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Introduction
Parallel Computing
1. What is parallel computing

Parallel computing involves performing parallel tasks using more than one computers.
One example in real life that has the principles related to parallel computing is book shelving in a library. One can

accomplish this task by using a single worker. If he wants to speed up the process, some form of parallelization may be
required.

Option 1. A number p of workers is available. The say, n books are split evenly among the workers so that each one
is to stack about n/p books. With this approach some problems may occur when many workers try to stack the next
available for stacking book in the same shelf. Some kind of arbitration is required.

Option 2. A number p of workers is available. The say, n books are split evenly among the workers so that each
one is to stack about n/p books. To avoid arbitration problems observed in Option 1 we split the books so that each
worker works on a different set of shelves (eg by organizing books by topics/call numbers). In this way no book from
two different workers will end up in the same shelf. Therefore the most important issues in parallel computing are:

1. