o are generated, ignore them (by removing them).
ATTENTION!
As you are writing you first BSP programs make sure that no unterminated processes are hanging around (in case

bsp begin, bsp end or bsp abort were not issued properly). Check this by issuing, say, a

% ps -ef |egrep bsp0

(instead of bsp0 above, use your own account), and observe abnormal processes that may be hanging around. The
name of each process appears in the ninth column (name of executable file) and the process id in the second column
beside the user name. Kill unwanted processes by issuing a

% kill -9 20117

where in this example 20117 is a column 2 processor id of an unwanted process.

2.2 Abnormal Termination

void bsp_abort(char *format, . . .);

Function bsp abort provides a mechanism for safe and graceful error control and process termination under BSPlib.
As a bsp begin statements allocates more than one processes, in case of an error, these processes can be gracefully
terminated if a single process issues a bsp abort call. Parameter format is a C format string like the one used in
printf. C program abort.c in the Examples directory in bsp0 shows a use of this statement.

Remarks
If more than one processes issue a bsp abort statement in the same BSP superstep, one, all or a subset of them

may succeed in printing their format strings on standard error.

2.3 Process Control

int bsp_nprocs(void);
int bsp_pid(void);
double bsp_time(void);

Function bsp nprocs returns the number of processes/processors that have been allocated if the call is issued before
a bsp begin and it returns the number of processes p allocated to the SPMD program if it is issued after a bsp begin
(MAXPROC). In the latter case, it is 1 ≤ p = bsp nprocs() ≤ MAXPROC. Each of p processes thus created is assigned
a unique identifier id such that 0 ≤ id < p. This identifier is returned when a call bsp pid() is subsequently issued.
Examples that use these calls can be found in programs control.c and nprocs.c in the Examples directory.

Function bsp time can be issued by any process id at any time after bsp begin and the value returned is the
time in seconds after bsp begin and until this function call is issued by id. Even if processes issue time requests
simultaneously the value returned by each one may be (and very likely is) different. Note that the time returned is
wall-clock (NOT cpu) time. Program bsptime.c in the Examples directory produces the following output

4

% bsprun -npes 4 bsptime
Hello from process 3 of total 4
Time in process 3 is 2.162484
Hello from process 1 of total 4
Time in process 1 is 2.211668
Hello from process 2 of total 4
Time in process 2 is 2.196165
Hello from process 0 of total 4
Time in process 0 is 2.174898

Remark
Note that bsp pid returns an integer between 0 (inclusive) and bsp nprocs (exclusive).
The time returned by bsp time is wall-clock (NOT CPU) time.

2.4 Synchronization

void bsp_sync(void);

A BSP and a BSPlib program consists of a number of supersteps. Communication during a superstep becomes
effective and remote data are guaranteed to be locally available at the end of that superstep. A function call bsp sync()
signifies the end of the current superstep (the segment of computation in BSPlib between two successive bsp sync
calls or between a bsp begin and the first bsp sync) and remote data are locally available after this call has been
completed.

BSPlib supports only global processor synchronization in barrier style. This means that all processors MUST
execute a bsp sync() statement. Under library-level 0 a diagnostic will be printed (eg: ”Inconsistent supersteps
between the processes”). Such a message means that processors are executing different bsp sync() or perhaps one
that appears in the same source line but in different iterations.

Such a situtation may arise unde the following case

bsp_put(blah blah);

if (bsp_pid() == 10) {
bsp_put(blah blah blah);
bsp_sync();

}

bsp_put(blah blah);
bsp_sync();

Such a program fragment will raise such an error. Change it into something like.

bsp_put(blah blah);

if (bsp_pid() == 10) {
bsp_put(blah blah blah);
/* sync removed */

}
bsp_put(blah blah);
bsp_sync();

2.5 Direct Remote Memory Access

The DRMA communication facilities offered by BSPlib allow remote access of (communication into and from) any type
of contiguous data structure including heap or stack allocated data. This is possible by allowing only preregistered
memory areas to be accessible by remote processes. A memory area becomes available after being registered for remote
access using a bsp push reg function call and ceases to be available after a bsp pop reg function call; both actions

5

take effect in the following superstep. A bsp put (or a more efficient bsp hpput) call stores locally held data in the
calling process into the registered memory area of a remote process. Similarly, a bsp get (or a bsp hpget) call fetches
data from a registered memory area of a remote process into the local memory of the calling process.

