
A Proposal for the BSP Worldwide Standard

Library

(preliminary version)

Mark W. Goudreau1

Jonathan M. D. Hill2

Kevin Lang3

Bill McColl2

Satish B. Rao3;4

Dan C. Stefanescu5

Torsten Suel3;4

Thanasis Tsantilas6

Authors' a�liations:

(1) University of Central Florida

(2) Oxford University

(3) NEC Research Institute, Princeton

(4) University of California at Berkeley

(5) Harvard University

(6) Columbia University

Information concerning BSP Worldwide can be found at:

http://www.bsp-worldwide.org/

Date of publication: April 1996

Contents

1 Introduction 3

1.1 BSP programming languages and libraries : 3

1.2 The BSP communication spectrum : 4

2 Proposal 6

2.1 Creating BSP processes : 6

2.2 Superstep synchronisation : 8

2.3 Bulk synchronous remote memory access : 8

2.3.1 Making local areas available for remote use : : : : : : : : : : : : : : : 9

2.3.2 Bu�ering semantics of DRMA operations : : : : : : : : : : : : : : : : 10

2.3.3 Putting data into a remote location : : : : : : : : : : : : : : : : : : : 11

2.3.4 Getting data from a remote location : : : : : : : : : : : : : : : : : : : 11

2.4 Bulk synchronous message passing : 12

2.4.1 Setting the tag size : 13

2.4.2 Sending a message : 14

2.4.3 Procedures for receiving a message : 14

2.4.4 A lean method for receiving a message : : : : : : : : : : : : : : : : : : 15

2.5 Raising an error and halting : 16

2.6 Timing routine : 16

3 Rationale 17

3.1 Simulating dynamic spawning of processes : 17

3.2 Why there is no subset synchronisation : 18

3.3 Bu�ering of DRMA operations : 19

3.4 Bu�ering, safety and e�ciency : 19

3.5 Bulk synchronous message passing : 19

A Collective communications 22

1

Things to do

1. discuss what can be expected from I/O

2. collective communications

3. discuss DRMA operations in MPI2

4. add useful indexing

2

Chapter 1

Introduction

A bulk synchronous parallel (BSP) computer [7, 11] consists of a set of processor-memory

pairs, a global communications network, and a mechanism for the e�cient barrier synchronisa-

tion of the processors. There are no specialised broadcasting or combining facilities, although

these can be e�ciently realised in software where required. The model also does not deal

directly with issues such as input-output or the use of vector units, although it can be easily

extended to do so.

A BSP computer operates in the following way. A computation consists of a sequence of

parallel supersteps. During a superstep, each processor-memory pair can perform a number

of computation steps on values held locally at the start of the superstep, send and receive a

number of messages, and handle various remote get and put requests. The model does not

prescribe any particular style of communication, although at the end of a superstep there is

a barrier synchronisation at which point any pending communications must be completed.

Although we have described the BSP computer as an architectural model, one can also

view bulk synchrony as a programming discipline. The essence of the BSP approach to parallel

programming is the notion of the superstep, in which communication and synchronisation

are completely decoupled. A BSP program is simply one which proceeds in phases, with

the necessary global communications taking place between the phases. This approach to

parallel programming is applicable to all kinds of parallel architecture: distributed memory

architectures, shared memory multiprocessors, and networks of workstations. It provides a

consistent, and very general framework within which to develop portable software for scalable

computing.

1.1 BSP programming languages and libraries

The communication facilities described in this proposal are drawn from other communication

libraries that provide either direct remote memory access or message passing facilities. In

this section we brie
y summarise the work that has in
uenced this proposal.

The PVM message passing library [3] is widely implemented and widely used. The

MPI message passing interface [9] is more elaborate. It supports blocking and non-blocking

point-to-point communication and a number of collective communications (broadcast, scatter,

gather, reduction, etc.). Although neither of these libraries is directly aimed at supporting

BSP programming, they can be used for that purpose.

The Cray SHMEM library provides primitives for direct remote memory access (or one-

3

4 CHAPTER 1. INTRODUCTION

sided communications). The Oxford BSP Library [10] provides a similar set of programming

primitives for bulk synchronous remote memory access. The core of the library consists of six

routines|two for process management, two for superstep synchronisation, and two for remote

memory access. Higher level operations such as broadcast and reduction are also available.

The Green BSP Library [5, 4] provides a set of message passing primitives for exchanging

�xed sized packets between processes. In contrast to synchronous message passing, the sending

and reception of messages is decoupled. In accordance with superstep semantics, the messages

are guaranteed to be delivered by the end of a superstep|we term this bulk synchronous

message passing.

Split-C [2] is a parallel extension of C which supports e�cient access to a global address

space on current distributed memory architectures. It aims to support careful engineering

and optimisation of portable parallel programs by providing a cost model for performance

prediction. The language extension is based on a small set of global access primitives and

simple memory management declarations which support both bulk synchronous and message

driven styles of parallel programming. There are several other BSP programming languages

under development as part of research projects, such as GPL [8] and Opal [6] at Oxford and

BSP-L [1] at Harvard. We will not discuss those here.

