
A. V. Gerbessiotis CIS 750

March 28, 2006 Spring 2006

BSPlib installation Handout 3

1 Introduction

Before you start reading this document consult and reread Handout 2.
Make sure you have changed the passwords both on pcc15, pcc16, though this is not critical, to your own secure

password from the default ones.
Make sure that by now you have copied /home/u20/cshrc to your local directory as $user/cshrc. You will have to

edit this file later on. Every time you edit this file, remote copy it to the .cshrc version in both pcc15 and pcc16, and
then logout and login again or type in the command-line

% source ~/.cshrc

You can copy this file with the set of commands.

% cd
% hostname
pcc16.njit.edu
% rcp cshrc pcc15:/home/$user/.cshrc
% rcp cshrc pcc16:/home/$user/.cshrc

All relevant BSP-related files are located in directory /home/u20/bsp-files. You can copy them to your local directory
and use them as needed. In addition some files can be retrieved from the protected area of the web-page section C3, link
19.

The uniprocessor version of BSPlib needs only to be installed on pcc16.njit.edu. The multiprocessor version can be
installed first on the same machine and all relevant files (the directory structure of BSP) be copied then to other machines
of the cluster. However make sure that you update correctly the .cshrc files between the uniprocessor and multiprocessor
installation.

2 Uniprocessor installation of BSPlib

Step 0.1 We assume that you have a Red Hat linux system (RH 7.0 or later); the test platform that was used to
compile these instructions was a RH 9.0 machine. Make sure your shell is tcsh. All uXY accounts have tcsh by default,
unless you have deliberately changed that. You can check what your default shell is by typing the line below, and checking
the last few characters after the colon : in the response that should read /bin/tcsh.

% cat /etc/passwd | egrep $user
u20:x:517:517::/home/u20:/bin/tcsh

If however tcsh is not your default shell, then you need to change it. Here is how this can be accomplished.

% chsh

and after insterting your password change shell appropriately

Changing shell for XXXXX.
Password:
New shell [/bin/bash]: /bin/tcsh

Step 0.2 Logout and login again.

Step 0.3 Edit the .cshrc or cshrc file and comment out the line

setenv BSP_DEVICE MPASS_UDPIP

so that it looks like

#setenv BSP_DEVICE MPASS_UDPIP

Then, make sure you copy the cshrc file to the relevant cluster machines as .cshrc. This is explained in Section 1
(Introduction). Then continue with the following steps that install the uniprocessor version of BSPlib.
Step 1 Grab the source code v1.4a bsplib toolset.tar.gz and ungzip it, if necessary. The file is located in /home/u20/bsp-files.

% gzip -d v1.4a_bsplib_toolset.tar.gz

Step 2 Tar xvf it as

% tar xvf v1.4a_bsplib_toolset.tar

Step 3 A directory named BSP was created. Get into it

% cd BSP

Step 4 Unzip the documentation instructions if you like

% gzip -d v1.4_bsplib.README.ps.gz

Step 5 Run configure.

% ./configure

Question 1 is architecture (LINUX) : Accept it by pressing return and then confirming it by typing y for yes.
Question 2 is inter-processor comm : Choose SHMEM SYSV for uniprocessor simulation.
Question 3 is number of procs : Choose 8.
Let it work out the configuration.

Step 6 Run install by typing

% make

Step 7 Run make install by typing

% make install

Step 8 You can check if everything is ok by typing

% bspcc

If you get bspcc: no input files specified
bspcc usage: for basic information, try the ‘-help’ option
Then everything worked fine.
You can type

% man bspcc

to get the manual pages
Type then

% bsprun

If you get

bsprun: Command not found.

type

% rehash

Step 9 Run the program in directory /home/$user/BSP/contrib/programs/bsp probe by going there and then
typing in

% make all

Make will output something like

bsp_probe.c: In function ‘main’:
bsp_probe.c:78: warning: return type of ‘main’ is not ‘int’
bspcc -flibrary-level 2 -O3 -o bspprobe bsp_probe.o

Disregard it.
Step 10 You are ready to run the first ”parallel” program. Type

% bsprun -npes 4 ./bspprobe

The ./bspprobe IS REQUIRED BY LINUX to indicate that the executable is local. You will get an output of the form

WARNING{bsp_begin}

Guessing the BSP parameters for a 4 processor LINUX machine

using SHMEM_SYSV for communication. Please update the

file "/home/XXXXX/BSP/include//bsp_parameters.ascii" with

the information produced by running bspprobe, or from

the following web site:

http://www.bsp-worldwide.org/implmnts/oxtool/params_frame.html

Probe started on process 0 of 4 [pcc40.njit.edu]

Probe started on process 1 of 4 [pcc40.njit.edu]

Probe started on process 2 of 4 [pcc40.njit.edu]

Probe started on process 3 of 4 [pcc40.njit.edu]

For p=4, BSPlib’s default values for the BSP parameters are:

S= 10.0 Mflops

L= 3000.0 flops/word (300.000 usec)

g= 12.0 flops/word (1.200 usec/word)

The calculated values are:

and the system will get stuck for a while... before it print something like the output below. This might take plenty of
time: the uniprocessor library is simulating a 4-processor parallel machine. You might wait 10-20 minutes before you get
the following output. Alternatively edit bsp prob.lc and change some of the defaults into the following lower values.

#define MIN_SAMPLE 8 /* 10 */

#define S_DOT_OVERSAMPLE 2 /* 20 */

#define S_MAT_OVERSAMPLE 2 /* 10 */

#define L_OVERSAMPLE 500 /*160000 */

#define G_OVERSAMPLE 3 /* 30 */

S (average) = 449.306 Mflop/s

L (low) = 89861152 (-741.501818 usec) <<<Don’t worry about this

L (high) = 134791818 (3667.504605 usec)

(local shift) g=11149.48 block size =8192 32bit words

(local shift) g=11094.02 block size =4096 32bit words

(local shift) g=11094.02 block size =2048 32bit words

(local shift) g=33281.96 block size =1024 32bit words

(local shift) g=77657.86 block size =512 32bit words

(local shift) g=166520.69 block size =256 32bit words

(local shift) g=344024.35 block size =128 32bit words

(local shift) g=290551.62 block size =64 32bit words

(local shift) g=588258.68 block size =32 32bit words

(local shift) g=1267210.31 block size =16 32bit words

(local shift) g=2854259.60 block size =8 32bit words

(local shift) g=6645461.31 block size =4 32bit words

G_infty = 11094.02 (24.69 usec) Nhalf = 2392.050665 32bit words

(all-to-all) g=11094.02 block size=8192 32bit words

(all-to-all) g=11094.06 block size=4096 32bit words

(all-to-all) g=11094.02 block size=2048 32bit words

(all-to-all) g=33337.47 block size=1024 32bit words

(all-to-all) g=79710.30 block size=512 32bit words

(all-to-all) g=166465.20 block size=256 32bit words

(all-to-all) g=344079.83 block size=128 32bit words

(all-to-all) g=288554.72 block size=64 32bit words

(all-to-all) g=588203.06 block size=32 32bit words

(all-to-all) g=1267210.33 block size=16 32bit words

(all-to-all) g=2856311.91 block size=8 32bit words

(all-to-all) g=6645128.53 block size=4 32bit words

G_infty = 11094.02 (24.69 usec) Nhalf = 2391.930680 32bit words

Note: Because the parallel system is ”simulated” on a uniprocessor machine, the time it takes to complete this program
is much longer than p times the “anticipated” uniprocessor version.

3 Cluster version of BSPlib

The BSPlib installation steps are similar to the uniprocessor installation. Some additional steps are required for the cluster
version of the library to run parallel programs.

We assume that your account is uXY in the remainder of this discussion.

0. Remove the uniprocessor version of BSPlib from pcc16.njit.edu by doing a

% cd
% hostname
pcc16.njit.edu
% rm -rf /home/uXY/BSP # This is a comment line # is equivalent to // in C++

1. Edit the .cshrc file to uncomment the BSP DEVICE line.

#setenv BSP_DEVICE MPASS_UDPIP

so that it becomes

setenv BSP_DEVICE MPASS_UDPIP

The last line is important if you plan to run the cluster version. The former line is probably already there from the
uniprocessor installation. Interprocessor communication under BSPlib will utilize UDP/IP. You may also wish to verify
that the following lines appear in .cshrc.

alias 13 ’rlogin pcc13 -l $user’
alias 14 ’rlogin pcc14 -l $user’
alias 15 ’rlogin pcc15 -l $user’
alias 16 ’rlogin pcc16 -l $user’

However the default cshrc file in u20 already includes this information. Copy it locally to your account and then copy it
to the .cshrc files of both machines by following the Section 1 (Introduction) instructions.

