
NJIT(CS Department) Alex Gerbessiotis Fall 2004

CIS 786-107 ProgrammingHomework 6 Oct 28, 2004

CIS 786: Programming Component : Homework 6/Problem 1 (100 points)

1 FFT Implementation (50 points)

Implement a parallel FFT. Information on FFT is available through the online notes, the textbook, the
link http://www.fftw.org/links.html and the Numerical Recipes in C electronic book (Homework 4
link).

You are allowed to implement the function either in BSPlib using DRMA facilities or LAM-MPI using
the MPI-2 RMA functions (put and get operations). Thus one of the following two function is to be
implemented.

typedef double DTYPE;
void fftbsp(DTYPE *x, int n, int procs);

void fftmpi(DTYPE *x, int n, int procs);

The interface is simple: x is the input array of 2n complex numbers stored in pairs. The i-th pair is
stored in x[2 ∗ (i − 1)] (real part) and x[2 ∗ (i − 1) + 1] (imaginary part), where i = 1, . . . , n. The input
is available in the x array of processor 0. You are responsible for distribution etc. The output should
overwrite the input, i.e. stored in x in the same format. You may assume that n is a power of two. The
maximum value of n can be assumed to be n = 230. The number of processors procs is the number of
processors that can be used. You may assume that procs will be a power of 2.

What determines your grade

• Effort (30 points).

• Correctness (20 points). List bugs if any or assumptions made during the course of the design.
Otherwise do not expect any credit here.

Note. 50 bonus points is the prize for the author of the fastest correct implementation.

2 Odd-even Merge Sort (50 points)

Sort n keys using a variant of odd-even merge sort on p processors. Assume n is a multiple of p. Thus n/p
keys will be assigned per processor. In odd-even merge sort we have one key per comparator/processor. In
the implementation n/p keys are assigned per processor. Whereas a comparator determines the minimum
and the maximum of the inputs, two processors, that compares keys will determine the n/p smallest and
n/p largest of the 2n/p they jointly hold. In the base case, the n/p keys per processor will be sorted using
the qsort function available through the Standard C library. Thereafter, merging need only be performed.

a ----- min(a,b)
|

b ----- max(a,b)

Implement

oddevensort(FTYPE *inseq, int n , int nprocs);

Initially, the input is available in inseq in processor 0. Split and distribute it accordingly. You may also
assume that n is a multiple of nprocs.

You can implement the code in MPI (RMA) or BSPlib (DRMA).

Note. 50 bonus points is the prize for the author of the fastest correct implementation!

3 Image Processing Operations (50 points)

The purpose of this homework assignment is to perform a number of image processing related operations
in parallel. An image is an array of size Ni x Mi of pixels, A pixel is an unsigned integer type: it can be
8, 16, or 24 bits. Values for all these parameters are available through a file aleximag.h that may look
like as follows. The actual values of Ni, Mi might be 256× 256, or 512× 512 or 1024× 1024, and a PIXEL
is an unsigned short int. For the purpose of this assignment we will also use 16× 16 images as well.

#define Ni 512
#define Mi 512
#define Nmask 3
#define Mmask 3
typedef unsigned short int PIXEL;
typedef float FTYPE;
#define SMOOTHING 1
#define NOISE 2
#define HIGHPASS 4
#define PREWITT 8
#define SOBEL 16
#define LAPLACE 32

A mask is an Nmask x Mmask subarray. Each element of a mask has a weight wi which in general is of
some floating type FTYPE.  w1 w2 w3

w4 w5 w6

w7 w8 w9


One common image processing operation is the application of a mask on an image. This is to mean

that the mask is applied to every pixel of the image. Consider what happens if we apply this operation to
the pixel stored in row i and column j of an image image1. We can call this pixel pi,j . If image1 is stored
in column major form in C array, then pi,j is stored in image1[j*Ni+i]. pi−1,j−1 pi−1,j pi−1,j+1

pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1


Then,  w1 w2 w3

w4 w5 w6

w7 w8 w9

×
 pi−1,j−1 pi−1,j pi−1,j+1

pi,j−1 pi,j pi,j+1

pi+1,j−1 pi+1,j pi+1,j+1

 =

 − − −
− p′i,j −
− − −


where

p′i,j =
pi−1,j−1w1 + pi−1,jw2 + pi−1,j+1w3 + pi,j−1w4 + pi,jw5 + pi,j+1w6 + pi+1,j−1w7 + pi+1,jw8 + pi+1,j+1w9

K

with p′i,j being the new value of pixel pi,j , and K =
∑
iwi. That is, a mask changes the pixel value of the

center pixel it operates on.
Some interesting masks are show below.

