NJIT(CS Department)	Alex Gerbessiotis	Fall 2004
CIS 786-107	Homework 2	Sep 23, 2004

CIS 786 Homework 2 (Due: Oct 7, 2004)

Problem 1. (20 points)

Do as instructed in

http://www.cs.njit.edu/~alexg/courses/cis786/handouts/phw2.ps http://www.cs.njit.edu/~alexg/courses/cis786/handouts/phw2.pdf

Problem 2. (20 points)

There is an obvious way to represent a positive integer n in binary. For example, 82 in binary with 8 bits is 01010010. A question in computer architecture is how to represent negative numbers; one way to represent for example -82 is 2's complement representation. An example on how to do 2's complement follows.

2's complement (X,n)	2's compleme	nt (-82, 8)
<pre>//n-bit 2's complement for X; X negative</pre>		
1. Form n 1's (i.e. 2**n -1)	1. 11111111	// 2**8 -1 = 255
2. Subtract X (absolute value of \$X\$	201010010	// this is 82
3. Add 1		
4. return result	10101101	<pre>// bits inverted</pre>
	3. + 1	// add 1
	10101110	// done

A mnemonic to do 2's complement is the following

	<
1. Scan number from right to the left	01010010
	*stays same
2. If a bit is zero leave it zero.	01010010
	*stays same
3. If you see the first one leave it, but invert all bits	01010010
past that one until you reach the left side.	***** invert others
	10101110

Say you have a *n*-bit number and *n* processors. How can you find 2's complement in $O(\lg n)$ time with $O(n/\lg n)$ processors with a EREW PRAM (1-bit operation takes 1 step)? Explain.

Problem 3. (20 points)

Let $X = \langle x_1, x_2, \dots, x_n \rangle$ be a sequence of *n* distinct keys. The rank of a key *x* in the sequence *X* or r(x, X) is the number of keys less than *x* in *S*. Sorting can be viewed as finding the rank of each one of the input keys of the input sequence.

1. If you have a CRCW PRAM, determine the rank of all keys of X in $O(\lg n)$. How many processors did you use?

2. Sort the n keys within the same time bound in a CRCW PRAM. How many processors did you use?

3. What if you only have an EREW PRAM? What would the time and processor bounds be? Explain.

Problem 4. (20 points)

Suppose you have a CRCW PRAM and n keys. Find the MAX of the n keys in O(1/t) time with $O(n^{1+t})$ processors for t an arbitrarily small and positive constant (eg. t = 0.1).

Problem 5. (20 points)

Ranking based techniques apply not only to sorting but also to merging. Design a parallel algorithms that merges two sorted arrays each of size n/2 into one sorted array in time O(1) using a polynomial number of processors (eg. $O(n^9)$) on a CRCW PRAM. (Your answer should minimize the number of processors used.)

Bonus question. What if you have an EREW PRAM? How fast can you do it? How many processors did you use?