
Subject 4
CIS 668, Fall Semester 2000

Routing on Fixed Connection Networks

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used in conjunction with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are distributed to the students of CIS 668; distribution outside this group of

students is prohibited.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 1

Routing
Overview
The PRAM is a versatile model for parallel computing and easy to design algorithms for; there are many algorithms
that have been implemented on the PRAM. The following question the arises for the PRAM.
Question. Can one simulate the PRAM on a fixed connection network?

One then needs to solve the problem of how processors get the data they actually need. In order for processors to
communicate, they send messages to each other. Memory is attached to each processor; alternatively a node of the
interconnection network is either a processor unit or a memory unit.

Since a processor/node is connected with few others (the degree of the network is substantially less than n the number
of processors) a message needs to go through other processors to reach its destination. The hardware responsible for this
dispatch of messages is called the ”router”. It implements a ”routing algorithm” which is a set of rules governing the
transmission/receipt of messages. The task is to route messages efficiently (i.e. in time proportional to the diameter of
the network).

Problems/Issues/Terminology

1. Topology.

• Hypercube

• 2d-array

• Butterfly

2. Processors

• Synchronous

• Asynchronous

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 2

Routing
Taxonomy

3. Message Flow Control

• Store-and-Forward (breaks messages into packets, sends packets individually. A packet is received
before forwarded. One packet per link).

• Circuit Switching (i.e. telephones). Establish link, send messages along the link from source to
destination, release link.

• Mixed (Wormhole routing). Like c-s it first establishes a link. Like s-and-f breaks messages into flits
sends them through the link in a pipelined fashion and then releases the network.

4. Routing Protocol

• Minimal (take shortest path) vs non-minimal.

• Oblivious vs non-oblivious. Route depends on source and destination only.

5. Queueing Discipline

• FIFO

• Farthest First (Closest First).

• Deflection (no queue at all).

6. Type of routing

• Static. Packets fixed before routing.

• Dynamic. Dynamically generated at say some rate.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 3

Routing
Taxonomy II

7. Performance measures

• Deadlock: no message moves. Detection and avoidance problems).

• Queue-size

• Fault-tolerance

• Total routing time.

• Worst case routing time: Performance under extreme communication patterns.

• Average case routing time: Destination uniformly at random chosen among possible ones.

8. Routing Algorithm

• Deterministic: fixed.

• Randomized: random choices allowed.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 4

Routing
Communication Patterns

One-to-One communication One processor sends one message to another processor.
One-to-One routing Each processor sends at most one message and each processor receives at most one message.

One-to-one communication is an instance of an one-to-one routing.
Many-to-One routing Every processor sends one message and one processor may receive more than one (i.e. many

processors send to one).
One-to-Many routing Every processor sends many messages and each processor receives at most one message.

Permutation routing is a special case where each processor sends exactly one message and receives exactly one
message.

h-relation Each processor sends at most h messages and receives at most h messages. Alternatively, each processor
sends at most h words and receives at most h words of information. A p-relation, where p is the number of processors is
also known as total relation.

One-to-All broadcasting or broadcasting. One processor sends the same message to every other processor.
All-to-All broadcasting Each processor sends a message to every other processor; the messages sent by various

processor may be different. A p-relation is realized since each processor receives at most p messages and may send at
most p as well, where p is the number of processors available.

One-to-All personalized communication. One processor sends a unique message to every other processor. It is
different from broadcasting a one processor initially holds p different messages.

All-to-All personalized communication. Each processor sends a distinct message to every other processor. This
operations is also known as total-exchange.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 5

Routing
EREW PRAM Simulation

Claim 1a. Permutation routing is no harder than sorting on the butterfly.
The result holds on other hypercubic networks as well.

Proof. Reduce packet routing to sorting.
For each packet, label each packet with id of destination processor. Sort packets with respect to this label. For a

permutation routing problem, a packet with label i, after sorting will reside in processor i, as all processors will receive
exactly one packet.

Thm 1 n memory requests of an EREW PRAM can be simulated on an n-input butterfly in time proportional to
Routing Time.