1.2 The BSP communication spectrum

A wide variety of communication operations can be used in a BSP computation. There is

a spectrum between the leanest and most e�cient mechanisms, and those which are more

convenient for the programmer. At one end of the spectrum, unbu�ered bulk synchronous

direct remote memory access (DRMA) provides the highest performance. However it requires

the programmer to consider the existence and location of data structures on the destination

process where data is communicated into, and to ensure that the data on the process initiat-

ing the DRMA is not changed during the lifetime of the superstep (see x2.3.2). At the other

end of the spectrum, bu�ered bulk synchronous message passing (BSMP) is more
exible, as

it relieves the programmer from both of these requirements. There is no need to consider the

existence or placement of data at the destination of the communication, as BSMP communi-

cates into a system bu�er from where messages are copied from by the user at the end of the

superstep. There is also no need to consider if the data on the initiating process is changed

during the lifetime of the superstep as it is bu�ered.

How large are the e�ciency di�erences across the BSP spectrum from unbu�ered DRMA

to bu�ered BSMP? Any overheads with BSMP will be due to the bu�ering of communication

at the sending and destination processes. This can be quanti�ed by considering that if g is the

asymptotic communication bandwidth for a DRMA operation, then g+2m is the asymptotic

communication bandwidth for a BSMP; where m is the cost of writing a single word into

main memory. Since m will never be larger than g, the ratio between the costs of BSMP and

DRMA will never be more than three. For most machines, the ratio will be much less than

this.

In the next chapter we present a proposal for the BSP Worldwide Standard Library. The

library supports both bulk synchronous remote memory access and bulk synchronous message

passing. The set of basic operations is given in Table 1.1. A higher level library, described

in Appendix A, provides various specialised collective communication operations. These are

not considered as part of the core library, as they can be easily realised in terms of the core.

1.2. THE BSP COMMUNICATION SPECTRUM 5

Class Operation See section

Initialisation bsp init x2.1

bsp begin x2.1

bsp end x2.1

Enquiry bsp pid x2.1

bsp nprocs x2.1

bsp time x2.6

Synchronisation bsp sync x2.2

DRMA bsp register x2.3.1

bsp put x2.3.3

bsp get x2.3.4

BSMP bsp set tag size x2.4.1

bsp send x2.4.2

bsp get tag x2.4.3

bsp move x2.4.3

Halt bsp abort x2.5

High Performance bsp hpput x2.3.3

bsp hpget x2.3.4

bsp hpmove x2.4.3

Table 1.1: Core BSP operations

Chapter 2

Proposal

This proposal can be viewed as an attempt to achieve a synthesis of the various approaches

to low level BSP programming which are currently being pursued. Our main concern when

de�ning the semantics for each of the library operations was to provide as general a semantics

as possible, whilst ensuring that the implementor has the greatest possible scope to provide

an e�cient implementation of the library on the various forms of parallel architecture. For

simplicity, we will refer to the library as BSPlib.

2.1 Creating BSP processes

Processes are created in a BSPlib program by the operations bsp begin and bsp end1 as

de�ned in �gure 2.1. They bracket a piece of code to be run in an SPMD manner on a

number of processors. There can only be one instance of a bsp begin/bsp end pair within a

program, although there are two di�erent ways to start a BSPlib program:

� If bsp begin and bsp end are the �rst and last statements in a program, then the entire

BSPlib computation is SPMD.

� An alternative mode is available where a single process starts execution and determines

the number of parallel processes required for the calculation. It can then spawn the

required number of processes using bsp begin. Execution of the spawned processes

then continue in an SPMD manner, until bsp end is encountered by all the processes.

At that point, all but process zero is terminated, and process zero is left to continue

the execution of the rest of the program sequentially.

One problem with trying to provide the second of these modes is that some parallel

machines available today2 do not provide dynamic process creation. As a solution to this

problem we provide the second mode by making such machines simulate dynamic spawning in

the following way: (1) the �rst statement executed by the BSPlib program is bsp init which

takes as its argument a name of a procedure; (2) the procedure named in bsp init contains

1
as a naming convention, all BSPlib C procedures have an underscore within them, whereas in Fortran

we use the same name without an underscore.
2
almost all distributed memory machines, e.g. IBM SP2, Cray T3D, Meiko CS-2, Parsytec GC, Hi-

tachi SR2001.

6

2.1. CREATING BSP PROCESSES 7

void bsp_init(void (*startproc)(void));

void bsp_begin(int maxprocs);

void bsp_end()

SUBROUTINE bspinit(startproc)

INTERFACE

SUBROUTINE startproc

END INTERFACE

SUBROUTINE bspbegin(maxprocs)

INTEGER, intent(IN)::maxprocs

SUBROUTINE bspend()

where maxprocs is the number of processes requested by the user.

startproc is the name of a procedure that contains bsp begin and

bsp end as its �rst and last statements.

Figure 2.1: Procedures to begin and end a BSP computation

bsp begin and bsp end as its �rst and last statements. The rationale for this approach is

described in x 3.1.

Figure 2.2 de�nes a pair of functions that determine the total number of processes and

the number used to identify an individual process. If the function bsp nprocs is called before

bsp begin, then it returns the number of processors which are available. If it is called after

bsp begin it returns n, the actual number of processes allocated to the program, where

1 � n � maxprocs , and maxprocs is the number of processes requested in bsp begin. Each

of the n processes created by bsp begin has a unique value m in the range 0 � m � n� 1.

The function bsp pid returns the value of the process executing the function call.

int bsp_nprocs();

int bsp_pid();

INTEGER FUNCTION bspnprocs()

INTEGER FUNCTION bsppid()

Figure 2.2: Enquiry functions

Notes

1. There can only be a single bsp begin bsp end pair within a BSPlib program. This

excludes the possibility of starting, stopping, and then restarting parallel tasks within

a program, or any form of nested parallelism.

