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Problem 1. (60 points)
You are asked to approximate π in parallel using a Monte Carlo method. There are many ways to calculate π

to variable digits of accuracy. We will not calculate π; we will only approximate it here. The π we are referring to
is the well-known π = 3.1415926535 . . .. Here we will get an approximation of π with a not very fast convergence
method. It is a Monte Carlo method a method otherwise used heavily in simulations, computational finance
etc. One can solve our problem sequentially but the number of runs n can be quite high to get even a 4-5 digit
approximation of π. For n = 10, 000, 000 the value of π one gets is 3.14089 which is accurate only to the second
decimal digit. For n = 100, 000, 000 the running time on a Solaris workstation (roughly the equivalent of a
Pentium 300 Mhz box) was a bit less than 2 minutes and yielded an approximation of 3.1418, whereas the same
program on a 2.2Ghz Intel-based Linux machine took almost half a minute and gave a 3.14174 approximation.
On pcc16 such a run took somewhat less time than the Solaris box, it was only 89 seconds. You can only imagine
what happens running-time wise if the number of runs is say 4 billion as it is going to be for your case.

However if p processors are available then one can spawn p processes, assign them to individual processors,
run the sequential algorithm on each processor n/p times, and combine the results on a preagreed processor,say
processor 0 to gain better accuracy. So on the 4 processors of the cluster, an 4 billion run, will require 1 billion
runs per CPU.

Pseudo-Random Number Generator. You are going to use for this problem a random number generator. In
fact you are going to use a pseudo random number generator available in C/C++ in the Standard C library called
random. Do a man random for more details. random might give a random number in the range [0, x]. In order to
use it in the problem you might have to scale up or down its output, appropriately and correctly. You might also
have to cast it. Think how it can be done. You are not allowed to substitute other generators for random(); you
are allowed to use other random number generators in ADDITION to random. That is, you first present results
with random and then explore results one can get by using other pseudo-random number generators.

Suppose a program calls random 100 times. If you run the program 10 times, each time you are going to get
the same sequence of ”random” numbers. If you want to spice up and give different sequences in the 10 runs,
you can use srandom to initialize the seed of random. What is a source of “randomness”? Perhaps the process
id of a Unix process... How do you approximate π? Think of the following single experiment

0. Numbers below are real numbers.
PiOne

1. You draw a random real number in the range [0,1]. Call it x;
2. You draw a random real number in the range [0,1]. Call it y;
3. Form pair (x,y). Call it point p.
4. Point p naturally belongs to the square with end points

(0,0), (0,1), (1,1), (1,0).
5. Question: What is the probability that a uniformly at random

drawn point such as p belongs to the circle inscribed in this square?
6. If p is inside that circle answer YES otherwise answer NO.

If you answer the Question of line 5, it will give you the answer to this problem i.e. how to approximate π. If
you have run program ccrand.java while you were navigating around pcc16 in the beginning of the semester,
this is how that program worked.



PiTwo (n)
0. count = 0;
1. Repeat n times
2. if PiOne == YES
3. count ++;
4. Use count and n to estimate p.

Now say you run the experiment n times, i.e. call PiOne n times through PiTwo. The Law of Large Numbers
tells us that if n → ∞ the fraction of the hits (the YESes) observed approaches this probability (answer of the
Question). The sequential version of the code piseq is shown below, not very elegant and not very optimized
and fine-tuned.

#include <stdlib.h>
#include <math.h>
#define RAND_MAX ((unsigned int) ~0)
int main(int argc, char **argv)
{

double value,x,y;
int i, number,N;
value = 0.0;
number= 0;
N=atoi(argv[1]);
srandom((unsigned int) 123445);
for(i=0;i<N ;i++) {

x = (double) random()/RAND_MAX;
y = (double) random()/RAND_MAX;
value = sqrt((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5));
if (value < 0.5 ) number++;

}
printf("Pi is approximately %f in %d iterations\n",(4.0*number)/N, N) ;
return(0);

}

It takes one argument in the command line, the number of iterations/runs of the experiment above and should
print this number along with the π approximation, i.e.

% ./piseq 100000000
Pi is approximately 3.14174 in 100000000 runs

Since the sequential program is piseq let us call the corresponding parallel program pipar.
If you run the piseq 100,000,000 you get an approximation π1 of π. If you run the piseq 400,000,000 you

get an approximation π2 of π. π2 should be better (and is so) than π1.
If you run pipar on 4 processors with 100,000,000 runs per processor the results you get will depend on how

careful you are when you use random(). If you are careless, you may get worse accuracy comparable to that of
π1 on 100,000,000 runs of piseq rather than that of π2 with 400,000,000 runs! Can you guess why?

Write an “embarassingly parallel” program that has the same format as piseq. Call it pipar. This pipar
also takes from the command line the number of runs n PER PROCESSOR (i.e. NOT the total number of runs!).
It then allocates the processors requested in the command line of the bsprun (for BSPlib programs) or mpirun
(for LAM MPI programs) and assigns that many runs to each processor. When each processor is about done,
the answers (or number of hits within the circle) of each processor is averaged out appropriately in processor 0,
and processor 0 prints the obtained approximation (which should be if not identical very close to the sequential
case).



% bsprun -noload -local -npes 4 ./pipar 25000000
Pi is approximately 3.14174 using 100000000 runs (25000000 per processor).
% mpirun -np 4 ./pipar 25000000
Pi is approximately 3.14174 using 100000000 runs (25000000 per processor).

Run your program piseq for n = 1, 000, 000, n = 10, 000, 000, n = 100, 000, 000 and p = 2, 4.
Prepare and fill the following table with timing results (Table 1) and the approximation of π output (Table

2).

Time PiSeq PiPar
P=1 P=2 P=4

n=1M ? ? ?
n=10M ? ? ?
n=100M ? ? ?

Pi’s Approximation
P=1 P=2 P=4

n=1M ? ? ?
n=10M ? ? ?
n=100M ? ? ?

0.1 Timing

Time the sequential and the parallel programs. What is the observed speedup? (Also check that no other fellow
student is running his/her experiments at the same time, or you might be surprised).

A naive UNIX timing scheme can be invoked by

% time ./piseq 100000000
Pi is approximately 3.14174 using 100000000 runs
89.850u 0.190s 1:30.18 99.8% 0+0k 0+0io 218pf+0w

Use, however bsp time() that provides wall-clock time not just CPU time. Or for MPI, MPI Wtime(void). As
we mentioned in the title, this is an embarassingly parallel computation. You should get optimal speedups of p.

As a final note, you can use the source fragment listed here as your piseq implementation or you can further
optimize it; there is too much room for optimization!

Deliverables. MPI and BSPlib implementations of pipar plus two tables of results.


