
A.V.Gerbessiotis CIS 668 Fall 2000
PAssignment 2 11-15-2000 Handout 13

Programming Assignment 2
(Due: December 13 , 2000)

1 What to hand in

You are asked to hand in the following deliverables.

(1) A bspX.c file, where bspX is your account, that contains all the C functions required below.
Submit this file by e-mail to the address alexg@cis.njit.edu as an ASCII text file including
the name bspX.c of the file in the Subject line of the e-mail. Make sure that your mailer DOES
NOT send it as an attachment.

(2) For each function explain what it does what the various arguments denote. For such explanatory
statements use C type comments.

/* This is a C comment */
/* This is a multiline

C comment
*/
// Do no use such a comment line

Make sure that the entry points of your functions adhere to the format outlined below or it will not be
possible for them to be tested properly. As soon as bspX.c is received it will be compiled and linked to the
testing functions.

Make sure that your source file compiles under standard ANSI C. Do not use extensions of ANSI C or
any C++ constructs.

It is imperative that the file I receive from you DOES NOT include a main() function. Do your testing
by linking this file to some separate testing files of yours. In case your C functions do not work as specified,
you may receive partial credit depending on the documentation supplied (bug list etc).

For the remainder of this document the lecture notes on BSP and BSPlib (Handouts 10 and 11, and
Subject 7) and broascasting under the BSP model (Subject 8) will be used as a reference.

2 What to implement

Implementation is required for the function described in Part A. Part A is worth 100 points.
Part B is worth 50 points. Part B is optional and worth 50 points. Students who don’t do it

will not be penalized; students who do it can only improve their course grade. In order to
receive credit for Part B you must do Part A as well.

3 Which machine to use

Telnet in pcc20.njit.edu and use login names/passwords assigned in class.

4 Part A: 2-phase parallel prefix algorithm

You are asked to implement a 2-phase parallel prefix algorithm similar to the 2-phase broadcasting algorithm
presented in class, where the associative operator operates pairwise to the elements of two vectors (not just



two scalar values). If two vectors are combined by the operator, the result is a vector of the same size whose
i-th element is the combination of the i-th elements of the two vectors.

The algorithm works similarly to the 2-phase broadcasting algorithm. Initially, each processor holds a
vector of elements (scalar values) of some (vector) size. Each processor splits its own vector into p pieces and
sends piece i to processor i. Processor i receives p i-th pieces (one from each processor). It then computes
a sequential prefix problem on vectors, where the j-th vector is the i-th piece received by processor i from
processor j. In the final phase of the algorithm the j-th result vector of the prefix operation at processor i
is sent back to processor j which reconstructs from the received results the result of the parallel prefix.

Each vector consists of multi elements/components and each component is nbytes bytes long. The
function that implements this algorithm will have the following prototype.

void bsp_2_mprefix(void (*operator)(),
int multi,
char *from,
char *to
int nbytes);

where

• operator is a pointer to a user-supplied function that takes four arguments and has the following
prototype.

void operator(data *result,data *left,data *right,int size);,

where result, left, right point respectively to three arrays/vectors whose elements are of
the elementary data-type data and each array is of length at least size. Function operator
combines the i-th entry of left with the i-th entry of right and stores the result in the i-entry
of result for all i such that i < size. For those of you familiar with the C standard library
function qsort, the functionality (not semantics!!) of operator is similar to that of compare in
that function.

• multi is the length of the input vector/array over which parallel prefix will be performed.

• from is the base address of the first element of the input array/vector F over which parallel
prefix will be performed.

• to is the base address of the first element of the result vector T .

• nbytes is the size in bytes of a vector element/component.

Let Fi be the vector stored in processor i (i.e. abusing notation from = (char *) &Fi[0]). Let the
result vector stored in processor i be denoted by Ti (i.e. to = (char *) &Ti[0]). At the completion of the
algorithm, Ti = F0 + . . .+Fi, where + denotes component-wise combination of two vectors that is for three
vectors A,B,C of length n, A = B + C is computed with the call operator(A,B,C,n);

Note that the operations performed in bsp 2 mprefix should be data-blind, that is, no reference to the
data data-type should be made, except for its size which is the last argument of the function call.

Remark
Your implementation should work for any vector size n (multi in our notation). This would

require that the i-th piece of a vector to be of size dmulti/pe or bmulti/pc depending on whether i is less
than or at least (multi mod p).

Example
(1) Let us have two arrays one, two of a scalar C data-type that allows addition of such data-type

instances. Let the length of each array be size. A parallel prefix operation will be issued on one and the
result will be stored in two. The following code fragments realize this operation.

2



data *one,*two;

one= (data *) malloc(size*sizeof(data));
two= (data *) malloc(size*sizeof(data));

bsp_push_reg(one,size*sizeof(data));
bsp_push_reg(two,size*sizeof(data));
bsp_sync();

/* Input vector one is set to some input values */

bsp_2_mprefix(oper_add,size,(char *)one, (char *) two,sizeof(data));

where oper add has been defined as follows.

void oper_add(data *result, data* left, data *right, int n)
{

int i;
for(i=0;i<n;i++)

result[i]=left[i]+right[i];
}

Note that data could have been defined in a definition file as follows.

typedef int data;

Remark
Note that BSPlib function bsp scan implements a variant of this algorithm. In that variant, all but the

last pieces of a vector have bmulti/pc elements and the last vector piece holds the remaining elements. This
does NOT consitute a solution for this part nor WILL any credit be given to such a solution.

5 Part B (optional for Extra credit): Tree-based parallel prefix algo-
rithm

Implement a parallel prefix algorithm that works on a k-ary tree (like the broadcasting algorithm in Part A
of PA1) and derives from the lg p-round PRAM algorithm presented in class. A prototype for this function
is given below.

void bsp_mprefix(void (*operator)(),
int multi,
int degree,
char *from,
char *to
int nbytes);

where variable declarations follow the rules outlined in Part A of this assignment and Programming Assign-
ment 1.

3


