
Subject 8
CIS 668, Fall Semester 2000

BSP Algorithm Design

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used in conjunction with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are distributed to the students of CIS 668; distribution outside this group of

students is prohibited.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 1



BSP Algorithms
Traditional vs Architecture Independent Parallel Algorithm Design

As an example of how traditional PRAM algorithm design differs from architecture independent parallel algorithm
design, example algorithm for broadcasting in a parallel machine is introduced.

Problem: In a parallel machine with p processors numbered 0, . . . , p − 1, one of them, say processor 0, holds a
one-word message The problem of broadcasting involves the dissemination of this message to the local memory of the
remaining p− 1 processors.

The performance of a well-known exclusive PRAM algorithm for broadcasting is analyzed below in two ways under
the assumption that no concurrent operations are allowed. One follows the traditional (PRAM) analysis that minimizes
parallel running time. The other takes into consideration the issues of communication and synchronization as viewed
under the BSP model. This leads to a modification of the PRAM-based algorithm to derive an architecture independent
algorithm for broadcasting whose performance is consistent with observations of broadcasting operations on real parallel
machines.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 2



BSP Algorithms
Broadcasting: PRAM Algorithm 1
Algorithm. Without loss of generality let us assume that p is a power of two. The message is broadcast in lg p rounds of
communication by binary replication. In round i = 1, . . . , lg p, each processor j with index j < 2i−1 sends the message it
currently holds to processor j + 2i−1 (on a shared memory system, this may mean copying information into a cell read
by this processor). The number of processors with the message at the end of round i is thus 2i.
Analysis of Algorithm. Under the PRAM model the algorithm requires lg p communication rounds and so many parallel
steps to complete. This cost, however, ignores synchronization which is for free, as PRAM processors work synchronously.
It also ignores communication, as in the PRAM the cost of accessing the shared memory is as small as the cost of accessing
local registers of the PRAM.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 3



BSP Algorithms
Analysis of Algorithm 1 on the BSP model
Analysis of Algorithm.Under the BSP cost model each communication round is assigned a cost of max {L, g · 1} as each
processor in each round sends or receives at most one message containing the one-word message. The BSP cost of the
algorithm is lg p ·max {L, g · 1}, as there are lg p rounds of communication. As the communicated information by any
processors is small in size, it is likely that latency issues prevail in the transmission time (ie bandwidth based cost g · 1
is insignificant compared to the latency/synchronization reflecting term L).

In high latency machines the dominant term would be L lg p rather than g lg p. Even though each communication
round would last for at least L time units, only a small fraction g of it is used for actual communication. The remainder
is wasted. It makes then sense to increase communication round utilization so that each processor sends the one-word
message to as many processors as it can accommodate within a round.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 4



BSP Algorithms
Broadcasting: Algorithm 2

Input: p processors numbered 0 . . . p− 1. Processor 0 holds a message of length equal to one word.
Output: The problem of broadcasting involves the dissemination of this message to the remaining p− 1 processors.
Algorithm 2. In one superstep, processor 0 sends the message to be broadcast to processors 1, . . . , p− 1 in turn (a

“sequential”-looking algorithm).
Analysis of Algorithm 2.
The communication time of Algorithm 2 is 1 · max{L, (p − 1) · g} (in a single superstep, the message is replicated

p− 1 times by processor 0).

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 5



BSP Algorithms
Broadcasting: Algorithm 3

Algorithm 3. Both Algorithm 1 and Algorithm 2 can be viewed as extreme cases of an Algorithm 3. The main
observation is that up to L/g words can be sent in a superstep at a cost of L. Then, It makes sense for each processor
to send L/g messages to other processors. Let k − 1 be the number of messages a processor sends to other processors
in a broadcasting step. The number of processors with the message at the end of a broadcasting superstep would be k
times larger than that in the start. We call k the degree of replication of the broadcast operation.

Architecture independent Algorithm 3. In each round, every processor sends the message to k−1 other processors. In
round i = 0, 1, . . ., each processor j with index j < ki sends the message to k − 1 distinct processors numbered j + ki · l,
where l = 1, . . . , k−1. At the end of round i (the (i+1)-st overall round), the message is broadcast to ki ·(k−1)+ki = ki+1

processors. The number of rounds required is the minimum integer r such that kr ≥ p, The number of rounds necessary
for full dissemination is thus decreased to lgk p, and the total cost becomes lgk p max {L, (k − 1)g}.

