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Introduction
The PRAM Model

The Parallel Random Access Machine (PRAM) is one of the simplest ways to model a parallel computer. A PRAM
consists of a collection of (sequential) processors that can synchronously access a global shared memory in unit time.
Each processor can thus access its shared memory as fast (and efficiently) as it can access its own local memory.
The main advantages of the PRAM is its simplicity in capturing parallelism and abstracting away communication and
synchronization issues related to parallel computing. Processors are considered to be in abundance and unlimited in
number. The resulting PRAM algorithms thus exhibit unlimited parallelism (number of processors used is a function of
problem size). The abstraction thus offered by the PRAM is a fully synchronous collection of processors and a shared
memory which makes it popular for parallel algorithm design. It is, however, this abstraction that also makes the
PRAM unrealistic from a practical point of view. Full synchronization offered by the PRAM is too expensive and time
demanding in parallel machines currently in use. Remote memory (i.e. shared memory) access is considerably more
expensive in real machines than local memory access as well and UMA machines with unlimited parallelism are difficult
to build.

Depending on how concurrent access to a single memory cell (of the shared memory) is resolved, there are various
PRAM variants. ER (Exclusive Read) or EW (Exclusive Write) PRAMs do not allow concurrent access of the shared
memory. It is allowed, however, for CR (Concurrent Read) or CW (Concurrent Write) PRAMs. Combining the rules
for read and write access there are four PRAM variants: EREW, ERCW, CREW and CRCW PRAMs. Moreover, for
CW PRAMs there are various rules that arbitrate how concurrent writes are handled.

Convention: In this subject we name processors arbitrarily either 0, 1, . . . , p − 1 or 1, 2, . . . , p.
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The PRAM
Types of PRAMs

(1) in the arbitrary PRAM, if multiple processors write into a single shared memory cell, then an arbitrary
processor succeeds in writing into this cell,

(2) in the common PRAM, processors must write the same value into the shared memory cell,

(3) in the priority PRAM the processor with the highest priority (smallest or largest indexed processor) succeeds
in writing,

(4) in the combining PRAM if more than one processors write into the same memory cell, the result written
into it depends on the combining operator. If it is the sum operator, the sum of the values is written, if it
is the maximum operator the maximum is written.

The EREW PRAM is the weakest among the four basic variants. A CREW PRAM can simulate an EREW one.
Both can be simulated by the more powerful CRCW PRAM. An algorithm designed for the common PRAM can be
executed on a priority or arbitrary PRAM and exhibit similar complexity. The same holds for an arbitrary PRAM
algorithm when run on a priority PRAM.

Assumptions
In this handout we examine parallel algorithms on the PRAM. In the course of the presentation of the various

algorithms some common assumptions will be made. The input to a particular problem would reside in the cells of the
shared memory. We assume, in order to simplify the exposition of our algorithms, that a cell is wide enough (in bits or
bytes) to accommodate a single instance of the input (eg. a key or a floating point number). If the input is of size n, the
first n cells numbered 0, . . . , n − 1 store the input. In the discussion below, we assume that the number of processors of
the PRAM is n or a polynomial function of the size n of the input. Processor indices are 0, 1, . . . , n − 1.
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PRAM Algorithms
Parallel Sum

Problem. Compute x0 + x1 + . . .+ xn−1.
A sequential algorithm that solves this problem requires n − 1 additions.
For a PRAM implementation, value xi is initially stored in shared memory cell i. The sum x0 + x1 + . . . + xn−1 is

to be computed in T = lg n parallel steps. Without loss of generality, let n be a power of two. If a combining CRCW
PRAM with arbitration rule sum is used to solve this problem, the resulting algorithm is quite simple. In the first step
processor i reads memory cell i storing xi. In the following step processor i writes the read value into an agreed cell say
0. The time is T = O(1), and processor utilization is P = O(n).

A more interesting algorithm is the one presented below for the EREW PRAM. The algorithm consists of lg n steps.
In step i, processor j < n/2i reads shared-memory cells 2j and 2j +1 combines (sums) these values and stores the result
into memory cell j. After lg n steps the sum resides in cell 0.