% cp /home/u20/cshrc /home/uXY/cshrc # You can grab the cshrc template from u20
% # Do as in Section 1.

2. Grab the tar file v1.4a bsplib toolset.tar and tar xvf it as before. Note the a after 1.4! This file is in
/home/u20/bsp-files.

% cp /home/u20/bsp-files/v1.4a_bsplib_toolset.tar /home/uXY/
% cd /home/uXY
% tar xvf v1.4a_bsplib_toolset.tar
% cd BSP
% ./configure # and read step 3 below on how to answer the questions
% make # be patient; it takes time
% make install # do not forget this step to complete installation

The library takes time to compile, because it compiles itself about 9 times,

3. Follow the steps of the uniprocessor installation when you execute the ./configure above except

a. if you are asked about architecture use LINUX
b. communication medium use MPASS_UDPIP
c number of processors use 8 or larger
d. switch use Ethernet 100Mbit
e. full duplex or half duplex use full duplex switch
f. Roundtrip time use 200 microseconds
g. Send latency use 100 microseconds

The last two figures are not very important; you can always change the values during linking time within your own program.
So don’t worry if you type wrong.

4. After the installation completes, test it with a bspcc or which bspcc.

% which bspcc

If an error is returned, try first the sequence of commands below and then execute the line above.

% rehash
% hashstat

5. Copy the ccp script to BSP/bin. Also the udpip script.

% cp /home/u20/bsp-files/ccp /home/uXY/BSP/bin
% cp /home/u20/bsp-files/udpip /home/uXY/BSP/bin
% chmod 755 /home/uXY/BSP/bin/ccp
% chmod 755 /home/uXY/BSP/bin/udpip
% rehash
% hashstat

Copy also the bsptcphosts file.

% cd /home/uXY/
% cp /home/u20/bsp-files/bsptcphosts .bsptcphosts

6. From now on you can use the rcp, rsh commands to send information from one machine to the other. Information
is available by typing for example man rcp. Create a tar file of the BSP installation on pcc16 by doing at /home/uXY a tar
cvf BSP8.tar BSP Do the following on pcc16 to effect this.

% cd /home/uXY
% mkdir run # this is going to be needed later
% tar cvf BSP8.tar BSP
% udpip

The ccp commands copy the .cshrc and BSP8.tar to all the machines of the cluster. The udpip script does these and in
addition it creates a directory run, just as you did above on pcc16, untars BSP8.tar and installs BSPlib from that tar-file
on the remaining machines.

The command ccp, cluster copy, takes as a first argument a single file and as a second argument a directory. It copies
the file into the directory on all machines of the cluster.

7. You can run some sample parallel programs written in BSPlib by creating a directory say phello somewhere in your
filespace and copying there the phello tar file available in bsp-files. The most recent version is version 3 with tar file
phello2004v3.tar. Tar xvf this tar file in phello and the issue a make all command to compile and link the various
executable files. This is also depicted in step 10 below. In order to run an executable file say a.out, it must first be copied
to the run directory of all machines. You can do that as follows.

% ccp a.out /home/uXY/run

Perhaps the first file to run in the created set of executable files is hello or nprocs. ccp it to the nodes of the cluster
first using the command described above. You then need to setup the communication subsystem through step 8 below.

8. You are ready to start running programs. In order to allow interprocessor communication between any two of the
four machines, run

% bsplibd -all
% bspload -all -start

Some communication programs are started for the cluster defined in /home/uXY/.bsptcphosts
After you are done with your coding, testing, and program execution, do a

% bspshutd
% bspload -all -end

to shutdown the programs you had started before. Note that after a shutdown you need to wait for a while (about a minute)
before you restart with a bsplibd. Then you can run say hello with the following set of instructions (the first line is the
ccp of the executable).

% ccp hello /home/uXY/run
% cd /home/uXY/run
% bsprun -noload -local -npes 2 ./hello

9. For files that do not have a makefile it is straightforward to compile, link, cluster copy nad run, a BSPlib program
by typing.