2. The process with bsp pid()=0 is a continuation of the thread of control that initiated

bsp begin. This has the e�ect that all the values of the local and global variables prior

to bsp begin are available to that process.

3. After bsp begin, the environment from process zero is not inherited by any of the other

processes, i.e., those with bsp pid() greater than zero. If any of them require part of

zero's state, then the data must be transferred from process zero.

8 CHAPTER 2. PROPOSAL

4. bsp begin has to be the �rst statement of the procedure which contains the statement.

Similarly, bsp end has to be the last statement in the same procedure.

5. If the program is not run in a purely SPMD mode, then bsp init has to be the �rst

statement executed by the program.

6. bsp begin(bsp nprocs()) can be used to request the number of processes as there are

processors on a parallel machine.

2.2 Superstep synchronisation

A BSPlib calculation consists of a sequence of supersteps. During a superstep each process

can perform a number of computations on data held locally at the start of superstep and may

communicate data to other processes. Any communications within a superstep are guaran-

teed to occur by the end of the superstep, where the bsp nprocs processes synchronise at a

barrier|BSPlib has no form of subset synchronisation (see x3.2). The end of one superstep

and the start of the next is identi�ed by a call to the library procedure bsp sync as de�ned

in Figure 2.3.

The semantics of bsp sync could be modi�ed to allow a process that has reached bsp end

to implicitly meet all superstep barriers with its siblings. We have decided not to include this

in the current proposal. If it were included, one might want to add a stronger synchronisation

primitive which had the same requirement, i.e., full participation, as we have de�ned for

bsp sync here.

void bsp_sync(); SUBROUTINE bspsync()

where any communication occurring between two successive calls to bsp sync

takes e�ect after the latter bsp sync.

Figure 2.3: Procedure for barrier synchronisation

2.3 Bulk synchronous remote memory access

One way of performing data communication in the BSP model is to use Direct Remote

Memory Access (DRMA) communication facilities. The DRMA operations available in the

Cray SHMEM and Oxford BSP libraries require that the communicated data structures are

held in statically allocated memory locations. In BSPlib the DRMA operations are also well

de�ned for stack and heap allocated data structures and for heterogeneous environments.

This is achieved by only allowing a process to manipulate certain registered areas of a remote

memory which have been previously made available by the corresponding processes. In this

registration procedure, processes use the operation bsp register to announce the address of

the start of their local area which is available for global remote use.

The operation bsp put deposits locally held data into a registered remote memory area

on a target process, without the active participation of the target process. The operation

bsp get reaches into the registered local memory of another process to copy data values held

there into a data structure in its own local memory.

2.3. BULK SYNCHRONOUS REMOTE MEMORY ACCESS 9

Allowing a process to arbitrarily manipulate the address space of another process, without

the involvement of that process, is potentially dangerous. The mechanisms we propose here

exhibit di�erent degrees of safety. The right choice depends upon the class of applications

and the desired goals, and has to be made by the user (see x2.3.2 for more details).

2.3.1 Making local areas available for remote use

void bsp_register(const void *ident);
SUBROUTINE bspregister(ident)

<TYPE>, intent(IN) :: ident

where ident is a previously initialized variable denoting the name of the local

area being registered

Figure 2.4: Procedure for registration

A BSPlib program consists of p processes, each with its own local memory. The SPMD struc-

ture of such a program produces p local instances of the various data structures. Although

these p instances share the same name, they will not, in general, have the same physical

address. Due to stack or heap allocation, or due to implementation on a heterogeneous ar-

chitecture, one might �nd that the p instances of variable x have been allocated at up to p

di�erent physical addresses.

To allow BSPlib programs to execute correctly in such a setting we require a mechanism for

relating these various addresses. During a superstep, each process may produce an ordered

sequence of registration operations. The length of this sequence must be the same for all

processes (if not, then an error is raised). For a superstep where the length is k, let ident j
i

denote the argument of the j
th registration operation in process i; where 0 � i < p and

0 � j < k. The registration mechanism allows any DRMA operation to address the remote

area ident
j

r
on process r by giving the corresponding area ident

j

l

on the local process l. More

formally, given a call to bsp register(ident
j

l

), every process i (where 0 � i < p) associates

with its local reference ident j
l

a mapping of the form ident
j

l

7! fident
j

0; : : : ; ident
j

p�1g. When

a DRMA put operation (see x2.3.3) is performed on process l with the following arguments:

bsp put(r; src; tgt
j

l

; offset; nbytes);

the e�ect is to transfer nbytes of data from the data structure starting at address src on

process l into the contiguous memory locations starting at:

tgtj
r
+ offset

on process r; where the base address tgt
j

l

is a registered memory area of the form tgt
j

l

7!

ftgt
j

0; : : : ; tgt
j

p�1g.

Notes

1. Registration takes e�ect at the end of the superstep. DRMA operations may use the

registered areas from the start of the next superstep.

2. Registration information can be changed at any subsequent point in the program by a

further call to bsp register. If no such re-registration is performed then the registra-

tion persists until the end of the program.

10 CHAPTER 2. PROPOSAL

3. Communication into unregistered memory areas raises a runtime error.

4. Registration is a property of an area of memory and not a reference to the memory.

There can therefore be many references (i.e., pointers) to a registered memory area.

5. If only a subset of the processes are required to register data because a programmay have

no concept of a commonly named memory area on all processes, then all processes must

call bsp register although some may register the memory area NULL3. This memory

area is reguarded as unregistered.

