
A.V.Gerbessiotis CIS 668 Fall 2000
BSP Matrix Mult. 10-16-2000 Handout 12

A BSP matrix multiplication implementation
The BSP algorithm for matrix multiplication presented below was presented in the seminal work of [1]. It works

for p ≤ n2. Each processor is assigned the task of computing an n/
√

p× n/
√

p submatrix of the product A×B. The
input matrices A and B are divided into p block-submatrices, each one of dimension m×m, where m = n/

√
p. We call

this distribution of the input among the processors block distribution. This way, element A(i, j), 0 ≤ i < n, 0 ≤ j < n,
belongs to the (j/m) ∗ √p + (i/m)-th block that is subsequently assigned to the memory of the same-numbered
processor. Let Ai (respectively, Bi) denote the i-th block of A (respectively, B) stored in processor i. With these
conventions the algorithm in [1] can is described in Figure 1. The following Proposition describes the performance of
the aforementioned algorithm.

begin Mult A (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; pj = q/

√
p ; Cq = 0;

3. al ← Api+l∗√p, 0 ≤ l <
√

p;
4. bl ← Bpj∗√p+l, 0 ≤ l <

√
p;

5. for 0 ≤ l <
√

p do
Cq = Cq + al × bl;

end Mult A

Figure 1: Procedure Mult A.

Proposition 1 Algorithm Mult A for multiplying two n× n matrices A and B stored according to the block distri-
bution requires, for any p ≤ n2, computation time Cmul(n) that is given by

Cmul(n) = max {L,
(2n− 1)n2

p
},

and communication time Mmul(n) that is given by the expression

Mmul(n) = max {L, g
2n2

√
p
}.

One immediately realizes that algorithm Mult A is not memory efficient since it requires more local memory per
processor – by a factor of

√
p – than the required one. Algorithm Mult B shown in Figure 2 is the memory efficient

variant of Mult A. It is not synchronization efficient though since its number of supersteps is not constant any more;
it has been increased by a factor of

√
p. The performance of algorithm Mult B is summarized in Proposition 2.

begin Mult B (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; pj = q/

√
p ; Cq = 0;

3. for 0 ≤ l <
√

p do
begin

4. a← A((pi+pj+l) mod
√

p)∗√p+pi
;

5. b← B((pi+pj+l) mod
√

p)+pj∗√p;
6. Cq = Cq + a× b;

end
end Mult B

Figure 2: Procedure Mult B.

Proposition 2 Algorithm Mult B for multiplying two n × n matrices A and B stored according to the block distri-
bution requires, for any p ≤ n2, computation time Cmul(n) that is given by

Cmul(n) =
√

p max {L,
(2n− 1)n2

p3/2
}



and communication time Mmul(n) that is given by the expression

Mmul(n) =
√

p max {L, g
2n2

p
}

In order to show the efficiency of algorithm design on the BSP model we present some experimental results for
matrix multiplication on Cray T3D; additional results can be found in the author’s Web page. Algorithm MultT B
is a variation of Mult B where in order to multiply A with B, matrix A is first transposed and the loop for matrix
multiplication is changed accordingly. This way the access patterns for both A and B are the same (column - column
as opposed to row - column) thus improving locality (cache usage), and subsequently program performance.

Algorithm Mult B
p = 1 p = 4 p = 16 p = 64

n Time Mfl Time Mfl Time Mfl Time Mfl
(sec) rate (sec) rate (sec) rate (sec) rate

256 4.1 7.9 1.1 7.8 0.28 7.4 0.03 13.9
512 34.0 7.8 8.4 7.9 2.1 7.7 0.56 7.4
1024 289.8 7.4 68.4 7.8 16.9 7.9 4.3 7.7
2048 - - - - 136.8 7.8 33.8 7.9

Table 1: Execution time for Mult B on the Cray T3D

Algorithm MultT B
p = 1 p = 4 p = 16 p = 64

n Time Mfl Time Mfl Time Mfl Time Mfl
(sec) rate (sec) rate (sec) rate (sec) rate

256 2.3 14.3 0.58 14.4 0.15 13.7 0.03 15.1
512 20.7 12.9 4.7 14.1 1.16 14.4 0.30 13.5
1024 202.7 10.5 41.7 12.8 9.4 14.1 2.3 14.3
2048 - - - - 83.5 12.8 19.0 14.1

Table 2: Execution time for MultT B on the Cray T3D

Finally, we outline a matrix multiplication algorithm that is computation, communication and synchronization
efficient. It fails, however, to be memory efficient, as its memory requirements are a multiplicative factor p1/3 from
the optimal. Algorithm MultT C is outlined in the remainder of this section.

