
Subject 3
CIS 668, Fall Semester 2000

Fixed Connection Networks

Hypercubes and Hypercubic Networks

Algorithms and Embeddings

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used in conjunction with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are distributed to the students of CIS 668; distribution outside this group of

students is prohibited.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 1

Embeddings
Trees and Arrays
Definition. An embedding of a graph G = (V,E) into a graph G′ = (V ′, E ′) is a function φ from V to V ′.
Definition. The dilation of the embedding φ is defined as follows. dil(φ) = max{dist(φ(u), φ(v)) : (u, v) ∈ E},

where dist(a, b) is the distance in edges between a, b ∈ V ′.
Claim 1. A 1d-array can be embedded into a 2d-array with dilation 1.
Claim 2. A ring can be embedded into a 2d-array with dilation 1, if and only if the number of vertices of the array

is even.
Fact 3. In a 2d-array the number of vertices which are within distance k from any vertex is at most 2k2 + 2k + 1.
Claim 4. A complete binary tree can not be embedded into a 2d-mesh with dilation 1 for any k > 4.
Proof. A binary tree of depth k has 2k+1 − 1 vertices. On a 2d-mesh, within distance k from any vertex, there are

at most 2k2 + 2k + 1 vertices. As 2k+1 − 1 > 2k2 + 2k + 1, k > 4, it is evident that no such embedding exists.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 2

Hypercube
Review

The Hypercube is the most versatile network. It can simulate one step of an O(n)-cell array, binary tree, mesh of
trees in O(1) time i.e. all algorithms examined so far can be implemented on the hypercube. The hypercube is a good
choice for the interconnection network of a parallel computer. The only problem with such a choice is its degree O(lgn)
as opposed to Θ(1) for most other networks. Derivative networks, also known as hypercubic networks, do not suffer from
those problems (butterfly, de-Bruijn graph, cube-connected cycles, shuffle-exchange).

The n-dimensional hypercube has N = 2n vertices and N lgN/2 edges. Two vertices are connected by an edge if
they differ in exactly one bit position. Let u = u1u2 . . . ui . . . un be a hypercube vertex. An edge is a dimension i edge if
it links two vertices that differ in the i-th bit position. This way vertex u is connected to vertex ui = u1u2 . . . ūi . . . un

with a dimension i edge. A path from vertex u to vertex v can be determined by correcting the bits of u to agree with
those of v starting from dimension 1 in a “left-to-right” fashion. The bisection width of the hypercube is bw = N/2.
This is a result of the following property of the hypercube. If all edges of dimension i are removed from an n dimensional
hypercube, we get two hypercubes each one of dimension n− 1.
Definition. On an n vertex graph a perfect matching is a set of n/2 edges that do not share any vertices.
Definition. On an n vertex graph a Hamiltonian cycle is a cycle of length n so that each vertex of the graph is

touched by the cycle exactly once.
The dimension i edges of the hypercube form a perfect matching. Moreover, the removal of all edges of dimension i

splits an n dimensional hypercube into two dimension n− 1 hypercubes.
Question How many vertices does one need to remove to split the hypercube into two parts of equal size?
Theorem 1 An N -cell linear array (with wrap-around edges, a.k.a ring) is a subgraph of any N -vertex hypercube

(i.e it contains a Hamiltonian path that traverses all vertices exactly once) for any N ≥ 4.
Proof. (by induction) Base case: N = 4 true by inspection. Assume inductive hypothesis is true. Take an N -vertex

hypercube. Remove dimension n edges. It is split into two hypercubes of dimension n− 1. By induction, construct two
identical Hamiltonian paths/cycles for the two halves. Let a1a2x . . . ya1, a

′
1a

′
2x

′ . . . y′a′1 be the two paths/cycles. Then,
construct the following cycle a1a

′
1y

′ . . . x′a′2a2x . . . ya1.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 3

Hypercube
Embeddings of Arrays

If one traces a hamiltonian cycle a gray code is formed. Formally
Definition An n-bit Gray code is an ordering of all n-bit binary numbers so that consecutive numbers differ in

precisely one bit position.
Theorem 2 The 2d1 × 2d2 × . . .× 2dr -cell r dimensional array is a subgraph of the 2d1+...+dr -vertex hypercube.
Proof. (by construction) Map each 2di-cell array to a di-dimension hypercube. Let gi be this mapping. Map cell

(i1, i2, . . . ir) of the array to a d1 + . . . dr-long binary string g(i1) . . . g(ir), where g(ii) is a binary string of di bits.
Theorem 3 The N − 1 vertex complete binary tree cannot be embedded in the N -vertex hypercube, N ≥ 8.
Proof. (by contradiction)
Obs 1. In an n-bit binary sequence the number of strings with an odd number of 1’s is equal to the number of strings

with an even number of 1’s.