// pid() returns the id of the processor issuing the call.
begin Parallel Sum (n)
1. i = 1 ; j = pid();
2. while (j < n/2i)
3. a = C[2j];
4. b = C[2j + 1];
5. C[j] = a + b;
6. i = i + 1;
7. end
end Parallel Sum

Algorithm Parallel Sum has T = O(lgn), P = n and W = O(n lgn), W2 = O(n).
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PRAM Algorithms
Parallel Sum continued
Algorithm Parallel Sum can be easily extended to include the case where n is not a power of two. Parallel Sum

is the first instance of a sequential problem that has a trivial sequential but more complex parallel solution. Instead
of operator Sum other operators like Multiply, Maximum, Minimum, or in general, any associative operator could have
been used. As associative operator ⊗ is one such that (a ⊗ b)⊗ c = a ⊗ (b ⊗ c).

Exercise 1 Can you improve Parallel Sum so that T remains the same, P = O(n/ lgn), and W = O(n)? Explain.

Exercise 2 What if i have p processors where p < n ? (You may assume that n is a multiple of p).

Exercise 3 Generalize algorithm to any associative operator.
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PRAM Algorithms
Broadcasting

A message (say, a word) is stored in cell 0 of the shared memory. We would like this message to be read by all n
processors of a PRAM. On a CREW PRAM this requires one parallel step (processor i concurrently reads cell 0). On
an EREW PRAM broadcasting can be performed in O(lgn) steps. The structure of the algorithm is the reverse of the
previous one. In lg n steps the message is broadcast as follows. In step i each processor with index j less than 2i reads
the contents of cell j and copies it into cell j + 2i. After �lg n� steps each processor i reads the message by reading the
contents of cell i.

begin Broadcast (M)
1. i = 0 ; j = pid(); C[0]=M;
2. while (2i < P )
3. if (j < 2i)
5. C[j + 2i] = C[j];
6. i = i + 1;
6. end
7. Processor j reads M from C[j].
end Broadcast

A CR?W PRAM algorithm that solves the broadcasting problem has performance P = O(n), T = O(1), and
W = O(n).

The EREW PRAM algorithm that solves the broadcasting problem has performance P = O(n), T = O(lgn), and
W = O(n lgn), W2 = O(n).

Exercise 4 Broadcasting on a hypercube and a butterfly (Hint: Base you solution to the Broadcast algorithm).
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PRAM Algorithms
Parallel Prefix

Given a set of n values x0, x1, . . . , xn−1 and an associative operator, say +, the parallel prefix problem is to compute the
following n results/“sums”.

0: x0,

1: x0 + x1,

2: x0 + x1 + x2,

. . .

n − 1: x0 + x1 + . . . + xn−1.

Parallel prefix is also called prefix sums or scan. It has many uses in parallel computing such as in load-balancing
the work assigned to processors and compacting data structures such as arrays. An algorithm for parallel prefix on an
EREW PRAM would require lg n phases. In phase i, processor j reads the contents of cells j and j − 2i (if it exists)
combines them and stores the result in cell j.

The EREW PRAM algorithm that solves the parallel prefix problem has performance P = O(n), T = O(lgn), and
W = O(n lgn), W2 = O(n).
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PRAM Algorithms
Parallel Prefix Example

For visualization purposes, the second step is written in two different lines. When we write x1 + . . . + x5 we mean
x1 + x2 + x3 + x4 + x5.

x1 x2 x3 x4 x5 x6 x7 x8

1. x1+x2 x2+x3 x3+x4 x4+x5 x5+x6 x6+x7 x7+x8

2. x1+(x2+x3) (x2+x3)+(x4+x5) (x4+x5)+(x6+x7)

2. (x1+x2)+(x3+x4) (x3+x4)+(x5+x6) (x5+x6+x7+x8)

3. x1+...+x5 x1+...+x7

3. x1+...+x6 x1+...+x8

Finally

F. x1 x1+x2 x1+...+x3 x1+...+x4 x1+...+x5 x1+...+x6 x1+...+x7 x1+...+x8
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PRAM Algorithms
Matrix Multiplication

Matrix Multiplication
A simple algorithm for multiplying two n × n matrices on a CREW PRAM with time complexity T = O(lgn) and

P = n3 follows. For convenience, processors are indexed as triples (i, j, k), where i, j, k = 1, . . . , n. In the first step
processor (i, j, k) concurrently reads aij and bjk and performs the multiplication aijbjk. In the following steps, for all i, k
the results (i, ∗, k) are combined, using the parallel sum algorithm to form cik =

∑
j aijbjk. After lgn steps, the result cik

is thus computed.
The same algorithm also works on the EREW PRAM with the same time and processor complexity. The first step of

the CREW algorithm need to be changed only. We avoid concurrency by broadcasting element aij to processors (i, j, ∗)
using the broadcasting algorithm of the EREW PRAM in O(lgn) steps. Similarly, bjk is broadcast to processors (∗, j, k).