In MultT C matrices A and B (and the result C) are split into two ways into submatrices. Each matrix (A, B and
the result C) is split into p “physical” block-submatrices, as in the previous algorithms, each of size n/p1/2 × n/p1/2.
A “physical” block-submatrix indicates the part of the matrix stored in a single physical (processor) location (i.e.
block-submatrix Ai is stored in processor i). At the same time, each of the three matrices is split into p2/3 “virtual”
block-submatrices each of size n/p1/3×n/p1/3. A “virtual” block-submatrix indicates the block geometry that will be
used in the matrix multiplication algorithm to be outlined below. The elements of a “virtual” block-submatrix may
be stored in more than one physical processors.

Whereas in the first two algorithms “physical” and “virtual” block-submatrices coincided in number and dimension,
in this communication efficient algorithm are clearly distinguished.

Let the “virtual” block-submatrices be identified as Aij , Bij and Cij . Matrix multiplication will thus require the

computation of all Cij =
∑p1/3

k=1 Cijk =
∑p1/3

k=1 AikBkj , where Cijk = AikBkj .
The algorithm consists of the following steps. We name the processors (i, j, k) the way we did in the matrix

multiplication algorithm on the hypercubic networks.
Step 1. Processor (i, j, k) gets Aik and Bkj . Note that each of these two “virtual” block-submatrices may originate
from more than one processors. Each processor sends at most 2n2/p elements (but each one replicated p1/3 times) and
receives at most 2n2/p2/3 elements. The communication cost of Step 1 is max {L, 2gn2/p2/3}. Subsequently, the two
submatrices are multiplied as in the sequential case a step requiring at most max {L, 2n3/p} time. Partial-submatrix
Cijk is thus computed on processor (i, j, k). Each element of such a submatrix is a partial sum of an element clm of
the result matrix C.

2



Step 2. Each element of Cijk is transmitted from (i, j, k) to that physical processor that stores the “physical” block-
submatrix of C whose elements will be formed as sums of the receiving elements (partial sums) of Cijk. Note that
each (i, j, k) processor may send its elements to more than one physical processors. At the completion of this step,
each of the p processors storing a block-submatrix of C of dimension n/p1/2× n/p1/2 receives at most p1/3 ·n2/p such
elements (partial sums). The complex communication performed in this step requires time max {L, gn2/p2/3}.
Step 3. The received partial sums are added. p1/3 partial sums are summed to give an element of C stored at a
physical processor, for a total of n2/p such elements (of a “physical” block-submatrix). The total computation time
performed is max {L, n2/p2/3}.

Proposition 3 Algorithm Mult C for multiplying two n × n matrices A and B stored according to the block distri-
bution requires, for any p ≤ n2, computation time Cmul(n) that is given by

Cmul(n) ≤ max {L, 2n3/p}+max {L, n2/p2/3},
and communication time Mmul(n) that is given by the expression

Mmul(n) = max {L, 2g
n2

p2/3
}+max {L, g

n2

p2/3
}.

The optimality in communication of the algorithm is established by the following result.

Theorem 1 On a model of computation that allows the operations {+, ∗} only, if any processor reads s elements of A
and B and computes at most s partial sums of C, it can compute at most O(s3/2) multiplicative terms for these sums.

This way, if a processor reads at most s elements of A and B it can compute at most O(s3/2) multiplicative terms
of C. Combined, all p processors can compute p O(s3/2) such terms which must be Ω(n3). Therefore s = Ω(n2/p2/3)
and thus algorithm Mult C is communication optimal.

1 A BSP program in ANSI-C

Below, the source code for matrix multiplication algorithm MultT B tested is given. Initially, two global n × n
matrices Ag and Bg are distributed among p processors. The p processors are divided into

√
p groups of

√
p processors

each. Element (i, j) of Ag or Bg is stored in the i/
√

p-th processor of the j/
√

p processor group, that is, processor
(j/
√

p) ∗ √p + i/
√

p.
Function multiply par requires five arguments, the two input matrices A and B which contain the n2/p elements

of Ag and Bg that are local to a particular processor, the result C that will hold n2/p elements of the product Cg, the
dimension n, and

√
p (which must be an integer).

As we have previously mentioned, A, B and C are ANSI-C pointers to a double data type. We store matrices in
the form of an on dimensional array. This way, element (i, j) of a two-dimension matrix is stored in position j ∗ n+ i.
All indices are in the range 0, . . . , n− 1.