At the end of each superstep the number of processors possessing the message is k times more than that of the previous
superstep. During each superstep each processor sends the message to exactly k−1 other processors. Algorithm 3 consists
of a number of rounds between 1 (and it becomes Algorithm 2) and lg p (and it becomes Algorithm 1).

Broadcast (0, p,k)
1. my pid = bsp pid(); mask pid = 1;
2. while (mask pid < p) {
3. if (my pid < mask pid)
4. for (i = 1, j = mask pid; i < k; i + +, j+ = mask pid) {
5. target pid = my pid + j;
6. if (target pid < p)
7. bsp put(target pid, &M, &M, 0, sizeof(M));
8. }
9. bsp sync();
10. mask pid = mask pid ∗ k;

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 6



BSP Algorithms
Broadcasting n > p words: Algorithm 4

Now suppose that the message to be broadcast consists of not a single word but is of size n > p. Algorithm 4 may be
a better choice than the previous algorithms as one of the processors sends or receives substantially more than n words
of information. There is a broadcasting algorithm, call it Algorithm 4, that requires only two communication rounds
and is optimal (for the communication model abstracted by L and g) in terms of the amount of information (up to a
constant) each processor sends or receives.

Algorithm 4.
Two-phase broadcasting
The idea is to split the message into p pieces, have processor 0 send piece i to processor i in the first round and in

the second round processor i replicates the i-th piece p − 1 times by sending each copy to each of the remaining p − 1
processors (see attached figure).

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 7



BSP Algorithms
Broadcasting n > p words: Example

�����
�����
�����
�����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

1 2

Stage 2

0

�����
�����
�����
�����

������
������
������
������

�����
�����
�����
�����

Stage 1

3

max{L,gn}

max{L,gn}

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 8



BSP Algorithms
Parallel Prefix

Exercise. What can you say about parallel prefix? Analyze the BSP performance of the PRAM algorithm for
parallel prefix. Can you halve its number of supersteps yet maintain the same BSP cost?

The structure of the four algorithms described for broadcasting can also be used to derive algorithms for parallel
prefix that require similar number of supersteps (at most twice as many).

Algorithm 1 gives rise to a “sequential”-like parallel prefix algorithm. Algorithm 2 gives rise to the binary tree based
algorithm that requires 2 lg n supersteps. The corresponding PRAM algorithm, however, (that also runs on the butterfly)
requires half as many supersteps and is thus more efficient on the BSP model. Algorithm 3 gives rise to the equivalents
of 2 when the number of supersteps needs to be decreased.

We can generalize the prefix problem so that each processor instead of holding a single scalar value, holds a se-
quence/vector of scalar values n. In the case n > p, implementations following the counterparts of Algorithm 1,2 and 3
for broadcasting fail to provide optimal algorithms.

Algorithm 4 gives rise to a two-phase parallel prefix algorithm that is more efficient in architectures with large L for
large independent prefix problems n.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 9



BSP Algorithms
Matrix Computations

SPMD program design stipulates that processors executes a single program on different pieces of data. For matrix
related computations it makes sense to distribute a matrix evenly among the p processors of a parallel computer. Such
a distribution should also take into consideration the storage of the matrix by say the compiler so that locality issues
are also taken into consideration (filling cache lines efficiently to speedup computation). The are various ways to divide
a matrix. Some of the most common one are described below.

• block distribution. Split an array into square blocks each one dimension n/
√

p× n/
√

p and store block i
to processor i. The blocks need not be square in the general case.

• column-block distribution. Split matrix into p column blocks so that n/p consecutive columns form a
block i that will be stored to processor i.

• row-block distribution. Similar to column-block distribution.

• wrapped-around column distribution. Assign individual columns to processors, say, by assigning column
i to processor i (mod p). This distribution is preferable in cases where elimination methods are used.