Proof. The shared memory of the PRAM is evenly distributed among the processors of the output column of the
butterfly. We could have assumed that the input processors hold the memory as well. In either case one set of processor
gets the memory from the other in lgn steps. The memory requests initiate from the input column processors. Request
mi originating from processor j is first resolved locally i.e. the row number of the processor of level lg n that holds it is
found. Then a routing operation is issued where destination processor of a memory request mi is the processor storing
mi. At the completion of the routing operation, if mi involves a write it is immediately performed, if it involves a read
operation the processor holding mi reads its contents, fills the packet received with the contents of mi and sends it back
to the originating processor along the path recorded in the first phase. Total time is 2 Routing Time.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 6

Butterfly
Greedy Routing Algorithm: Worst Case Running Time

A greedy algorithm is an algorithm that follows a shortest path.
Thm. Given any routing problem on an N -row butterfly for which at most one packets originate from each level 0

processor and at most 1 packet ends in a lgN -level processor, the greedy algorithm will route all the packets to their
destination in O(

√
N) time.

Proof. Let u be a node of row 0 and level i of the butterfly. Exactly 2i−1 input processor of level 0 lead to u and
2lg N−i output processors of level lgN are reachable from u. Let ni be the number of greedy paths that traverse u. It is
ni ≤ 2i and ni ≤ 2lg N−i. Therefore the total running time of the greedy algorithm will be

Totaltime =
∑

i

delays on each node of level iof the path from source to destination

=
∑

i

(ni − 1) =
lg N/2∑
i=1

2i +
lg N/2∑

i=lg N/2+1

2lg N−i − lgN = O(
√

N).

The maximum queue size required at any processor is also Θ(
√

N) (the case for i = lgN/2).

Thm. There exists a routing problem that requires at least Ω(
√

N) steps.

Examples off such problems are the following ones.
A transposition is a permutation of the form: π(u1 . . . ulg N/2ulg N/2+1 . . . ulg N) = ulg N/2+1 . . . ulg Nu1 . . . ulg N/2.
A bit-reversal is a permutation of the form: π(u1 . . . ulg N) = ulg N . . . u1.

Such permutations are usually realized while designing real machines, while various performance tests take place to
stress the router and to study the behavior of the machine interconnection network.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 7

Linear Array
Greedy routing - Introduction

Thm. Routing an 1-relation requires at most N −1 steps on an N -cell linear array (bi-directional links are available).
Proof.

• There is never contention on using the same edge in the same direction.

• Whenever a packet wants to move it moves.

• At no time are 2 packets at the same processor (unless one is already on its own destination).

• packet reaches destination at d steps if d is distance between source and destination.

In more complex networks, say something that looks like a Y these arguments do not work.

Example

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 8

Linear Array
Greedy routing

Thm. Routing an 1-relation on a
√

N ×√
N 2d-array requires 2

√
N − 2 steps.

Proof. Use greedy algorithm. Move a packet from (s1, s2) to (d1, d2) as follows.

1. Correct column first, i.e. move from (s1, s2) to (s1, d2).

2. Correct row then, i.e. move from (s1, d2) to (d1, d2).

Analysis of the algorithm.
(1) Stage (1) is as for linear array (

√
N independent routing problems). Routing is performed in

√
N − 1 steps (at

most).
(2) For stage (2) one cannot use a symmetric argument for columns as packets may pile up at a processor.
Rule. Give priority to packets going farthest away.
Lemma 2. Under Rule stage (2) requires

√
N − 1 steps for a total of 2

√
N − 2 for the both stages.

It is crucial in the proof that each processor is the destination of at most one message.
Proof of Lemma 2.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 9

Linear Array
Greedy routing Continued

Thm 3. Consider a
√

N -cell linear array each cell having an arbitrary number of packets but each processor receiving
at most one. If Rule is used, routing take

√
N − 1 steps.

Proof. Similar to odd-even transposition sort. Consider a rightward movement of packets (such a movement does
not interfere with a leftward movement; a similar argument would hold for this latter case as well).

• Fix i ≤ √
N and consider packets destined to i rightmost processors

√
N−i . . .

√
N−1. Call these ”priority

packets” (”P”).

• They are never delayed by ”non-priority” (”nP”) packets.

• if another ”P” packet competes against such, the one moves that goes farthest.

• if ”nP” ignore it as a ”P” always wins.

Consider rightmost ”P” packet at the start of the algorithm (in case of a tie the one to move first ie. with highest
destination).

• It cannot be delayed by ”nP” packets and moves right unhindered even by ”P” packets (farthest to go)
and reaches rightmost i nodes in at most

√
N − i steps. (Never delayed by a ”P” packet).

Consider second rightmost ”P” packet. (in case of a tie the one to move first ie. with highest destination).

• It can only be delayed by previous packets and only once and never elsewhere i.e. 1 +
√

N − i steps to
reach i rightmost processors.