The above algorithm also shows how an n-processor EREW PRAM can simulate an n-processor CREW PRAM with
an O(lg n) slowdown.

CREW EREW

1. aij to all (i,j,*) procs O(1) O(lgn)

bjk to all (*,j,k) procs O(1) O(lgn)

2. aij*bjk at (i,j,k) proc O(1) O(1)

3. parallel sum aij *bjk (i,*,k) procs O(lgn) O(lgn) n procs participate

j

4. cik = sum aij*bjk O(1) O(1)

j

3 3 3

T=O(lgn),P=O(n ) W=O( n lgn) W = O(n )

2
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PRAM Algorithms
Graph Theory

Let G = (V, E) be an undirected graph. V is the set of vertices and E is the set of edges. By convention |V | = n and
|E| = m.

(a) Two vertices u, v are connected by an edge if (u, v) ∈ E.
(b) The degree of node u is the number of edges incident on u, ie the number of v such that (u, v) ∈ E.

A directed graph G is like an undirected one but the edges are assigned directions. We represent G by G = (N, A),
where N is the set of nodes(vertices of a directed graph) and A is the set of arcs (directed edges). If u, v are connected
by an arc from u to v, then < u, v >∈ A. For simplicity, we may write (u, v) ∈ A as well, using the same symbols for
both a directed and undirected graph.

(a) The out-degree of a node u is the number of vertices v such that < u, v >∈ A. The in-degree of v is the number
of vertices w such that < w, v >∈ A.

(b) For an undirected or directed graphG, a path is a sequence of vertices v1, v2, . . . , vj such that (v1, v2), (v2, v3), . . . , (vj−1vj)
are edges in the undirected case or < v1, v2 >, < v2, v3 >, . . . , < vj−1vj > are arcs in the directed case.

(c) The length of the path is the number of edges/arcs on the path ie j − 1 in the example above.
For undirected graphs discussed in this handout we assume that they are simple i.e. they have no self-loops (edges

(v, v)) or multiple edges.
(i)An undirected graph G is connected if there is a path connecting every pair of vertices. (ii) If a simple connected

undirected graph has n − 1 edges it is called a tree. (iii) A collection of trees forms a forest.
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PRAM Algorithms
Pointer Jumping-Introduction
A rooted directed tree T = (V, A) is a directed graph with a special node r called the root such that (a) ∀v ∈ V − {r}
node v has out-degree 1, and r has out-degree 0, and (b) ∀v ∈ V − {r} there exists a unique directed path from v to r.
In other words, T is rooted if the undirected graph resulting from T is a tree. The level of a vertex/node in a tree is the
number of edges on the path to the root.

Let F be a forest consisting of a set of rooted directed trees. Forest F is represented by an array P (P stands for
“parent”) of length n such that P (i) = j if < i, j > is an arc of F . For a root i, it is P (i) = i.

We examine a technique called pointer jumping that finds many applications in designing algorithms for linked list
and graph theory problems.
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PRAM Algorithms
Pointer Jumping continued

Problem Given forest F and array P construct array S where S(j) is the root of the tree containing node j.
Proof. We use pointer jumping, that is we iteratively make the successor of any node i to become the successor of its
successor. This way the distance of a node from its root is halved after a single pointer jumping step. After k iterations
(pointer jumping steps) the distance, in the original graph, between i and its current successor S(i) is 2k (in terms of
number of edges in the original graph) unless S(i) is the root (in the original forest represented by P ). In the latter case
the procedure is successfully completed. The PRAM algorithm Find Root implements pointer jumping.

begin Find Root (P ,S)
1. in parallel: S(i) = P (i) ;
2. while (S(i) �= S(S(i)))
3. S(i) = S(S(i)).
end Find Root

Let h be the maximum height of any tree in forest F . The running time of this algorithm on an CREW PRAM is is
T = O(lg h), P = O(n) and W = W2 = O(n lg h).