• other combination of these methods.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 10



BSP Algorithms
Matrix Multiplication

The BSP algorithm for matrix multiplication presented below was presented in the seminal work of Valiant. It works
for p ≤ n2. Each processor is assigned the task of computing an n/

√
p × n/

√
p submatrix of the product A × B. The

input matrices A and B are divided into p block-submatrices, each one of dimension m×m, where m = n/
√

p. We call
this distribution of the input among the processors block distribution. This way, element A(i, j), 0 ≤ i < n, 0 ≤ j < n,
belongs to the (j/m)∗√p+(i/m)-th block that is subsequently assigned to the memory of the same-numbered processor.
Let Ai (respectively, Bi) denote the i-th block of A (respectively, B) stored in processor i. With these conventions the
algorithm can be described in Figure 1. The following Proposition describes the performance of the aforementioned
algorithm.

begin Mult A (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; pj = q/

√
p ; Cq = 0;

3. al ← Api+l∗√p, 0 ≤ l <
√

p;
4. bl ← Bpj∗√p+l, 0 ≤ l <

√
p;

5. for 0 ≤ l <
√

p do
Cq = Cq + al × bl;

end Mult A

Figure 1: Procedure Mult A.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 11



BSP Algorithms
Matrix Multiplication: Alg A

Proposition 1 Algorithm Mult A for multiplying two n×n matrices A and B stored according to the block distribution
requires, for any p ≤ n2, computation time Cmul (n) that is given by

Cmul(n) = max {L,
(2n− 1)n2

p
},

and communication time Mmul (n) that is given by the expression

Mmul(n) = max {L, g
2n2

√
p
}.

One immediately realizes that algorithm Mult A is not memory efficient since it requires more local memory per
processor – by a factor of

√
p – than the required one. Algorithm Mult B shown in Figure 2 is the memory efficient

variant of Mult A. It is not synchronization efficient though since its number of supersteps is not constant any more;
it has been increased by a factor of

√
p. The performance of algorithm Mult B is summarized in Proposition 2.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 12



BSP Algorithms
Matrix Multiplication: Alg B

begin Mult B (C,A,B,n,p)
1. Let m = n/

√
p ;

Each processor is also assigned a unique processor number q;
2. Let pi = q mod

√
p ; pj = q/

√
p ; Cq = 0;

3. for 0 ≤ l <
√

p do
begin

4. a← A((pi+pj+l) mod
√

p)∗√p+pi
;

5. b← B((pi+pj+l) mod
√

p)+pj∗√p;
6. Cq = Cq + a× b;

end
end Mult B

Figure 2: Procedure Mult B.

Proposition 2 Algorithm Mult B for multiplying two n×n matrices A and B stored according to the block distribution
requires, for any p ≤ n2, computation time Cmul (n) that is given by

Cmul(n) =
√

p max {L,
(2n− 1)n2

p3/2
}

and communication time Mmul (n) that is given by the expression

Mmul (n) =
√

p max {L, g
2n2

p
}

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 13



BSP Algorithms
Experimental Results

In order to show the efficiency of algorithm design on the BSP model we present some experimental results for
matrix multiplication on Cray T3D; additional results can be found in the author’s Web page. Algorithm MultT B

is a variation of Mult B where in order to multiply A with B, matrix A is first transposed and the loop for matrix
multiplication is changed accordingly. This way the access patterns for both A and B are the same (column - column as
opposed to row - column) thus improving locality (cache usage), and subsequently program performance.

Algorithm Mult B

p = 1 p = 4 p = 16 p = 64
n Time Mfl Time Mfl Time Mfl Time Mfl

(sec) rate (sec) rate (sec) rate (sec) rate
256 4.1 7.9 1.1 7.8 0.28 7.4 0.03 13.9
512 34.0 7.8 8.4 7.9 2.1 7.7 0.56 7.4

1024 289.8 7.4 68.4 7.8 16.9 7.9 4.3 7.7
2048 - - - - 136.8 7.8 33.8 7.9

Table 1: Execution time for Mult B on the Cray T3D

Algorithm MultT B

p = 1 p = 4 p = 16 p = 64
n Time Mfl Time Mfl Time Mfl Time Mfl

(sec) rate (sec) rate (sec) rate (sec) rate
256 2.3 14.3 0.58 14.4 0.15 13.7 0.03 15.1
512 20.7 12.9 4.7 14.1 1.16 14.4 0.30 13.5

1024 202.7 10.5 41.7 12.8 9.4 14.1 2.3 14.3
2048 - - - - 83.5 12.8 19.0 14.1

Table 2: Execution time for MultT B on the Cray T3D

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 14



BSP Algorithms
Matrix Multiplication: Algorithm C

Finally, we outline a matrix multiplication algorithm that is computation, communication and synchronization ef-
ficient. It fails, however, to be memory efficient, as its memory requirements are a multiplicative factor p1/3 from the
optimal. Algorithm MultT C is outlined in the remainder of this section.