6. The explicit registration mechanism removes possible implicit assumptions about the

compilation of static data as used by the Cray SHMEM and Oxford BSP libraries.

It should be noted that static data structures will always have the simple registration

information:

ident
j
l 7! fident

j

l

; : : : ; ident
j

l

| {z }

p copies

g

since, on each processor, static data structures are allocated at the same address4.

2.3.2 Bu�ering semantics of DRMA operations

There are four forms of bu�ering with respect to the DRMA put operations:

Bu�ered remotely: Data communication into registered areas will only take e�ect at the

end of the superstep. Therefore, the registered remote area may be safely operated on

during a superstep, although any changes will be overwritten at the end of a superstep

if data is communicated there.

Unbu�ered remotely: Data communication into registered areas can take e�ect at any

time during the superstep.

Bu�ered locally: The data communicated from a process will contain the values which are

held at the time the operation was called5. Therefore, the process may reuse its storage

area during the superstep.

Unbu�ered locally: The data transfer resulting from a call to a communication operation

may occur at any time between the time of the call and the end of the superstep. There-

fore, for safety, no process should change the data structures used in this communication

during the course of the superstep.

The various bu�ering choices are crucial in determining the safety of the communication

operation, i.e., the conditions which guarantee correct data delivery as well as its e�ects on

the computation taking place on the processors involved in the operation. However, it should

be noted that even the most cautious choice of bu�ering mode does not completely remove

the e�ects of non-determinism from a remote process. For example, if more than one process

transfers data into overlapping memory locations, then the result at the overlapping region

will be nondeterministically chosen; it is implementation dependent which one of the many

\colliding" communications should be written into the remote memory area.

3
the array bspunregistered may be used by Fortran programmers

4
this isn't always the case, as some optimising C compilers un-static statics.

5
more precisely, this is the time when the communication operation is apparent to the process holding the

data.

2.3. BULK SYNCHRONOUS REMOTE MEMORY ACCESS 11

void bsp_[hp]put(
int pid,

const void *src,

void *dst,

int offset,

int nbytes);

SUBROUTINE bsp[hp]put(pid,src,dst,offset,nbytes)
INTEGER, intent(IN) :: pid, offset, nbytes

<TYPE>, intent(IN) :: src, dst

where pid is the identi�er of the process where data is to be stored.

src is the location of the �rst byte to be transferred by the put operation.

The calculation of src is performed on the process that initiates the

put.

dst is the location of the �rst byte where data is to be stored. It must be

a previously registered data area.

offset is the displacement in bytes from dst where src will start copying

into. The calculation of offset is performed by the process that

initiates the put.

nbytes is the number of bytes to be transferred from src into dst. It is

assumed that src and dst are addresses of data structures that are

at least nbytes in size. The data communicated can be of arbitrary

size. It is not required to have size which is a multiple of the word

size of the machine.

Figure 2.5: Procedure for put and hpput

2.3.3 Putting data into a remote location

The aim of bsp put and bsp hpput is to provide an operation akin to memcpy(3C) available

in the Unix <string.h> library. Both operations copy a speci�ed number of bytes, from a

byte addressed data structure in the local memory of one process into contiguous memory

locations in the local memory of another process. The distinguishing factor between these

operations is provided by the bu�ering choice.

The semantics adopted for BSPlib bsp put communication (see Figure 2.5) is bu�ered

locally/bu�ered remotely. While the semantics is clean and safety is maximized, puts may tax

unduly the memory resources of an implementation, thus preventing large transports of data

(see x3.3 for more details). Consequently, BSPlib also provides a high performance put oper-

ation bsp hpput whose semantics is unbu�ered locally/unbu�ered remotely. The use of this

operation requires care as correct data delivery is only guaranteed if neither communication

nor local/remote computations modify either the source or the destination areas. The main

advantage of this operation is its economical use of memory. It is therefore particularly useful

for applications which repeatedly transfer large data sets.

2.3.4 Getting data from a remote location

The bsp get and bsp hpget operations reach into the local memory of another process and

copy previously registered remote data held there into a data structure in the local memory

12 CHAPTER 2. PROPOSAL

void bsp_[hp]get(
int pid,

const void *src,

int offset,

void *dst,

int nbytes);

SUBROUTINE bsp[hp]get(pid,src,offset,dst,nbytes)
INTEGER, intent(IN) :: pid, nbytes, offset

<TYPE> intent(IN) :: src, dst

where pid is the identi�er of the process where data is to be obtained from.

src is the location of the �rst byte from where data will be obtained from.

src must be a previously registered data-structure.

offset is an o�set from src where the data will be taken from. The

calculation of offset is performed by the process that initiates the

get.

dst is the location of the �rst byte where the data obtained is to be placed.

The calculation of dst is performed by the process that initiates the

get.

nbytes is the number of bytes to be transferred from src into dst. It is

assumed that src and dst are addresses of data structures that are

at least nbytes in size.

Figure 2.6: Procedure for get and hpget

of the process that initiated them, see Figure 2.6 for the de�nition of bsp get and bsp hpget.

The semantics adopted for BSPlib bsp get communication is bu�ered locally/bu�ered

remotely. This semantics means that the value taken from the source on the remote process

by the get, is the value at the end of the superstep. Consequently the value written from the

remote process into the destination memory area on the initiating process only takes e�ect

at the end of the superstep as well.

A high-performance version of get, bsp hpget, provides an unbu�ered locally/unbu�ered

remotely semantics in which the two-way communication can take e�ect at anytime during

the superstep.