Similarly, the i-th rightmost packet requires (i − 1) +
√

N − i =
√

N − 1 steps to reach the i rightmost processors.
Set i =

√
N , and a

√
N − 1 time bound is proved for the second phase.

Theorem 3 and Lemma 2 give an overall running time of 2
√

N − 2.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 10

Routing
Randomized and Deterministic - Random routing and the average case
What is an input instance? Packets with destinations.
Congestion c across an edge or through a vertex is the number of packets that travel along the edge or through the
vertex.

We shall use the term “with high probability” (or “w.h.p.”) to mean “with probability at least 1− 1/N c”, where c is
a positive constant and N is some problem related parameter (eg. rows of a butterfly, nodes of a hypercube, etc). If a
claims holds with such a probability it means that if we repeat an experiment N c times, the experiment will fail on the
average once.

Definition 0.1 An h-relation is the routing problem where each processor sends or receives at most h messages.

A permutation is an instance of an 1-relation.

Definition 0.2 Deterministic routing is realized by an algorithm that makes deterministic choices (ie for the same
routing problem it always acts the same).

Definition 0.3 Randomized routing is realized by an algorithm that internally makes random choices (ie for a routing
problem it may act one way once and another way another time). An algorithm that makes random choices is called a
randomized algorithm.

Definition 0.4 Random routing (as opposed to randomized routing) is the instance of deterministic routing where
the destinations of packets are drawn uniformly at random from the set of all possible destinations.

Under random routing we are interested in the average case performance of the deterministic routing algorithm.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 11

Butterfly
Average case analysis of congestion

Theorem 0.1 Given an N-row butterfly, with a packets per level-0 processor, in the average case (random routing) of
the greedy algorithm, the congestion at every node will be less than C = Θ(a) + o(lgN), with high probability. With high
probability, the running time T of the algorithm is

T = O(C) + lgN + o(lgN).

Proof of congestion bound. Consider a level i node u. It is reachable from 2i nodes of level 0 and therefore it is
the intermediate node of a2i input packets if these packets are destined to any of the 2lg N−i nodes of level lgN that are
reachable from this node.

For a given packet that may go through u, the probability that one of the 2lg N−i destination nodes is chosen among
2lg N = N is 2lg N−i/2lg N = 1/2i.

The number of packets that may go through u is a2i.
Therefore the probability that at least r of these packets cross u is given by the following expression.

Pr(at least r crossing u) =

(
a2i

r

)
(2−i)r ≤ (

ae

r
)r

Pr(at least r packets crossing at least one of N lgN nodes) ≤ (N lgN)(
ae

r
)r = P

We distinguish two cases
Case 1: If a ≥ lgN/2 then choose r = 2ea = Θ(a). Then, P ≤ 1/N3/2.
Case 2: If a ≤ lgN/2 then choose r = 2e lgN/ lg (lg (N/a)). Then, P ≤ 1/N3/2.
Therefore, the probability of success (ie. node congestion at most r on EVERY NODE) is given by the following

expression

Pr(at most r packets crossing ANY vertex of N lgN) = 1− Pr(at least r packets crossing some node) ≥ 1− 1/N3/2.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 12

Butterfly
Average case analysis of routing time

For the sake of an example if N = 100 this probability of success is at least 1− 1/1000 = 99.9%. If N = 10000, it is
at least 99.9999%.

The bound on congestion C in the Theorem covers both cases and is larger than the value of C established in each
case.

The implicit assumption made is that the a packets per processor are initially ordered, i.e. we can refer to the 1st,
2nd, . . ., a-th packet of some input (level 0) row i processor of the butterfly.

The theorem above provides a bound on node congestion only. We can turn it into a bound on the running time T if
we first explain how the greedy algorithm resolves the case where two packets attempt to exit a node through the same
link simultaneously. We resolve this case by using a random-rank protocol, that is, each packet is assigned a random
priority key from an interval ([1, O(a+ lgN)]) and the packet with the minimum key crosses the link first. In case, and
it is likely, that two packets have the same priority key, we assume the one with the lowest priority is the one originating
from a lower indexed row. In case of a further tie, we use as a priority key the initial ordering of the packets per processor.
One can prove (Theorem 3.26 of the textbook) an upper bound for the running time of the greedy algorithm like the
one stated in Theorem 1.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 13

Butterfly
Randomized routing

Although the average case analysis of the random routing guarantees, almost surely, acceptable performance on the
average case it fails however to assure such performance in the worst case. In practice, there are input that suffer from
much worse performance than the average one. Such input problems like transposition, bit-reversal are observed quite
often in practice as the routing patterns of various problems. Therefore the guarantees offered by random routing (or
average case arguments) are not very strong.

We are interested in describing the behavior of a routing algorithm under worst case conditions. For this we are going
to introduce randomized routing. Under randomized routing, no matter what the input problem is (eg a transposition or
bit-reversal permutation or the “average” routing instance) the running time of the algorithm will be within the claimed
performance. I.e randomized algorithm works on any problem, EVEN the bad ones. From time to time, it may fail
however to exhibit the claimed performance. This however would occur very rarely (i.e with very small probability)
that is, on the average, perhaps once (one routing) in N c runs of the algorithm. This would mean not that the routing
instance was bad but that the choices made by the random number generator of the randomized algorithm were poor.
One solution to such a case would be to rerun the algorithm on the same input instance by resetting the random number
generator to some new seed value. We need only rerun the algorithm a couple of times before success is observed.

The only disadvantage of using a randomized algorithm is that its running time is twice as much as that of the
overage case of the deterministic algorithm.

The question that arises is how we can turn a random routing problem using a deterministic (and greedy) algorithm
into a randomized routing algorithm.

We are going to use Valiant’s Paradigm:
Reduce Randomized Routing to two Random Routing Problems

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 14

Butterfly
Valiant’s Paradigm

Routing Problem For any packet i, let the source and destination be described by the pair (s(i), d(i)). Realize
routing described by the set of pairs (s(i), d(i), ∀i.

Valiant’s Randomized Algorithm (1982)
Step 1. For every packet i, choose uniformly at random an intermediate destination r(i).
Step 2. Route packet i from source s(i) to intermediate destination r(i) i.e. realize routing (s(i), r(i)).
Step 3. Route packet i from intermediate destination r(i) to final destination d(i) i.e. realize routing (r(i), d(i)).

The algorithm is randomized because in Step 1 random choices are made. Step 2 by itself is an instance of a random
routing problem whose performance on the butterfly is well studied (Theorems 1 and 2). Step 3 is a reverse (mirror
image) of a random routing problem and therefore its running time is that of Step2 as well.

Overall, with high probability,
Time (randomized routing) = 2 T(random routing).
The following theorem can then be derived.

Theorem 0.2 Given an N-row butterfly, with a packets per level-0 processor, there exists a randomized routing algorithm
whose running time is, with high probability,

T ′ = O(a) + 2 lgN + o(lgN).

Note that the congestion in this algorithm can be quite high C = Θ(a). In fact, we can route on the butterfly using
constant-sized queues by using Ranade’s algorithm (Theorem 3.34)

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 15

Hypercubic Networks
Randomized Routing

Theorem 0.3 Given an N-row butterfly, with a packets per level-0 processor, there exists a randomized routing algorithm
whose running time is, with high probability,

T ′ = O(a) + lgN + o(lgN),

The queues at each processor are of maximum size Q ≥ 1.

Note that maximum queue size per processor is independent of congestion C, whereas in the previous algorithms Q
could grow as high as C. The constants hidden in the O(.) and o(.) notations are, however, larger.

Random routing provides good performance on the average routing instance (packet destinations). It may fail,
however, on certain worst case instances (eg. transposition, bit-reversal, etc), that is, its running time on such instance
would be much worse (Θ(

√
N) for the case of certain permutations on the butterfly). Unfortunately, such worst case

instances are quite often in practice. On the other hand, a randomized routing algorithm will perform well no matter
what the input routing instance is. Occasionally, it may fail to run within the expected time bound. In such a case we
can just rerun the algorithm on the same input problem instance (but with different random numbers used). Randomized
routing algorithms, however, are on the average slower than the corresponding deterministic greedy algorithm on the
same input instance (by a factor of two in the examples discussed).

The results on the butterfly can be translated into similar results on the hypercube. In the later case, however, we
assume that each processor can receive/send in one step packets from all its lgN links.

In a
√

N × √
N mesh, the greedy algorithm routes an 1-relation in 2

√
N − 2 steps. The maximum queue size can

grow quite high (up to O(
√

N)). A randomized routing algorithm will route in time O(
√

N) using O(lgN)-size queues
only. A more complicated algorithm would route in 2

√
N + O(logN) steps with constant size queues.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 16