Let us assume that such an embedding is possible. Let the root r of the tree (a level 0 vertex) be mapped to some
vertex v of the hypercube. Let the parity of v be even (i.e. its string contains an even number of 1’s). Adjacent vertices
of v in the hypercube must have oppositive parity (ie. odd) as two vertices are adjacent if they differ in exactly one bit
(if this bit is 1 in v it must be 0 in its neighbor, a decrease by one of the 1’s, if it is 0 in v it must be 1 in its neightbor,
an increase by one of the 1’s, i.e. odd parity for the neighbor of v in any of the two cases).

If r (level 0) is mapped to an even-parity vertex v, then level-1 vertices of the tree are mapped to odd-parity vertices
in the hypercube (neighbors in the hypercube of even-parity vertices). Similarly level-2 vertices in the tree are mapped
to even-parity vertices in the hypercube and so on. Let us consider the parity of the leaves of the tree. Let it be odd.
Then so is the parity of their grandparents. On an n− 1-vertex binary tree the number of leaves and their grandparents
is N/2+N/8. These odd-parity vertices are mapped to odd parity vertices in the hypercude. Therefore the n-dimension
hypercube contains at least N/2+N/8 = 5N/8 odd-parity vertices and at most 3N/8 even parity vertices contradicting
to the observation.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 4

Hypercube
Tree Embeddings
Theorem 4 An N -vertex double-rooted complete binary tree is a subgraph of an N -vertex hypercube.
Proof. The reason the previous construction didn’t work was because two vertices, one of the left subtree of the

root and one on the right subtree of the root were mapped to same parity vertices of the hypercube. Were they mapped
to opposite parity vertices a contradiction would not have been possible. The introduction of double-rooted trees allows
such a mapping. In such a tree the two roots would be mapped to opposite parity vertices and therefore two vertices at
distance i from roots r1 and r2 respectively are mapped to vertices of opposite parity. This intuitive argument is proved
by induction below.

Example of embedding

Corollary 1 N/2 vertex complete binary tree can be embedded into an N vertex hypercube.
Claim An N × . . .×N mesh of doubly rooted trees is a subgraph of the (2N)r-vertex hypercube.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 5

Other Hypercubic Networks
Butterfly, Shuffle-Exchange, de-Bruijn

The set of vertices of a butterfly is represented by (w, i), where w is a binary string of length n and 0 ≤ i ≤ n.
Therefore |V | = (n + 1)2n = (lgN + 1)N . Two vertices (w, i) and (w′, i′) are connected by an edge if i′ = i + 1 and
either (a) w = w′ or (b) w and w′ differ in the i′ bit. As a result |E| = O(N lgN), d = 4, D = 2 lgN = 2n, and bw = N .
Vertices with i = j are called level-j vertices. If we remove the vertices of level 0 we get two butterflies of size N/2. If
we collapse all levels of an n dimensional butterfly into one, we get a hypercube. If we remove the vertices of the last
level we get two interleaved butterflies of size N/2 (number of vertices per level). A wrapped butterfly is obtained by
collapsing the first and the last levels into one.
Definition. An algorithm is called normal if it uses on a hypercube only one dimension of hypercube vertices at a

time and uses adjacent dimensions on consecutive steps.
Definition. An algorithm is called fully-normal if all n dimensions are used in sequence.
2. Cube connected Cycles
It is obtained from the hypercube by replacing a hypercube vertex r with a cycle r of length n. Two hypercube nodes

a and b connected by a dimension i edge are mapped to the i-th nodes of cycles a and b in the CCC.
3. Shuffle-Exchange graph
An n-dimension s-e graph has 2n nodes and 3 · 2n−1 edges. Two vertices u and v are connected by an edge: (1) if u

and v differ in the last bit (exchange edge) or (2) u is a left or right cyclic shift of v (shuffle edge).
An s-e graph is obtained from the hypercube by deleting all but dimension i and adding shuffle edges.
4. de-Bruijn graph
An n-dimension de-Bruijn graph has 2n nodes and 2n+1 directed edges. Vertex u = u1 . . . un is connected by a 0

labeled (if we consider the labeled case) edge to u2 . . . un0 and by an 1 labeled edge to u2 . . . un1. The graph is directed
and labeled. In-degree(u)=2 and Out-degree(u)=2 as well.