Note that DRMA operations do not require the cooperation of the remote process and therefore data may be
modified without the control of the remote process that stores them. Buffering can be used to increase the potential
safety of these operations. There are various buffering schemes that are available.
buffered on destination, where writing into the registered areas will occur at the end of the superstep once all

remote reads have been performed.
unbuffered on destination, where writing into the registered areas can take place at any time during a superstep

(a semantically unsafe operation if the data-structures held in these areas are accessed during the superstep).
buffered on source, where information to be remotely communicated is copied first into a buffer and then

transmitted.
unbuffered on source, where information is transmitted at any time during a superstep, a potentially unsafe

operation if the data-structure stored in the registered area is changed during the superstep.
Note that in many other cases, such as when multiple processes write into the same registered memory locations,

the information actually written is nondeterministically chosen.

2.5.1 Registration

void bsp_push_reg(const void *addr, int size);
void bsp_pushregister(const void *addr, int size);
void bsp_pop_reg(const void *addr);
void bsp_popregister(const void *addr);

Operations bsp push reg and (obsolete but still valid) bsp pushregister are semantically identical. So are
bsp pop reg and (obsolete but still valid) bsp popregister. Parameter addr is the address of (first byte of) the
area being registered or unregistered and size is the size of that area in bytes (i.e. a non-negative integer number).

Memory areas where information is going to be written into or copied from need to be registered in BSPlib. Each
process thus issues a bsp push reg indicating the first address of a registered area and its size in bytes. Note that
memory areas may be registered more than once; two areas can be registered for example with the same initial address
but of different size.

Remark
Note that registration takes effect at the following superstep. A bsp sync may be required after successive registra-

tions. If a memory area is no longer required for remote communication it can be unregistered by issuing a bsp pop reg
which also takes effect in the following superstep. If a BSP program tries to communicate into an unregistered area, a
runtime error is flagged. The size of a registered area must be a non-negative number. Make sure in your programs
that in each function each push corresponds to a pop. If a data structure has been pushed in another context pop it
in that context as well so that you avoid errors.

2.5.2 Copy into remote memory

void bsp_put (int pid, const void *src, void *dst, int offset, int sze);
void bsp_hpput(int pid, const void *src, void *dst, int offset, int sze);

pid is the identifier of the process where data will be copied into.
src is the address of the first byte of the memory area that will be copied. The evaluation of src occurs in process

bsp pid issuing the function call.
dst is the address of the first byte where data will be stored (not necessarily copied) and must be preregistered.
offset is the offset in bytes from dst where src will start copying into. The calculation of offset is performed

by the process that issues the function call. The reason such a parameter exists is that it allows us to copy into at
addresses dst+offset, without the need to register all such addresses; only address idst needs to be registered and
not all dst+offset.

sze is the number of bytes that will be copied from src into dst+offset. This assumes that src and dst are
addresses of data structures of length at least sze and sze+offset, respectively.

The operation performed by a put (high performance or not) is similar to that performed by a memcpy. bsp put is
buffered on source and destination, whereas bsp hpput is unbuffered on source and destination. Care must be taken
when the high performance primitive is used.

6

The following program (lshift.c in Examples) shifts right the contents of variable x along the processes. Originally,
the value of x at process i is i. After the remote communication the value of x in process i is communicated to the
process whose identifier is one more than i (process p − 1 sends its x value to 0).

#include "bsp.h"

int main(void) {
int x;
bsp_begin(bsp_nprocs());

x=bsp_pid();
printf("processor %d holds value %d before the put\n",bsp_pid(),x);
bsp_push_reg(&x,sizeof(int));
bsp_sync();

bsp_put((bsp_pid()+1)%bsp_nprocs(),&x,&x,0,sizeof(int));
bsp_sync();
printf("processor %d holds value %d after the put\n",bsp_pid(),x);
bsp_end();

}

The buffering of bsp put ensures that data are read before being overwritten. If a bsp hpput were used instead, it
could have been the case that processor i would be sending to i+ 1 the value it received from processor i − 1 and not
its original value i.

Remarks
Only the destination area needs to be registered. The source area does not have to be registered. The destination

area dst must be registered by a size which is at least offset+sze, otherwise a runtime error is flagged. sze=0
communication does nothing. If pid=bsp pid, a process copies into its own memory.