From this point on, we primarily use the alternative definition of work W , ie W2 to indicate the actual
number of operations performed by all the processors (which is not necessarily P ·T ); in most of the cases
to be examined it will not make a difference which definition is used.
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PRAM Algorithms
Pointer Jumping continued

Problem Assume that associated with each node i of forest F is a value V (i). Compute W (i), for all i, where W (i) is
the sum of the V (j) over all nodes j in the path from i to its root (a parallel prefix-like operation in a list/tree).
Proof. The PRAM algorithm works as follows.

begin PJ (P ,S,V )
1. in parallel: S(i) = P (i), W (i) = V (i) ;
2. while (S(i) �= S(S(i)))
3. W (i) = W (i) + W (S(i)).
4. S(i) = S(S(i)).
end PJ
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PRAM Algorithms
Logical AND operation
Problem. Let X1 . . . , Xn be binary/boolean values. Find X = X1 ∧ X2 ∧ . . . ∧ Xn.

The sequential problem accepts a P = 1, T = O(n), W = O(n) direct solution.

An EREW PRAM algorithm solution for this problem works the same way as the PARALLEL SUM algorithm and
its performance is P = O(n), T = O(lgn), W = O(n lgn) along with the improvements in P and W mentioned for the
PARALLEL SUM algorithm.

In the remainder we will investigate a CRCW PRAM algorithm. Let binary value Xi reside in the shared memory
location i. We can find X = X1 ∧ X2 ∧ . . . ∧ Xn in constant time on a CRCW PRAM. Processor 1 first writes an 1 in
shared memory cell 0. If Xi = 0, processor i writes a 0 in memory cell 0. The result X is then stored in this memory
cell.

begin Logical AND (X1 . . .Xn)
1. Proc 1 writes1 in cell 0.
2. if Xi = 0 processor i writes 0 into cell 0.
end Logical AND

The result stored in cell 0 is 1 (TRUE) unless a processor writes a 0 in cell 0; then one of the Xi is 0 (FALSE) and
the result X should be FALSE, as it is.

Exercise 5 Give an O(1) CRCW algorithm for LOGICAL OR.
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PRAM Algorithms
Maximum finding

Problem. Let X1 . . . , XN be n keys. Find X = max{X1, X2, . . . , XN}.

The sequential problem accepts a P = 1, T = O(N), W = O(N) direct solution.

An EREW PRAM algorithm solution for this problem works the same way as the PARALLEL SUM algorithm and
its performance is P = O(N), T = O(lgN), W = O(N lgN), W2 = O(N) along with the improvements in P and W
mentioned for the PARALLEL SUM algorithm.

In the remainder we will investigate a CRCW PRAM algorithm. Let binary value Xi reside in the local memory of
processor i.

The CRCW PRAM algorithm MAX1 to be presented has performance T = O(1), P = O(N2), and work W2 = W =
O(N2).

The second algorithm to be presented in the following pages utilizes what is called a doubly-logarithmic depth tree
and achieves T = O(lglgN), P = O(N) and W = W2 = O(N lglgN).

The third algorithm is a combination of the EREW PRAM algorithm and the CRCW doubly-logarithmic depth
tree-based algorithm and requires T = O(lglgN), P = O(N) and W2 = O(N).
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PRAM Algorithms
Algorithm MAX1

begin Max1 (X1 . . .XN)
1. in proc (i, j) if Xi ≥ Xj then xij = 1;
2. else xij = 0;
3. Yi = xi1 ∧ . . . ∧ xin ;
4. Processor i reads Yi ;
5. if Yi = 1 processor i writes i into cell 0.
end Max1

In the algorithm, we rename processors so that pair (i, j) could refer to processor j × n+ i. Variable Yi is equal to 1
if and only if Xi is the maximum.

The CRCW PRAM algorithm MAX1 has performance T = O(1), P = O(N2), and work W2 = W = O(N2).
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PRAM Algorithms
Doubly Logarithmic-Depth Tree

In preparation of algorithm Max2 we introduce a doubly logarithmic-depth tree.
Let N = 22n

, for some integer n.
A doubly logarithmic-depth tree with N leaves is defined as follows.

