
A. V. Gerbessiotis CIS 750

March 6, 2006 Spring 2006

(80 points) Due: April 24, 2006 Programming Assignment 4

1 Introduction

In this assignment you will reuse the components that you built in PA1, PA2.
The assignment deals with the building of a higher performance search engine. In general data on search

engines reside on multiple machines. Therefore the processing done with pa1, pa2 usually involve multiple
machines. This is the objective of PA4. To implement parallel (high performance) search engine components.

2 Deliverables

The relevant files will become available in homework/pa4 as described in Handout 2. A single executable file will
be the result of your compilable source code into the form of a file named pa4. The file will be an executable
constructed using the LAM MPI library tools. However it should be possible to reuse your own code written in
other language(s). In a UNIX environment this can be accomplished through the C function call system. More
elaborate uses involve execve etc.

3 Part 1 : Simple action parallelization (50 points)

The LAM-MPI executable file pa4 will read the command line and behave as follows.

% mpirun -np number ./pa4 token some-name

% mpirun -np number ./pa4 debug-token some-name

% mpirun -np number ./pa4 stopwords some-name

% mpirun -np number ./pa4 invert some-name

The value of some-name is that explained in PA2, Part 1. Ignoring the MPI-related part of command line
arguments, the first argument in the command line involves actions related to PA1, PA2. However these actions
occur on the same-named file or directory of a number of machines (PCs) and that directory might contain different
files/subdirectories. For example if some-name might contain alexg on one machine and say some-other-login
on some other machine.

The side-effects remain the same.

4 Part 2 : Simple query parallelization (30 points)

% mpirun -np number ./pa4 AND term1 term2 some-name

This is PA2, Part 3 on multiple machines. One difficulty that might arise however is dealing with words
that have different wordIDs on different machines. The same applies to docIDs, doclists etc. These are easily
fixable; however the difficult or more complicated part might be the communication of this information to the
host machine for further printing/processing.

5 Comments

All output will be done by a single machine that names 0 by the MPI-based process numbering scheme. This
will be in most cases the local machines which you used to issue the mpirun command.