An n-dim de-bruijn graph is obtained from an (n + 1)-dim s-e graph by contracting all the exchange edges.
Definition. A de-Bruijn sequence of length 2r is a string of 2r bits so that every substring of r bits appears once

including wrap arounds.
From an n− 1-dim de-bruijn graph a 2n long de-Bruijn sequence is obtained by contracting all the exchange edges.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 6

Butterfly
FFT- Introduction

Let wn be the n-th primitive root of unity, ie. wn
n = 1 and wj

n
= 1 for 0 < j < n. Let Fn be an n × n matrix such
that its (i, j)-th entry is wij

n . Let �y = F�x, for two vector �x, �y. Vector �y can be computed in O(lg n) steps on a 2d-MOT
with O(n2) processors. We are going to present an algorithm that runs on the same time but uses only O(n) processors.

Let �u,�v be two vectors defined as follows.

�u = Fn/2

x0

x2

. . .
xn−2

 , �v = Fn/2

x1

x3

. . .
xn−1

 ,

where wn/2 = w2
n. Once �u,�v are known, �y can be obtained as follows.

yi =

{
ui + wi

nvi 0 ≤ i < n/2
ui−n/2 + wi

nvi−n/2 n/2 ≤ i < n

that is, there exists a divide-and-conquer approach to finding �y. The computation of all yi in parallel requires one parallel
step that is.

T (n) = T (n/2) + 1 → T (n) = O(lgn).

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 7

Butterfly
FFT on the butterfly

The FFT network was introduce for the purpose of performing FFTs. Each parallel step of an n point FFT is carried
out on one level of a lg n-dimensional butterfly.

For the sake of definition, let bin(i) be the binary representation of decimal integer i representing a row of a butterlfly.
Let rev(i) be the reverse of bin(i).

In the butterfly network that computes �y, input �x is input through the vertices of level lg n and output is obtained
through the vertices of level 0. This reverse butterfly network is depicted in the figure below so that level lg n appears
on the left and level 0 on the right.

The proof is going to be constructive and will use induction. As in level 0 vertices yi are computed, the inputs in level
1 will be ui in the top n/2 rows andd vi in the bottom n/2 rows. As yi = ui+wi

nvi and yi+n/2 = ui+wi+n/2
n vi = ui−wi

nvi,
the computations performed along the cross and level edges are obvious.

reverted Butterfly

Let us assume by induction (inductive hypothesis) that a lg n level buttefly computes �y on n/2 inputs. Then a
lg n+1-level butterfly on n input, consists of two lgn-level butterflies if level 0 nodes are removed. Let u0, u1, . . . un/2−1,
v0, v1, . . . vn/2−1 be the outputs of the two butterflies in the inductive step. The operation (related to level 0 and 1)
discussed in the previous paragraph shows that yi is going to be output in the i-th row of level 0 of the lg n + 1-level
butterfly.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 8

Butterfly
FFT continued
Question Given that the top n/2 butterfly computes �u and the bottom �v what are the input xj ’s to each such

butterfly?
Answer Vector �u requires x0, . . . xn/2−1 as inputs. These are the even-numbered x’s i.e. those xj that have 0 in the lsb

position of bin(j). Therefore the input to the top butterfly (of the two that resulted after the deletion of level 0 vertices)
are the even indexed x’s. This 0 lsb is however the value of the msb of the top n/2 rows of the n butterfly (the top rows
have msb(bin(i))=0). Similarly, the i-th lsb of x must be equal to the i-th msb of the row this x is input. Unfolding the
recursion we get that xi is input to row rev(i) of the butterfly.

A node 〈a, j〉 performs the following computation.

• the high-numbered node of previous level (i.e. the one with 1 in j + 1-st bit position of a) is multiplied
with wi

n/2j = wi2j

n .

• the low-numbered node of previous level (i.e. the one with 0 in j + 1-st bit position of a) is then added to
this result.