(1) The root of the tree at level 0 has 22n−1
= N1/2 children in level 1.

(2) Each node at level 1 has 22n−2
= N1/22

children in level 2.

(3) Each node of level i has 22n−(i+1)
= N1/2i+1

children in level i + 1.

(4) Each node of level n − 1 (the level before the last) has 22n−n
= N1/2n

= 2 children in level n = lglgN .

(5) The nodes of level n are the leaves of the tree.

Some properties of a doubly logarithmic-depth tree are listed below.

(1) The height of the tree is n = lglgN .

(2) A node of level i has 22n−(i+1)
children in level i + 1.

(3) The TOTAL number of level i nodes is 22n−1
22n−2

. . . 22n−i
= 22n−2n−i

.

(4) The Product (22n−i−1
)2 × 22n−2n−i

is O(22n
) = O(N).
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PRAM Algorithms
Algorithm MAX2

Algorithm Max2 below achieves better work performance than Max1 T = O(lglgN), P = O(N), and W = W2 =
O(N lglgN).

Algorithm Max2 works as follows.

(1) Initialyy, items Xi are on the N leaves of the tree.

(2) The root will hold the result at the completion of the algorithm.

(3) Processors are assigned to the nodes of the tree in some predetermined fashion.

(4) All nodes of the tree other than the leaves hold an UNDEFINED value in the beginning of the execution.

(5) If a node u at level i holds an UNDEFINED value and its M children hold some intermediate results
M2 processors are assigned to u to find the maximum of M numbers (the partial results of the children
of u) using Max1 in constant time. Node u then holds the computed maximum (and ceases to hold an
UNDEFINED value).

begin Max2 (X1 . . .XN )
0. The i-th cell contains Xi; N = 22n

.
1. for (i = n − 1; i ≥ 0; i −−) do
2 begin

3. Assign to each node u of level i, (22n−i−1
)2 processors (i.e. the square of its children in level i + 1.) ;

4. Use algorithm Max1 and these processors to find the maximum
of the values stored at the children of u and store the result at u;

5. Node u ceases to hold an UNDEFINED.
6. end
end Max2
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PRAM Algorithms
Algorithm MAX3

Algorithm Max2 has W = W2 = O(N lglgN). Algorithm Max3 below has W2 = O(N). It uses Max2 and the
EREW PRAM algorithm as subroutines.

The EREW algorithm finds the SUM or the MAXIMUM of N numbers by working from the leaves to the root of a
binary tree, ie lgN levels. If we stop the computation after i levels, we have N/2i partial results, each result being the
MAXIMUM of 2i numbers initially stored in the leavs of the subtree rooted at the partial result.

Max3 first runs the EREW PRAM algorithm for i = lglglgN levels so that a total of N/ lglgN partial MAXIMA
are computed.

Then it applies Max2 where N in Max2 is equal to the number of partial results ie N/ lglgN .

begin Max3 (X1 . . . XN)
0. The i-th cell contains Xi;
1 begin
2. Use the EREW PRAM algorithm on a complete binary tree on N leaves to

reduce the original problem to computing the maximum of N/ lglgN values
(ie proceed from the leaves up to the nodes of level lgN − lglglgN);

3. Use Max2 to find the maximum of the N/ lglgN values of Step2;
4. end
end Max3

Step 2 of algorithm Max3 requires T = O(lglglgN), P = O(N) and O(N) work (number of comparisons is at most
the number of edges of the tree).

Step 3 requires P = O(N), T = O(lglgN) and total work W = W2 = O(N) by the analysis of Max2.
Question. Is there a p ≤ n processor CRCW PRAM algorithm that finds the maximum of N keys faster than Max2

or Max3?
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PRAM Algorithms
A matching lower bound
Definition. On an undirected graph G = (V, E), an independent set is a set of vertices such that no two vertices are
connected by an edge.

Theorem Let G = (V, E) be an undirected graph, where |V | = n and |E| = m. Graph G has an independent set of size
at least n2/(2m + n).