M1 =

 1 1 1
1 1 1
1 1 1

 , M2 =

 1 1 1
1 8 1
1 1 1

 , M4 =

 −1 −1 −1
−1 8 −1
−1 −1 −1

 ,
M1 is a smoothing mask, that takes the average value of the neighboring pixels. M2 is a noise reduction
mask, and M4 is a high pass sharpening filter mask. Note that in the latter case

∑
iwi =; we use K = 9

instead.
For edge-detection one can use

M8 =

 −1 −1 −1
0 0 0
1 1 1

 ,
 −1 0 1
−1 0 1
−1 0 1

 , M16 =

 −1 −2 −1
0 0 0
1 2 1

 ,
 −1 0 1
−2 0 2
−1 0 1

 .
The Prewitt operator M8 consists of two masks, and the Sobel operator M16 also consists of two masks.
K = 1 in all cases. The result is the sum of the absolute values of the value obtained after applying the
first of the two masks, and the value obtained after applying the second of the two masks. Since the results
are independent the two operations can be done simultaneously.

A Laplace operator is M32 with K = 1.

M32 =

 0 −1 0
−1 4 −1
0 −1 0

 .
Implement first

imageproc(pixel *input, pixel ***output, int Ni, int Mi, unsigned short int MASK);

where input is an input-image of Ni ×Mi size, and MASK is a mask that tell imageproc which masks to
apply to the image. For example, if MASK is equal to 7, then this means that M1,M2,M4 are to be applied
since 1 + 2 + 4 = 7. In general MASK is at most 63. The MASK in binary will be 0000 0000 0000 0111 for
our example. Since in this example three masks/operators are to be applied, then three images are to be
returned, one per mask. An image is an array of pixels, i.e. pixel *image1. An array of images is pixel
**ArrayOfImages, i.e. ArrayOfImages[i] is an image. The second argument to imageproc is the address
of an array of images i.e. pixel ***. This is because you will have to allocate space for output. You will
have to figure-out the number of images in the output (that depends of MASK) and after that create, the
space for each such image and pass the address of it to output.

After you solve the sequential problem, you are going to implement a simple parallelization of the
sequential code. Split the image into p pieces, where p is the number of available processors. You may
assume p is a power of two for this problem. Initially the image input is only available to processor 0.
The result output should become also available to processor 0.

Your assignment is to distribute the image, split or in whole, to the p processors, split the computational
load evenly among the processors, implement a parallelization of imageproc, and collect the final output
in processor 0. You have got to implement parimageproc.

parimageproc(pixel *input, pixel ***output, int Ni, int Mi, unsigned short int MASK);

The problem with a parallelization of image processing functions is the operations performed on the
boundary (perimeter) of an image. If pixel pi,j is on the perimeter of the image stored in processor 1 for
example, then the its northern, southern, eastern, or western neighbor pixel might be stored non-locally,
to a neighboring processor. Make sure you deal with these issues correctly.

You can use LAM MPI or BSPlib for this problem; the choice is yours.

// How to allocate and return dynamically allocated memory

Memory Meaning

Address Contents

int *A; 100 [001232438] &A is 100

A= NULL; 100 [000000000] A initialized to NULL

allocate_memory (& A); // Pass the address of A i.e. 100

void allocate_memory (int ** a) {

int *C 500 [0230210212] &C is 500

C= (int *) malloc(10*sizeof(int)); 500 [0000000020] Starting at address

20, 10 integers are

allocated.

*a = C; 100 [0000000020] Pass C to A.

}

Note. 50 bonus points is the prize for the author of the fastest correct implementation!

4 Option A (50 points)

Propose by Nov 18, one implementation of similar difficulty to Problems 1-3 of your choice.

5 Option B (50 points)

Propose by Nov 18, one implementation of similar difficulty to Problems 1-3 of your choice.