2.4 Bulk synchronous message passing

Bulk synchronous remote memory access is a convenient style of programming for BSP com-

putations which can be statically analysed in a straightforward way. It is less convenient for

computations where the volumes of data being communicated between supersteps are irregu-

lar and data dependent, and where the computation to be performed in a superstep depends

on the quantity and form of data received at the start of that superstep. A more appropriate

style of programming in such cases is bulk synchronous message passing (BSMP).

In BSMP, a non-blocking send operation is provided that delivers messages to a system

bu�er associated with the destination process. The message is guaranteed to be in the des-

tination bu�er at the beginning of the subsequent superstep, and can be accessed by the

2.4. BULK SYNCHRONOUS MESSAGE PASSING 13

destination process only during that superstep. If the message is not accessed during that

superstep it is removed from the bu�er. In keeping with BSP superstep semantics, a collection

of messages sent to the same process has no implied ordering at the receiving end. However,

since each message may be tagged, the programmer can identify messages by their tag.

In BSPlib, bulk synchronous message passing is based on the idea of two-part messages,

a �xed-length part carrying tagging information that will help the receiver to interpret the

message, and a variable-length part containing the main data payload. We will call the �xed-

length portion the tag and the variable-length portion the payload. Both parts can be of

arbitrary type, but we expect that in Fortran programs the tag will almost always be an

array of integers while the payload will often be an array of reals. In C programs, either part

could also be a complicated structure. The length of the tag is required to be �xed during

any particular superstep, but can vary between supersteps. The bu�ering mode of the BSMP

operations is bu�ered locally/bu�ered remotely. We note that this bu�ering classi�cation is a

semantic description; it does not necessarily describe the underlying implementation.

2.4.1 Setting the tag size

Allowing the user to set the tag size enables the use of tags that are appropriate for the

communication requirements of each superstep. This should be particularly useful in the

development of subroutines either in user programs or in libraries.

The procedure must be called collectively by all processes. Moreover, in any superstep

where bsp set tag size is called, it must be called before sending any messages.

void bsp_set_tag_size (int *tag_bytes);
SUBROUTINE bspsettagsize(tag_bytes)

INTEGER, intent(INOUT) :: tag_bytes

where tag bytes , on entry to the procedure, speci�es the size of the �xed-length

portion of every message in the current and succeeding supersteps;

the default tag size is zero. On return from the procedure, tag bytes

is changed to re
ect the previous value of the tag size (see x3.5 for

rationale).

Figure 2.7: Function for setting tag size

Notes

1. The tag size of incoming messages is prescribed by the outgoing tag size of the previous

step.

2. bsp set tag size must be called by all processes with the same argument in the same

superstep. In this respect, it is similar in nature to a bsp register.

3. bsp set tag size must be called before any bsp send in each process.

4. The default tag size is 0.

14 CHAPTER 2. PROPOSAL

2.4.2 Sending a message

The bsp send operation de�ned in Figure 2.8 is used to send a message that consists of a

tag and a payload to a speci�ed destination process. The destination process will be able to

access the message during the subsequent superstep. It copies both the tag and the payload

of the message out of user space into the system before returning. The tag and payload

inputs are allowed to be changed by the user immediately after the bsp send. Messages sent

by bsp send are not guaranteed to be received in any particular order by the destination

process. This is the case even for successive calls of bsp send from one process with the same

value for pid.

void bsp_send(int pid,

const void *tag,

const void *payload,

int payload_bytes);

SUBROUTINE bspsend(pid,tag,

payload,payload_bytes)

INTEGER, intent(IN) :: pid

<TYPE>, intent(IN) :: tag

<TYPE>, intent(IN) :: payload

INTEGER, intent(IN) :: payload_bytes

where pid is the identi�er of the process where data is to be sent.

tag is a token that can be used to identify the message. Its size is deter-

mined by the value speci�ed in bsp set size tag.

payload is the location of the �rst byte of the payload to be communicated.

payload bytes is the size of the payload.

Figure 2.8: Procedure for sending messages

2.4.3 Procedures for receiving a message

To receive a message, the user should use the procedures bsp get tag and bsp move. The

operation bsp get tag de�ned in Figure 2.9 returns the tag of the �rst message in the bu�er.

The operation bsp move de�ned in Figure 2.10 copies the payload of the �rst message in the

bu�er into payload, and removes that message from the bu�er.

Note that bsp move serves to
ush the corresponding message from the bu�er, while

bsp get tag does not. This allows a program to get the tag of a message (as well as the

payload size in bytes) before obtaining the payload of the message. It does, however, require

that even if a program only uses the �xed-length tag of incoming messages the program must

call bsp move to get successive message tags.

Notes

1. The payload length is always measured in bytes

2. bsp get tag can be called repeatedly and will always copy out the same tag until a call

to bsp move.

3. If the payload to be received is larger than the reception area size reception nbytes,

the payload will be truncated.

2.4. BULK SYNCHRONOUS MESSAGE PASSING 15

void bsp_get_tag(int *status,

void *tag);

SUBROUTINE bspgettag(status, tag)

INTEGER, intent(OUT) :: status

<TYPE>, intent(OUT) :: tag

where status becomes -1 if the system bu�er is empty. Otherwise it becomes

the length of the payload of the �rst message in the bu�er. This

length can be used to allocate an appropriately sized data structure

for copying the payload using bsp move.

tag is unchanged if the system bu�er is empty. Otherwise it is assigned

the tag of the �rst message in the bu�er.