2.5.3 Copy from remote memory

void bsp_get (int pid, const void *src, int offset, void *dst, int sze);
void bsp_hpget(int pid, const void *src, int offset, void *dst, int sze);

pid is the identifier of the process where data will be copied from.
src is the address of the first byte of the preregistered memory area that will be copied. The evaluation of src

occurs in process pid.
offset is the offset in bytes from src where data will be copied from. The calculation of offset is performed by

the process that issues the function call.
dst is the address of the first byte where data will be stored (calculation occurs at the processor issuing the call).
sze is the number of bytes that will be copied from src+offset into dst. This assumes that dst and src are

addresses of data structures of length at least sze and sze+offset, respectively.
Operation bsp get is buffered on source and destination, whereas bsp hpget is unbuffered on source and destination.

Only the source src needs to be registered before the superstep in which the call is issued.

Remark
For buffered communication, all data related to put and get operations are read into buffers before the operations

are effected (i.e. before the remote values are copied into the remote memory areas). For unbuffered communication,
the copy operation can take place at any time during the superstep. The behavior of the library on one machine may
be totally different from that on another machine.

The following program (rshift.c in Examples) shifts left the contents of x along the processors. Originally, the
value of x at processor i is i. After the remote communication the value of x in processor i is communicated to the
processor whose identifier is one less than i (process 0 sends its x value to p − 1).

#include "bsp.h"

int main(void) {

7

int x;
bsp_begin(bsp_nprocs());

x=bsp_pid();
printf("processor %d holds value %d before the get\n",bsp_pid(),x);
bsp_push_reg(&x,sizeof(int));
bsp_sync();

bsp_get((bsp_pid()+1)%bsp_nprocs(),&x,0,&x,sizeof(int));
bsp_sync();
printf("processor %d holds value %d after the get\n",bsp_pid(),x);
bsp_end();

}

Remark
Only the source memory area needs to be registered. The destination area does not have to be registered. The

source area src must be registered by a size which is at least offset+sze, otherwise a runtime error is flagged. sze=0
communication does nothing. If pid=bsp pid, a process copies into its own memory.

2.6 Other non-primitive operations

The library supports non-primitive operations like broadcasting, parallel prefix over addition (called scan). One can
consult the manual pages for the syntax of these operations.

3 Example

We present a code sample that shows how one can replicate a command line argument to the remaining processes.
Note that under BSPlib, process 0 is the one that holds the correct values for command line parameters (the other
processes may or may not have the correct values). When the remaining p−1 processes are spawn, these values are not
(necessarily) replicated to the these processes. It is the responsibility of the programmer to perform this replication.

#include "bsp.h"
int main(int argc, char **argv) {
int x,i;

bsp_begin(bsp_nprocs());
/* Register */
bsp_push_reg(&x,sizeof(int));
bsp_sync(); /* end of first superstep */

x=-1;
if (0==bsp_pid()) x=atoi(argv[1]);
printf("Before: processor %d holds value %d before the put\n",bsp_pid(),x);

/* Processor 0 sends its x value to the remaining processors */
if (0==bsp_pid()){
for(i=1;i<bsp_nprocs();i++)

bsp_put(i,&x,&x,0,sizeof(int));
}
bsp_sync(); /* end of second superstep */

printf("After: processor %d holds value %d after the put\n",bsp_pid(),x);
bsp_end();

}

8

4 Installation of BSPlib on a Linux machine

1) Get file v1.3_bsplib_toolset.tar

2) Tar xvf it in a directory of your choice

3) It creates a BSP directory under the directory of step 2.

4) cd BSP
and read
v1.3_bsplib.README.ps
for installation instructions.

Both
v1.3_bsplib.README.ps
and
v1.3_bsplib.README.pdf
are availabel in /home/bsp0/Info as well.

5) If you are lazy to read the installation notes this is how I did it.

Let BSP be installed in directory with absolute pathname
/home/bsp0/test/

a. perform a
% set path=(/home/bsp0/test/BSP/bin $path)

b. cd to BSP
% cs /home/bsp0/test/BSP

c.
% env BSP_ONLINE_PROCS=1 ./configure

d.
% make tools

e. Test correct completion of step d.
% bsparch -arch

it must return Linux
% bsparch -device

it must return SHMEM_SYSV

f. start compilation
% make

g. complete installation
% make install

h. That’s it! Run a bsp program to test the installation.

9