Remark. wi2j

n is a function of row i and level j. Therefore all the values can be precomputed in time O(lgn) and
stored locally.
Question. Hypercube implementation?

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 9

Butterfly
Polynomial related Problems
1. Polynomial Evaluation
Let f(x) = cn−1x

n−1 + . . .+ c1x+ c0 be an n− 1-degree polynomial in indeterminate x. Then f(wi
n) = cn−1w

i(n−1)
n +

. . .+ c1w
i
n + c0 and therefore

 f(w0
n)

. . .
f(wn−1

n)

 = Fn

 c0

. . .
cn−1

Polynomial evaluation is the problem where given x, f one finds f(x).
2. Polynomial Interpolation
Polynomial interpolation is the problem where given x, f(x) one finds f .

 c0

. . .
cn−1

 = F−1

n

 f(w0

n)
. . .
f(wn−1

n)

 → F−1

n = w−ij
n /n.

Given that Fn is an invertible matrix whose elements are expressed in terms of the n-th primitive root of unity, interpo-
lation is as easy as poynomial evaluation provided that f has been evaluated in the n n-th primitive roots of unity. We
prove that F−1

n is indeed so.
FnF

−1
n =

∑
k

wik
n w−kj

n /n,

we get that if i = j (FnF
−1
n)ij = 1, otherwise

∑
k w

(i−j)k
n /n =

∑
s w

sk
n /n = (1/n)(1 + ws

n + . . . + ws(n−1)
n = (1/n)(wsn

n −
1)/(ws

n − 1) = 0 as s
= 0.
Note that computing the coefficients of f is an FFT problem.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 10

Butterfly
Polynomial related Problems continued
3. Polynomial multiplication
Polynomial multiplication is the problem where given f, g one finds h = fg. We solve this problem in terms of

polynomial evaluation and interpolation.

• Evaluate f and g in n n-th roots of unity.

• Multiply n pair of values to find h(x) at the n roots of unity.

• Interpolate to find degree n− 1 polynomial h.

A problem that arises is the approximation of real numbers with finite precision numbers as wi
n are complex numbers

expressed in terms of two reals numbers. There are various ways these problems can be overcome. Check the textbook
for details.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 11

Butterfly
Odd-even merge-sort

Batcher’s odd-even merge sort algorithm was developed in the 1960’s and can be implemented in an O(n) size network
to sort n keys in time O lg2 n).

Parallel Merge-Sort
Ordinary merge sort

(1) Divide problem into two halves.

(2) Sort two halves recursively.

(3) Merge two sorted halves.

Conclusion Levels of recursion is lgn.
A parallel merge-sort algorithm would work the same way. Its running time would be as follows.

Tsort(n) = Tsort(n/2) + Tmerge(n/2)

where Tsort(n) is the time to sort n keys in parallel with n processors, and Tmerge(n) is the time to merge 2 lists of n keys
each in parallel using 2n processors

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 12

Butterfly
Parallel merge
Parallel Merge
Merge two sorted halves each of size m(= n/2, n/4, n/8, . . .).
Merge m pairs of sublists of size 1 into m pairs of size 2.
Merge m/2 sublists of size 2 into ones of size 4.
Merge 4 sublists of size m/2 into ones of size m.
Merge 2 sublists of size m into ones of size 2m.
Remark. Merging is done recursively in O(lgm) iterations. The merging algorithm that merges two sublists of

size m each is given below.
Parallel Merge algorithm description
Let A = a0 . . . am−1 and B = a0 . . . am−1, where A,B are two sorted sequences to be merged.
Step 1. Form pairs even(A) = a0a2 . . . am−2 and odd(A) = a1a3 . . . am−1, even(B) = b0b2 . . . bm−2 and odd(B) =

b1b3 . . . bm−1.
Step 2. Recursively merge even(A) with odd(B). Similarly, merge odd(A) and even(B). Let C = sort(even(A) +

odd(B)) and D = sort(odd(A) + even(B)). Let the two sequences be of size c and d respectively.
Question In order to merge two m-long sequences A and B we ended up merging two sequences C and D of the

same size!!!! Is there any benefit in performing this apparently needless task??

Step 3. Interlace C and D into list Lpre.
Lpre = c0d0c1d1 . . .