Figure 2.9: Procedure for getting tag of a message

void bsp_move(void *payload,

int reception_nbytes);

SUBROUTINE bspmove(payload,reception_nbytes)

<TYPE>, intent(OUT) :: payload

INTEGER, intent(IN) :: reception_nbytes

where payload is an address to which the message payload will be copied. The

system will then advance to the next message.

reception nbytes speci�es the size of the reception area where the

payload will be copied into. At most reception nbytes will be

copied into payload.

Figure 2.10: Procedure for copying and then removing a message from the bu�er

4. If reception nbytes is zero this simply \removes" the message from the system bu�er.

This should be e�cient in any implementation of the library.

2.4.4 A lean method for receiving a message

int bsp_hpmove(void ** tag_ptr_buf, void ** payload_ptr_buf);

where bsp hpmove is a function which returns -1, if the system bu�er is empty. Other-
wise it returns the length of the payload of the �rst message in the bu�er and
(a) places a pointer to the tag in tag ptr buf; (b) places a pointer to the
payload in payload ptr buf; and (c) removes the message (by advancing a
pointer representing the head of the bu�er).

Figure 2.11: High performance procedure for getting a message

The operation bsp hpmove shown in Figure 2.11 is a non-copying method of receiving messages

that is available in languages with pointers such as C, but not vanilla Fortran.

We note that since messages are referenced directly they must be properly aligned and

contiguous. This puts additional requirements on the library implementation that would not

be there without this feature. The storage referenced by these pointers remains valid until

the end of the current superstep.

16 CHAPTER 2. PROPOSAL

2.5 Raising an error and halting

void bsp_abort(char* format,...);

SUBROUTINE bspabort(err_string)

CHARACTER(*), intent(IN)::err_string

where format is a C-style format string as used by printf. Any other arguments

are interpreted in the same way as the variable number of arguments

to printf.

err string is single error string that is printed when the Fortran routine

is executed. All computation ceases after a call to bsp abort.

Figure 2.12: Procedure for halting a BSP computation

The function bsp abort shown in Figure 2.12 can be used to print an error message followed

by a halt of the entire BSPlib program. The routine is designed not to require a barrier

synchronisation of all processes. A single process in a potentially unique thread of control

can therefore halt the entire BSPlib program.

2.6 Timing routine

double bsp_time(); DOUBLE PRECISION FUNCTION bsptime()

Figure 2.13: High-precision timing function

The function bsp time de�ned in Figure 2.13 provides access to a high-precision timer|the

accuracy of the timer is implementation speci�c. The function is a local operation of each

process, and can be issued at any point after bsp begin. The result of the timer is the time

in seconds since bsp begin. The semantics of bsp time is as though there were bsp nprocs

timers, one per process. BSPlib does not impose any synchronisation requirements between

the timers in each process.

Chapter 3

Rationale

3.1 Simulating dynamic spawning of processes

The aim of the BSPlib initialisation routines is to provide the programmer with the freedom

to calculate the number of processes required in a BSPlib computation before the SPMD

processes are spawned. Unfortunately, this dynamic spawning mechanism does not �t well

with many current distributedmemory machines. On those machines, the number of processes

involved in a computation has to be determined at the time that the BSPlib program is loaded

onto the parallel machine. The purpose of the bsp init primitive is to provide a simple

method of simulating a dynamic spawning mechanism on all parallel architectures.

Consider two di�erent kinds of parallel architecture: one that allows the dynamic creation

of processes, and another that can only start a �xed number of processes at the beginning of

a computation.

Dynamic creation In the example program shown in Figure 3.1, if a parallel machine sup-

ports dynamic process creation, then bsp init has no e�ect on the program. A single thread

of control is initiated at the start of the program, and requests an integer from standard-input

that speci�es the number of BSP processes to spawn. Up-to this number of processes are then

spawned and a message is displayed on the terminal from each process. When bsp end is ex-

ecuted, all but process zero is terminated, and the string "I am process 0" will be printed

by the process that continues to execute the rest of the program sequentially.

Static creation If n processes are available when a BSPlib computation is loaded onto the

parallel machine, then the e�ect of bsp init is to make all but process zero call the zero-arity

procedure speci�ed by an argument to bsp init. As bsp begin has to be the �rst statement

of that procedure, n� 1 processes will idle in bsp begin until the other process reaches that

point in the code as well.

Process zero will return from bsp init and execute the program in isolation of the other

processes until it reaches bsp begin. At that point it will know how many processes the user

has requested. If that number is greater than n, then only n processes will be allotted to the

user. If the number is less than n, then the processes not required by the BSPlib program

will exit1. The program will then continue in a SPMD manner until bsp end is encountered.

1
if the parallel machine does not allow a subset of the processes to exit early, then they will idle to the end

of the program.

17

18 CHAPTER 3. RATIONALE

int nprocs;

void spmd_start() {

begin_bsp(nprocs);

printf("Started process %d out of %d",bsp_pid(),bsp_nprocs());

end_bsp();

}

void main() {

bsp_init(spmd_start);

nprocs = ReadInteger();

printf("Going to try and start %d processes\n",nprocs);

spmd_start();

printf("I am process %d",bsp_pid());

}

Figure 3.1: An example BSPlib program

At that point all but one of the processes will be terminated2, and process zero will continue

to execute the rest of the program sequentially.