The following theorem can then be proved.
Theorem 1 Computing the maximum of n keys requires at least lglgn parallel steps with p ≤ n processors.
Proof. (by induction) It is proved by what we call an adversary argument through induction. An adversary for
this problem is allowed to choose the input keys by modifying their values in such a way so as to force the algorithm to
run for at least lglgn steps.
These modifications should not invalidate, however, the operations of the algorithm already performed. Since the proof
is inductive, at the end of step i + 1 an adversary can specify an input such that the maximum will lie in a set Si+1 of
size si+1 with the following properties:

(1) no two keys of Si+1 have been compared before,

(2) si+1 ≥ s2
i /(si + 2p).

For i = 0, s0 = n. Each one of the keys is in set S0. Any parallel algorithm for finding the maximum could perform
at most p comparisons in the first parallel step (at most one per processor). For each key in S0 a graph G is formed with
an edge joining two vertices if the corresponding keys were compared in that step. G has n vertices and at most p edges
and an independent set S1 of size at least s1 = t ≥ n2/(2p+ n).

Let the vertices of this set be vj1 , . . . , vjt. An adversary can then choose the keys xi’s in such a way that xjk
is larger

than all its neighbors. This is possible as vjk
is not connected to any vjl

(by the independent set property). Set S1

satisfies the inductive hypothesis.
This way we prove that si+1 ≥ s2

i /(si + 2p) ≥ s2
i /3n, s0 = n. Therefore, si ≥ n/32i−1.

The algorithm terminates when si ≤ 1. The number of parallel steps is then Ω(lglgn).
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PRAM Algorithms
Cycle Coloring - Symmetry Breaking

Definition 1 A directed cycle is a directed graph G = (V, E) such that the in-degree and out-degree of every node is
one. Then, for every u, v ∈ V there is a directed path from u to v (and from v to u as well). A k-coloring of G is a
mapping c : V → {0, . . . , k − 1} such that c(i) �= c(j), ∀i �= j and < i, j >∈ E.

We are interested in 3-colorings of directed cycles. In the sequential case, this problem is easy to solve. Color vertices
of the cycle alternately with two colors 0 and 1 and at the end, a third color may be required for the last node of the
cycle, if the first and the node before the last are colored differently. In a parallel setting this problem looks difficult to
parallelize because it looks so symmetric! All vertices look alike. In order to solve this problem in parallel we represent
the graph by defining V = {0, . . . , n − 1} and an array S, the successor array, so that S(i) = j if < i, j >∈ E. A
predecessor array can be easily derived from the identity P (S(i)) = i. For a number i let i = in . . . i2i1 be its binary
representation. Then ik is the k-th lsb (least significant bit) of i.

begin Color1 (P ,S,c)
1. in parallel ∀0 ≤ i < n
2. Let k be the lsb position that c(i) and c(S(i)) differ;
3. Set c(i) = 2(k − 1) + (k-th lsb of c(i);
end Color1

Claim After a single call to Color1 a (valid) coloring is derived from a previously (valid) coloring.
Proof. Before the call to Color1 adjacent vertices are colored differently by a coloring say coloring C1. Let us assume
for the sake of contradiction that an application of Color1 results in a coloring C2 that fails to color properly two vertices
i, j, i.e c(i) = c(j) for < i, j >∈ E. These colors were obtained after an application of step 3, i.e. c(i) = 2(k − 1) + c(i)|k
and c(j) = 2(l − 1) + c(j)|l. Since c(i) = c(j) (because of the C2 coloring) we must have that k = l and c(i)|k = c(j)|k,
i.e the previous colors of i and j (in C1) agreed in the k-th lsb. This contradicts the assumption that k is the first lsb
position where c(i) and c(j) differ under C1.
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Repeated application of Color1 results as it is proved below in a 6-coloring of a directed cycle as described in
algorithm Color2a. Initially a trivial coloring of the n vertices with n colors is found, i.e. a mapping c such that
c(i) = i. After a call to Color1, an initial n-coloring of a directed cycle gives rise to a (2 lgn + 1)-coloring. If at some
point a coloring uses 3 bits (up to 8 colors) then a new coloring after another application of Color1 would require at
most six colors (c(i) = 2(k − 1) + c(i)|k ≤ 5, for k ≤ 3).