Then compare ci and di.
Step 4. Resulting sequence L is sorted.
Example Let A = 1 5 7 8 and B = 2 3 4 6.
1. Then even(A) = 1 7 and odd(A) = 5 8. Also even(B) = 2 4 and odd(A) = 3 6.
2. C = 1 3 6 7 and D = 2 4 5 8 and
3. Lpre = 1 2 3 4 6 5 7 8.
4. L = 1 2 3 4 5 6 7 8.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 13

Butterfly
Odd-even merge sort
Theorem Odd-even merge-sort works as claimed.
Proof. A proof that odd-even merge-sort works utilizes the 0-1 sorting lemma. By induction let us assume that o-e

merge-sort works for sizes less than or equal to n− 1.
Therefore in order to sort n keys, we split them into 2 halves of size n/2 each. By the inductive hypothesis, o-e

merge-sort sorts independently the two halves. It remains to be shown that the merging algorithm so described merges
the two sorted sequences and the theorem is proved.
Lemma Merging algorithm works as claimed.
Proof of Lemma We use the 0-1 Sorting Lemma. Let A consists of a 0’s and m−a 1’s and B of b 0’s and m− b 1’s.
Then after step 1, odd(A) has �a/2� 0’s and even(A) has �a/2� 0’s. Similarly, odd(B) has �b/2� 0’s and even(B) has

�b/2� 0’s. Then, after step 2, C has c′ = �a/2�+ �b/2� 0’s and D has d′ = �b/2�+ �a/2� 0’s, where |c′ − d′| ≤ 1.
Then, after step 3, we get
a. If c = d or c = d+ 1,

L = Lpre 0 0 . . . 0 1 1 1 1
c+ d 0’s

b. If c = d− 1,

L = Lpre 0 0 . . . 0 1 0 1 1
2c 0’s flip

This completes the proof. Time required for the algorithm.

Tmerge(n) = Tmerge(n/2) + 1 → Tmerge(n) = O(lgn).

Tsort(n) = Tsort(n/2) + Tmerge(n/2) = Tsort(n/2) +O(lgn) = O(lg2 n).

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 14

Odd-even merge-sort
Implementation on the butterfly of the merging algorithm
Merging Phase
Proof constructive by induction.
Base case: A 2-input butterfly merges two keys (easy by inspection).
Inductive assumption: an n-input butterfly merges two sorted sequences of size n/2 each. A merging operation starts

from the left (level lg n) proceeds to the right (level 0) and returns to the left of a reverted butterfly.
Let the butterfly be in reverse order (lg n-level leftmost level, 0-level rightmost level). Let a0, a1, . . . be the input

to the top n/2 rows and b0, b1, . . . be the input to the bottom n/2 rows The top half uses the level edges to transfer
input keys to the next level. The bottom half uses the cross edges and output is mixed. We view the two halves as
two butterflies with level lg n deleted. The two butterflies of size n/2 each have their inputs intermixed. The topmost
butterfly has inputs even(A) and odd(B) and the bottomost butterfly has inputs odd(A) and even(B).

The two separate butterflies merge by induction their inputs.
After the merging step.
At level lg n− 1, after the merging had been performed separately in the topmost and bottomost butterflies, let the

outputs be c0, c1, . . . and d0, d1, . . . already intermixed. The crossed edges are utilized to perform the pairwise comparisons
in step 3 of the algorithm.

Example of reverse butterflies (only two last levels shown).

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 15

Odd-even merge-sort
Implementation on the butterfly of the sorting algorithm
Sorting phase In order to sort n keys.
We split them into n/2 pairs of sublists of size 1 and 1 and merge them independently using only the last two levels of

the butterfly (ie. 1 1 indicates phases not levels). The first two levels can be considered as a set of n/2 2-row butterflies.
We split the derived n/2 sublists of size 2 into n/4 pairs of sublists each of size 2 and merge them independently

using the last three levels of the butterfly (ie 1 2 2 1).
We split the derived n/4 sublists of size 4 into n/8 pairs of sublists each of size 4 and merge them independently

using the last four levels of the butterfly (ie 1 2 3 3 2 1).
In general in round i we merge n/2i pairs of sublists of size 2i−1 each that requires 2i steps. Total parallel time is

lg n∑
i=1

2i = lg n(lg n + 1)

The algorithm can be modifies to work in hal as many rounds by observing that the first lgn steps move keys to the
right for the purpose of mixing them than actual work is performed.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 16