3.2 Why there is no subset synchronisation

Although it may sometimes appear to be convenient to have the possibility of groups of

processes synchronising independently, we believe that this can signi�cantly increase the dif-

�culty of BSP cost analysis. The essence of BSP cost modeling is that the cost of a series of

supersteps is simply the sum of the costs of each separate superstep. If subset synchronisation

is allowed, then the cost of each group should probably be calculated independently (using

its own p, g and l ?). The total cost of the computation will then be determined as some

function of the costs of the groups (and their various p, g and l parameters?).

Over the last few years, various research projects on BSP languages have explored more

exible forms of synchronisation in BSP computations. The experience thus far suggests that

in most cases, the advantages are modest or nonexistent, while the disadvantages (particularly

in terms of cost analysis) are usually very considerable. We therefore feel that inclusion of

subset synchronisation in this basic library would be unwise.

The wide variety of possible forms of subset synchronisation seems to provide another

compelling reason for avoiding it at the core level. Should subset synchronisation be: static

or dynamic?, if dynamic then on a superstep by superstep basis?, if static then one level of

groups?, two levels?, many levels?, recursion and nested parallelism?, synchronisation across

groups?, etc.

2
again if a subset of the processes are not allowed to terminate early, then they will idle to the end of the

program

3.3. BUFFERING OF DRMA OPERATIONS 19

3.3 Bu�ering of DRMA operations

Bu�ered DRMA operations maximise safety, ease the debugging process and simplify reason-

ing about programs. Indeed, a DRMA communication operation which is unbu�ered remotely

is potentially dangerous due to the added nondeterminism as data delivery can take e�ect

at any time during a superstep. This puts a major burden on the programmer to determine

when DRMA operations do not interfere with data that is being manipulated locally within

a superstep. Furthermore, if a communication operation is unbu�ered locally, the local data

may be changed by remote communications or by local data manipulations, before being sent.

Thus, if BSP programs do not adhere to separating remote accesses from local manipula-

tion of data, the added nondeterminism will complicate the programming and the debugging

processes.

Bu�ering does not, however, come without cost. Each bu�ered operation requires twice

the amount of memory of it's unbu�ered alternative, and thus it limits the size of data that

can be used in a given application. In turn, this may limit the usefulness of the library.

The solution adopted by BSPlib is to provide a set of maximally safe primitives, bsp put

and bsp get, which can be used to develop and test BSPlib programs. These operations have

a clean, simple semantics and allow a convenient entry point for new BSP programmers.

For high performance programming, BSPlib o�ers a set of fully unbu�ered primitives,

bsp hpput and bsp hpget, which have the potential of performing communication very e�-

ciently, both in terms of time and space. Users can employ these operations from the outset

or as replacements, after they have developed and tested their programs. In either case, their

use requires careful programming in order to avoid undesirable e�ects due to nondeterminism.

3.4 Bu�ering, safety and e�ciency

When using the high-performance communication primitives bsp hpget and bsp hpput that

are not bu�ered locally, it is important that those data structures are available at the end

of the superstep. The lifetime of a superstep may span the scope of many procedures. It

is therefore quite possible to initiate a communication from a stack allocated data-structure,

in a situation where the data structure is out of scope at the end of the superstep. For

example, consider the procedure in Figure 3.2 that performs an all-to-all communication.

The array result is �rst allocated and then registered at the start of the procedure. A for-

loop is then used to copy the value x local to each process into the registered arrays result

in every process at the bsp pid()th position. The similar procedure shown in Figure 3.3 is

however ill-de�ned. As the value of y communicated by bsp hpput only has scope local to

the procedure do store because of the call-by-value semantics of C-procedure invocation,

the variable will not be in scope when the communication actually occurs at the second

bsp sync within bad total exchange. This example shows that the user has to be careful

when communicating from data structures that do not persist for the lifetime of the program.

This is because communication may be delayed until the barrier synchronisation at the end

of each superstep.

3.5 Bulk synchronous message passing

In the BSMP system, the primary design decisions were as follows:

20 CHAPTER 3. RATIONALE

int *good_total_exchange(int x) {

int i, *result;

result=calloc(bsp_nprocs(),

sizeof(int));

bsp_register(result);

bsp_sync();

for(i=0;i<bsp_nprocs();i++) {

bsp_hpput(i,

&x,

result,

bsp_pid()*sizeof(int),

sizeof(int));

}

bsp_sync();

return result;

}

Figure 3.2: Well-de�ned BSPlib program

int *bad_total_exchange(int x) {

int i, *result;

result=calloc(bsp_nprocs(),

sizeof(int));

bsp_register(result);

bsp_sync();

for(i=0;i<bsp_nprocs();i++) {

do_store(i,x,result);

}

bsp_sync();

return result;

}

void do_store(int pid,int y,int *result){

bsp_hpput(pid,

&y,

result,

bsp_pid()*sizeof(int),

sizeof(int));

}

Figure 3.3: Ill-de�ned BSPlib program

� A message consists of two parts: a �xed-length tag and a variable-length payload.

� The length of the tag can vary between supersteps, but all messages sent in a superstep

must have the same tag size.

� The messages are bu�ered locally: after the tag and payload of a message are sent, the

user can safely change the memory that stored the tag and payload.

We address the two-part message decision �rst. Tags are associated with messages for

identi�cation purposes. Users are allowed to select a tag size and format that accommodates

their application. The programmer can conveniently label each message to identify the order

in which the messages were sent, the source process, the data type of the payload, or whatever

information is appropriate for the identi�cation of each message.