Claim Algorithm Color2a 6-colors a directed cycle.

begin Color2a (P ,S,c)
1. in parallel ∀0 ≤ i < n set c(i) = i;
2. repeat
3. call Algorithm Color1 ;
4. until at most 6 colors are used.
end Color2a

Proof. Algorithm Color2a initially colors the vertices with n colors using c bits, i.e 2c−1 ≤ n < 2c. After the first
iteration, �lg c� + 1 bits are only used (colors 0, . . . , 2c − 1 are used). Let us define lg(1)(x) = lg x, lg(2)(x) = lglgx and
in general lg(i)(x) = lg (lg(i−1)(x)). We then define lg∗(x) = min{i : lg(i)(x) ≤ 1}. After the first iteration of Loop 2-4
an O(lgn)-coloring is derived. After the second iteration an O(lglgn)-coloring is derived. After O(lg∗(n)) iterations a
6-coloring is derived. The complexity of the algorithm is thus T = O(lg∗(n)) and W = O(n lg∗(n)).

A question arises whether a 3-coloring is possible. As soon as a 6-coloring is obtained, a 3-coloring can be derived by
perturbing the 6-coloring as in step 3 of Color2 below that colors the vertices of a directed cycles with 3 colors.
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begin Color2 (P ,S)
1. Call Color2a;
2. do for each 3 ≤ i ≤ 5 ;
3. if a vertex is colored i recolor it with the smallest

possible color from {0, 1, 2};
end Color2

Step 3 is realized in O(1) parallel steps, loop 2 is repeated 3 times (once for each of the 3,4,5 colors) and Color2

has the same asymptotic time complexity as Color2a. Algorithm Color3 is more work-efficient (if array initialization
costs are ignored) and is presented below. It utilizes parallel integer sorting (a combination of radix and count sort).
The following result will be used and is the parallel equivalent of sequential count (sometimes referred to as bucket sort).

begin Color3 (P ,S)
1. in parallel ∀0 ≤ i < n set c(i) = i;
2. Call Color1;
3. Sort vertices by their respective color;
4. for (i = 3; i ≤ �lg n�; i ++)
5 begin
6. For all vertices of same color i do in parallel ;
7. Color v with the smallest color in {0, 1, 2} that is

different from the colors of its two neighbors
end Color3
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Theorem Parallel sorting n integer keys with values in the range [0 . . . lg n − 1] takes time proportional to the time
required for parallel prefix plus an extra O(lgn) term on a p processor PRAM, where n/ lg n ≤ p ≤ n.

Proof. The idea behind this parallel-sort algorithm is sequential count-sort. We describe the algorithm for the case
p = n. Each processor is assigned the i-th integer of the input. Each processor creates an array lgn × 1 of length lg n
in contiguous locations of the shared memory and initializes its i-th entry to the number of keys it is assigned to
with value i.

The set of n, lg n × 1 arrays spanned over the n processors can be viewed as a two-dimensional lgn × n array. This
virtual two-dimensional array that spreads over the n processors can also be viewed as an n× lg n one-dimensional array
by viewing the elements of the two-dimensional array in row major fashion (ie 1st element of processor 0, 1st element of
processor 1, . . ., 1st element of processor n − 1, 2nd element of processor 0 and so on).

As there are n lgn elements in the one-dimensional array and n processors we assign lg n elements to each processor.
Each processor, starting from processor 0, gets lg n consecutive elements of the one-dimensional array. Such consecutive
elements are not, however consecutive in the shared memory as they may belong to different lg n × 1 arrays (originally
stored as a contiguous block in shared memory).

A reordering of the elements of the n original arrays is thus required to get this one-dimensional array assigned to
the n processors so that the block assigned to each processor is in contiguous memory locations.

A parallel prefix on this one dimensional array of n lg n values is then initiated that takes T = O(lgn) time. Each
entry in the resultant array indicates the rank of the corresponding key in the sorted output sequence.