In MultT C matrices A and B (and the result C) are split into two ways into submatrices. Each matrix (A, B and
the result C) is split into p “physical” block-submatrices, as in the previous algorithms, each of size n/p1/2 × n/p1/2.
A “physical” block-submatrix indicates the part of the matrix stored in a single physical (processor) location (i.e.
block-submatrix Ai is stored in processor i). At the same time, each of the three matrices is split into p2/3 “virtual”
block-submatrices each of size n/p1/3 × n/p1/3. A “virtual” block-submatrix indicates the block geometry that will be
used in the matrix multiplication algorithm to be outlined below. The elements of a “virtual” block-submatrix may be
stored in more than one physical processors.

Whereas in the first two algorithms “physical” and “virtual” block-submatrices coincided in number and dimension,
in this communication efficient algorithm are clearly distinguished.

Let the “virtual” block-submatrices be identified as Aij, Bij and Cij. Matrix multiplication will thus require the

computation of all Cij =
∑p1/3

k=1 Cijk =
∑p1/3

k=1 AikBkj, where Cijk = AikBkj.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 15



BSP Algorithms
Algorithm C: Description

The algorithm consists of the following steps. We name the processors (i, j, k) the way we did in the matrix multi-
plication algorithm on the hypercubic networks.
Step 1. Processor (i, j, k) gets Aik and Bkj. Note that each of these two “virtual” block-submatrices may originate from
more than one processors. Each processor sends at most 2n2/p elements (but each one replicated p1/3 times) and receives
at most 2n2/p2/3 elements. The communication cost of Step 1 is max {L, 2gn2/p2/3}. Subsequently, the two submatrices
are multiplied as in the sequential case a step requiring at most max {L, 2n3/p} time. Partial-submatrix Cijk is thus
computed on processor (i, j, k). Each element of such a submatrix is a partial sum of an element clm of the result matrix
C.
Step 2. Each element of Cijk is transmitted from (i, j, k) to that physical processor that stores the “physical” block-
submatrix of C whose elements will be formed as sums of the receiving elements (partial sums) of Cijk. Note that each
(i, j, k) processor may send its elements to more than one physical processors. At the completion of this step, each of
the p processors storing a block-submatrix of C of dimension n/p1/2 × n/p1/2 receives at most p1/3 · n2/p such elements
(partial sums). The complex communication performed in this step requires time max {L, gn2/p2/3}.
Step 3. The received partial sums are added. p1/3 partial sums are summed to give an element of C stored at a physical
processor, for a total of n2/p such elements (of a “physical” block-submatrix). The total computation time performed is
max {L, n2/p2/3}.

Proposition 3 Algorithm Mult C for multiplying two n×n matrices A and B stored according to the block distribution
requires, for any p ≤ n2, computation time Cmul (n) that is given by

Cmul(n) ≤ max {L, 2n3/p}+ max {L, n2/p2/3},

and communication time Mmul (n) that is given by the expression

Mmul (n) = max {L, 2g
n2

p2/3
}+ max {L, g

n2

p2/3
}.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 16



BSP Algorithms
Algorithm C: Optimality

The optimality in communication of the algorithm is established by the following result.

Theorem 1 On a model of computation that allows the operations {+, ∗} only, if any processor reads s elements of A
and B and computes at most s partial sums of C, it can compute at most O(s3/2) multiplicative terms for these sums.

This way, if a processor reads at most s elements of A and B it can compute at most O(s3/2) multiplicative terms of
C. Combined, all p processors can compute p O(s3/2) such terms which must be Ω(n3). Therefore s = Ω(n2/p2/3) and
thus algorithm Mult C is communication optimal.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 17



BSP Sorting
Sampling-based Splitter-directed Sorting

• A problem with a long history

• Sequential Sorting

• QuickSort [C.A.R Hoare, 1962]

• SampleSort[Frazer and McKellar 1970]

• Parallel Randomized Sorting

• Sample-based [Reischuk 1985]

• Oversampling [Reif and Valiant 1987]

• Parallel Deterministic Sorting with regular sampling [Shi and Schaeffer 1992])

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 18



BSP Sorting
Building Blocks

• A. SelectSample

• B. SortSample

• C. SelectSplitters

• D. DisseminateSplitters

• E. DivideKeysBasedOnSplitters

• F. RearrangeDividedkeys

• G. ArrangeReceivingKeys

• H. SortLocalKeys

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 19



BSP Sorting
Deterministic and Randomized BSP Sorting

Randomized Sorting Deterministic Sorting

A. SelectRandomSample H. SortInputKeys

B. SortSample A. SelectDetSample

C. SelectSplitters B. Sort(Merge)Sample

C. SelectSplitters

D. BroadcastSplitters D. BroadcastSplitters

E. BinarySearchKeysOnSplitters E. MergeKeysandSplitters

F. RouteKeysToProcessors F. RouteKeysToProcessors

H. SortReceivingKeys G. MergeReceivingKeys

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 20



BSP Sorting
High level Description of Randomized Sorting

• Input: n keys evenly but arbitrarily distributed.