It is in general convenient to use tags that are of a di�erent data type than the pay-

load. Since Fortran does not support mixed-type data structures, multi-part messages are

required. For C, it would not have been necessary to treat a tag as a structure that is sep-

arate from the payload of the message. However, even for C the use of a separate tag is

advantageous when transporting large arrays.

We allow the tag size to change to allow for greater modularity in BSP programs. That is,

each subroutine or even each superstep can set the tag as is appropriate for the information

that is communicated during the superstep. The fact that a subroutine may not know the

tag size of the calling procedure required that bsp set tag size return the old tag size so

that a subroutine can reset the tag size upon exit as necessary.

3.5. BULK SYNCHRONOUS MESSAGE PASSING 21

We now discuss some issues concerning implementation. The semantics of the BSMP

primitives are classi�ed as bu�ered locally/bu�ered remotely, but the underlying implementa-

tion can vary greatly for di�erent systems. The natural implementation is to bu�er messages

at the destination. Some implementations may choose to bu�er messages at the source as

well in order to bundle messages and make better use of network bandwidth. Other imple-

mentations will immediately send messages through the network and avoid physical source

bu�ering.

Appendix A

Collective communications

Some message passing systems, such as MPI [9], provide primitives for various specialised

communication patterns which arise frequently in message passing programs. These include

broadcast, scatter, gather, total exchange, reduction, pre�x sums (scan), etc. These standard

communication patterns also arise frequently in the design of BSP algorithms. It is important

that such structured patterns can be conveniently expressed and e�ciently implemented in

a BSP programming system, in addition to the more primitive operations such as put and

get which generate arbitrary and unstructured communication patterns. The library we

have described can easily be extended to support such structured communications by adding

bsp broadcast, bsp combine, bsp scatter, bsp gather, bsp scan, bsp exchange, etc. as

higher level operations. These could be implemented in terms of the core operations, or

directly on the architecture if that was more e�cient.

22

Acknowledgements

The work of Jonathan Hill and Bill McColl was supported in part by the EPSRC Portable

Software Tools for Parallel Architectures Initiative, as Research Grant GR/K40765 \A BSP

Programming Environment", October 1995-September 1998.

The authors would like to thank Rob Bisseling, Richard Miller, David Skillicorn, Bolek

Szymanski and Hong Xie for various discussions on BSP libraries.

23

Bibliography

[1] T Cheatham, A Fahmy, D C Stefanescu, and L G Valiant. Bulk synchronous parallel

computing - a paradigm for transportable software. In Proc. 28th Hawaii International

Conference on System Science, January 1995.

[2] David E. Culler, A. Dusseau, S. C. Goldstein, Arvind Krishnamurthy, S. Lumetta,

Torsten von Eicken, and Kathy Yelick. Parallel programming in Split-C. In Super-

computing'93, pages 262{273, November 1993.

[3] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and Vaidy

Sunderam. PVM 3 Users Guide and Reference Manual. Oak Ridge National Laboratory,

Oak Ridge, Tennessee 37831, May 1994.

[4] Mark W. Goudreau, Kevin Lang, Satish B. Rao, Torsten Suel, and Thanasis Tsantilas.

Towards e�ciency and portability: Programming with the BSP model. In Proc. 8th

Annual ACM Symposium on Parallel Algorithms and Architectures, 1996. (to appear).

[5] Mark W. Goudreau, Kevin Lang, Satish B. Rao, and Thanasis Tsantilas. The Green

BSP Library. Technical Report 95{11, University of Central Florida, August, 1995.

[6] Simon Knee. Program development and performance prediction on BSP machines us-

ing Opal. Technical Report PRG-TR-18-94, Oxford University Computing Laboratory,

August 1994.

[7] W. F. McColl. Scalable computing. In J van Leeuwen, editor, Computer Science Today:

Recent Trends and Developments, number 1000 in LNCS, pages 46{61. Springer-Verlag,

1995.

[8] W. F. McColl and Q. Miller. The GPL language: Reference manual. Technical report,

ESPRIT GEPPCOM Project, Oxford university Computing Laboratory, October 1995.

[9] Message Passing Interface Forum. MPI: A message passing interface. In Proc. Super-

computing '93, pages 878{883. IEEE Computer Society, 1993.

[10] Richard Miller. A library for Bulk Synchronous Parallel programming. In Proceedings

of the BCS Parallel Processing Specialist Group workshop on General Purpose Parallel

Computing, pages 100{108, December 1993.

[11] Leslie G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103{111, August 1990.

24

Index

Fortran BSPlib

Starting BSP

bspbegin, 7

bspend, 7

bspinit, 7

Superstep boundary

bspsync, 8

DRMA

bspget, 12

bsphpget, 12

bsphpput, 11

bspput, 11

bspregister, 9

BSMP

bspgetdata, 15

bspgettag, 15

bspsend, 14

bspsettagsize, 13

Misc

bspabort, 16

bspnprocs, 7

bsppid, 7

bsptime, 16

C BSPlib

Starting BSP

bsp begin, 7

bsp end, 7

bsp init, 7

Superstep boundary

bsp sync, 8

DRMA

bsp get, 12

bsp hpget, 12

bsp hpput, 11

bsp put, 11

bsp register, 9

BSMP

bsp get tag, 15

bsp hpmove, 15

bsp move, 15

bsp send, 14

bsp set tag size, 13

Misc

bsp abort, 16

bsp nprocs, 7

bsp pid, 7

bsp time, 16

example program, 18

25