The BSPlib allows for SPMD (Single ProgramMultiple Data) programming. The program that calls multiply par
spawns p processes each executing the same code. Each such process is assigned a unique identifier that can be accessed
by bsp pid(). The number of available processes is available through a call to bsp nprocs(). Among the variables
used, nprocs and pid hold the number of available processors p and the processor identifier of a process.

1. void _multiply_par(double *A,double *B,double *C,int n,int p_sqrt )
2. {
3. register int nprocs=bsp_nprocs(); /* # of processors */
4. register int pid=bsp_pid(); /* processor identifier */

Variables a and b will hold local copies of A and B that will be fetched during the course of the algorithm (lines
4 and 5 of Figure 2). Variable ni holds n/

√
p and variables ppi and ppj hold respectively, the index of processor pid

within processor group ppj, and the processor group to which processor pid belongs.

5. double *a,*b; /* local storage */
6. register double tmp; /* temporary variable */
7. register int i,j,k,l; /* indices */
8. register int t1,t2, /* temporary indices */
9. ppi,ppj, /* index and processor group*/

/* for processor pid */
10. ni; /* n/sqrt(p) */

3



In the following code segment ni, ppi and ppj are computed.

11. ni=n/p_sqrt;
12. ppi=pid % p_sqrt; /*index of pid within its (column block) group */
13. ppj=pid / p_sqrt; /* (column-block) group pid belongs to */

In lines 14-18, allocation of memory space for a and b is performed. Function check if null() checks whether a
returned pointer by malloc() is empty or not and in the former case prints an informative diagnostic message.

14. /* Allocation and checking */
15. a = (double *)malloc(ni*ni*sizeof(double));
16. check_if_null((void *)a,"in multiply_par","a");
17. b = (double *)malloc(ni*ni*sizeof(double));
18. check_if_null((void *)b,"in multiply_par","b");

A registration of variables that hold data to be communicated is required in BSPlib. This is performed in lines
19-21.

/* Registration */
19. bsp_push_reg(A,ni*ni*sizeof(double));
20. bsp_push_reg(B,ni*ni*sizeof(double));
21. bsp_sync();

An initialization of the result matrix C is performed in lines 22-24.

/* Initialization */
22. for (j=0;j<ni;j++)
23. for (i=0,t1=j*ni;i<ni;i++)
24. C[t1 + i]= 0.0;

The number of communication rounds (supersteps) for this matrix multiplication routine is
√

p; line 25 initiates
the loop of line 3 or Figure 2. In round l the required submatrices stored in processor ((pi + pj + l) mod

√
p) ∗√p+ pi

(for A) and ((pi+pj + l) mod
√

p)+pj ∗√p (for B) are fetched. These operations correspond to lines 4 and 5 of Figure
2. The syntax of bsp get(processor, source, offset, destination, size) is as follows: processor identifies
the processor from whom data will be obtained, source is a pointer to the structure that will provide the data from
processor, offset is an offset in bytes of the first address of the data to be transferred from source, destination
is the destination address in pid of the data that will be transferred and size is the size of transferred data in bytes.

25. for (l=0;l<p_sqrt;l++) {
/* Efficient non-conflicting communication */
/* A 2n^2/p relation is communicated */

26. bsp_get(((ppi+ppj+l)%p_sqrt)*p_sqrt+ppi,A,0,a,ni*ni*sizeof(double));
27. bsp_get(((ppi+ppj+l)%p_sqrt)+ppj*p_sqrt,B,0,b,ni*ni*sizeof(double));
28. bsp_sync();

In lines 29-34 array a is transposed so that the following multiplication loop be performed more efficiently.

/* Transpose a */
29. for (i=0,t2=0;i<ni;i++,t2+=ni)
30. for (j=i,t1=i*ni;j<ni;j++,t1+=ni) {
31. tmp=a[t2+j];
32. a[t2+j]=a[t1+i];
33. a[t1+i]=tmp;
34. }

Lines 35-44 perform the local multiplication of line 6 of Figure 2.

/* Multiplication */
35. for (j=0;j<ni;j++) {
36. t1=j*ni;
37. for (i=0;i<ni;i++) {

4



38. t2=i*ni;tmp=0.0;
39. for (k=0;k<ni;k++)
40. tmp += (b[t1+k]*a[t2+k]);
41. C[t1+i] += tmp;
42. }
43. }
44. } /* end of (loop) l-th superstep */

A de-registration of variables is performed, followed by a deallocation of variables.

45. bsp_pop_reg(B);
46. bsp_pop_reg(A);

47. free((void *)b);
48. free((void *)a);
}

References

[1] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103-111, August
1990.

5