A. A sample of size ks− 1 < n/2 is selected at random.

B. The sample of size ks− 1 is sorted.

C. Every s-th key of the sample constitutes a splitter.

D and E. The position of each input key with respect to the k − 1 splitters is determined by binary search.

F. Route keys to processors.

H. Sort the k bucket.

Remark 1. If ps < n/p choose k = p; otherwise choose k = p1/r, algorithm consists of r iterations, each one repeating
steps A-F for a subset of the processors.

Remark 2. Depending on how various steps are performed, various algorithms can be presented; sorting in stage B,
for example, can use a sequential or parallel (Batcher sort) method.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 21



BSP Sorting
Simplified Analysis of the two Algorithms

• Only important terms are included.

• Assume p << n so that k = p.

• SD, SR are the constants of the corresponding sequential algorithms. B is constant for binary search, M
for merging, R for preprocessing the keys to be routed to achieve coarse-grained communication in F .

• Rand Alg = B n
p

lg p + SR
n
p

lg n
p

+ (R + g)n
p

+ O(L) + o(n lg n/p)

• It requires fast fine-grained communication.

• Det Alg = M n
p

lg p + SD
n
p

lg n
p

+ (2 + g)n
p

+ O(L) + o(n lg n/p)

• if p << n/p term 2n
p

becomes p lg n
p

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 22



BSP Sorting
Results for Randomized Sorting

• One-optimal randomized BSP sorting [Valiant and Gerbessiotis 94]

1. If n
p

= nt, for any constant 0 < t < 1, there is a randomized BSP sorting algorithm with

Computation: (1 + o(1))Tseq

p

Communication: O(g n
p
)

2. If n
p

= log1+a n, for any constant a > 0, there is a randomized BSP sorting algorithm with

Computation: (1 + o(1))Tseq

p

Communication: O(g n lg n
p lglgn

)

Tseq is the time of an O(n lg n) sequential algorithm on a comparison-exchange model.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 23



BSP Sorting
A (New??) Randomized BSP Algorithm

• H. SortInputKeys

• A. SelectRandomSample

• B. Sort(Merge)Sample

• C. SelectSplitters

• D. BroadcastSplitters

• E. MergeKeysandSplitters

• F. RouteKeysToProcessors

• G. MergeReceivingKeys

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 24



BSP Sorting
Consequences for Sequential Sorting

• Serialize parallel randomized algorithm (ignore communication, multiply by p parallel time)

• Rand Algorithm = p(B n
p

lg p + SR
n
p

lg n
p
)

• Sequential Algorithm = Sn lg n

• Let p = n/t be the number of splitters for a sequential randomized sorting algorithm (lg t = o(lg n), t =
Ω(lg n)). Assume that in general 1 < B � S.

Rand Sequential = Bn lg p + Sn lg
n

p
+ S

n

t
lg n/t

= Bn lg n + (S − B)n lg t + o(n lg n)

• The constant of the Randomized algorithm is B instead of S.

• It makes merge-sort and heap-sort (the corresponding andomized variants) as fast as quick sort.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 25



The BSP Model
Conclusions

• It offers a better abstraction of a parallel computer that allows the study of the computation, communication
and synchronization requirements of parallel algorithms

• As it is not just an abstract computational model, it can also be used as a programming paradigm for the
programming of parallel computers; experimental uses of BSP oriented libraries show its practicality as
well.

• A BSP algorithm is a collection of algorithms; depending on n, the problem size, and the BSP parameters
(p, L, g) of a particular machine, that member of the collection with the best performance is selected.

• Many of the abstractions included in BSP are reflected in the Virtual Interface Architecture Specification
for System Area Networks by Compaq, Intel and Microsoft.

(c) Copyright Alexandros Gerbessiotis, Fall 2000. Not for distribution outside the New Jersey Institute of Technology. 26