As soon as the rank of each key is known, it is written in the ranked location of the output (sorted) sequence and
the sorting operation is completed. ✷

If the range of the input keys is [0 . . . lg2 n − 1], then two rounds of the previous algorithm are required (parallel
radix-sort). With reference to Color3, Step 2 reduces the number of colors to O(lgn) and vertices are colored properly.
Thus, when step 7 is performed, no two adjacent vertices have the same color. The total parallel running time of Color3

is thus O(lgn). All three coloring algorithms work on an EREW PRAM. Algorithm Color3 is to be used in the solution
of the List-Ranking problem to follow.
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Consider a linked list L of n nodes whose order is specified by the use of a successor array (S(i) is the successor of i
in the linked list, 0 ≤ i < n). If t is the tail of the list, S(t) = 0. The problem of list-ranking is to determine the distance
of each node from the tail of the list. The sequential complexity of list ranking is linear in n and the sequential problem
is a prefix-like problem. Parallel List-ranking has many applications in parallel graph algorithms. We first present a
non-optimal parallel algorithm for list-ranking (List1).

begin List1 (P ,S)
0. Input S(.) matrix, Output V (i) is distance from tail of node i;
1. ∀0 ≤ i < n do in parallel
2. if (S(i) �= 0) V (i) = 1;
3. else V (i) = 0;
4. ∀0 ≤ i < n do in parallel
5 B(i) = S(i);
6. while (B(i) �= 0 ∧ B(B(i)) �= 0) do
7. V (i) = V (i) + V (B(i));
8. B(i) = B(B(i));
end List1

The time complexity of List1 on an EREW PRAM is T = O(lgn) and W = O(n lgn). We next develop a work-
optimal algorithm (List2). We outline the strategy for the latter work-optimal algorithm: (a) Shrink L until O(n/ lgn)
nodes remain, (b) Apply List1 on the resulting list, and (c) Restore the original list and rank all nodes removed in step
(a).

As step (c) is the reverse of step(a) the time-processor requirements are the same (asymptotically). In step (a) a set
of nodes is removed and the V values of the remaining nodes are updated. The set of nodes to be removed is chosen so
that the nodes of the set form an independent set (i.e. set I is an independent set if whenever i ∈ I then S(i) �∈ I.
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List Ranking continued
Procedure List2a below removes nodes by adjusting the successor and predecessor nodes of a removed node. Its input
consists of L represented by arrays P and S, array V , and independent set I whose nodes will be removed from L. The
output is list L with nodes in I removed and the V values of the remaining nodes readjusted.

begin List2a (P ,S,V ,I)
1. Assign consecutive numbers F (i) to elements of I such that 1 ≤ F (i) ≤ |I|.
2. ∀i ∈ I do in parallel
3. N(F (i)) =< i, S(i), P (i), V (i) >;
4. V (P (i)) = V (P (i)) + V (i);
5 S(P (i)) = S(i);
6. P (S(i)) = P (i);
end List2a

Finding an independent set is realized by coloring the nodes of L; same color vertices form an independent set.

Definition 2 A vertex u is local minimum (maximum) if its color is less (greater) than those of its two neighbors

Lemma 1 Given a k-coloring of L, set I of local minima (or maxima) is an independent set of size Ω(n/k). Set I can
be determined in T = O(1) time and W = O(n).

Proof. Let u, v be two successive local minima. Clearly, they are not adjacent and the number of vertices between them
is at most (k−2)+1+(k−2) = 2k−3. Local minima thus form an independent set of size at least n/(2k−3) = Ω(n/k)
as claimed.
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List Ranking continued
Procedure List2a below removes nodes by adjusting the successor and predecessor nodes of a removed node.

begin List2 (P ,S,V ,I)
1. n0 = n , k = 0;
2. while n0 ≥ n/ lg n
3. k = k + 1;
4. Color list with 3 colors and identify local minima (set I);
5 Remove I from list and store info of deleted nodes as in List2a;
6. Let nk be size of remaining list. Compact it into consecutive memory locations;
8. Apply pointer jumping algorithm PJ on the result (of size at most n/ lgn);
9. Restore original list using info from step 5.
end List2

Claim List2 is a work-optimal list-ranking algorithm.
Proof. Because of step 4 and Lemma 1, cnk nodes, for some constant c, are removed every time step 5 is executed and
after O(lglgn) steps at most n/ lgn nodes remain (nk+1 ≤ (1−c)nk and thus nk ≤ (1−c)kn). The k-th iteration requires
T = O(lgn) and W = O(nk). The total running time is thus T = O(lgn lglgn) and W = O(n) on an EREW PRAM.

The parallel time can be further reduced to O(lgn) by a more complicated algorithm.
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