% bspcc -O3 -flibrary-level 2 file1.c -o file1 # -O3 is optimization level 3
% ccp file1 /home/uXY/run
% cd /home/uXY/run
% bsprun -noload -local -npes 2 ./file1

BSPlib will complain about : the use of ‘tempnam’ is dangerous, better use ‘mkstemp’. Disregard this
message. It is just a warning. It does not affect compilation. You can compile things under BSPlib under library-level 0,
1 or 2. The most efficient is level 2; the most debug-friendly but also slowest is level 0. For a uniprocessor version, it is
better if you run it at level 1 than 2 for example. Do a man bspcc for more details on the differences.

10. We now show how to setup phello to install the sample programs and run the nprocs.c file.

% cd /home/uXY
% mkdir phello
% cp /home/u20/phello2004v3.tar phello/
% cd phello3
% tar xvf phello2004v3.tar
% make all
% ccp nprocs /home/uXY/run
% cd /home/uXY/run
% bsprun -noload -local -npes 2 ./nprocs

It should print something like

Hello World from process pcc16.njit.edu with id=0 of total 2
Hello World from process pcc15.njit.edu with id=1 of total 2
Number of processes allocated: 2

How does BSPlib correspond processor id’s to IP addresses? It uses .bsptcphosts. The last address in that file MUST
BE the local machine. It is assigned a processor id of zero. The other address assignments are top to bottom starting from
one. Note that .bsptcphosts MUST reside at /home/uXY.

Now modify the .bsptcphosts file to include

host(pcc15.njit.edu);
host(pcc15.njit.edu);
host(pcc16.njit.edu);
host(pcc16.njit.edu);

and run again the nprocs or hello program but now use 4 processor. Note that both cluster machines are dual-processor
SMPs. You can use both CPUs for program execution.

% cd /home/uXY/run
% bsprun -noload -local -npes 4 ./hello

The output would look like

Hello World from process pcc16.njit.edu with id=0 of total 4
Hello World from process pcc15.njit.edu with id=1 of total 4
Hello World from process pcc15.njit.edu with id=2 of total 4
Hello World from process pcc16.njit.edu with id=3 of total 4
Number of processes allocated: 4

3.1 Checklist

• Have you updated .cshrc ?

• Have you copied cshrc from u20 into .cshrc in uXY?

• Did you update/reinstall BSPlib on pcc16? Did you use the 1.4a copy?

• Did you tar cvf the installation, copy it to the remaining cluster machines, and install it there using udpip? If in
doubt, rsh pcc15 ls -l BSP.

• Did you create run?

• Before you run a BSP program did you bsplibd -all , bspload ?

• Did you by any chance reuse an old executable (compiled under the uniprocessor version) to run it under the cluster?
It won’t work!

• When you run a sequential program say, iseq located in the current working directory are you doing a ./iseq or are
you trying in vain an irun? Linux, for security reasons, does not have . (i.e. the local directory defined in the $path
variable. Local files cannot be thus executed, unless one requests the execution explicitly, i.e. do an ./irun on the
command line.

• When you run a BSPlib program say, ipar located in the current working directory are you doing a bsprun -noload
-local -npes n ./ipar or are you trying in vain a bsprun -noload -local -npes irun or even bsprun -noload
-local -npes n irun? n is a number that indicates the number of processors requested.

• Are yoy trying bsprun -noload -local -npes 1 ./irun? p = 1 programs won’t run under the cluster version!

You might want to read the Postscript file v1.4 bsplib.README.ps that is available at any BSP/ directory after you
decompress it with gzip -d v1.4 bsplib.README.ps.gz. Just to make sure things are ok,

% setenv
.... other lines printed
BSP_DEVICE=MPASS_UDPIP

run setenv and make sure you see a line like the line above. Compile your executable file in some arbitrary directory and
then run ccp file /home/uXY/run, where file is the name of the BSPlib created executable. What ccp does is something
as simple as

rcp ./$1 pcc15.njit.edu:$2/$1
rcp ./$1 pcc16.njit.edu:$2/$1

If you are not familiar with rcp, then do a man rcp to see how it works.
You are ready to run your executable. Go to the run directory and type in

bsprun -noload -local -npes 4 file command-line-arguments-if-any

Note that BSPlib manual pages are available on line

% man bspcc
% man bsp_put
% man bsp_time

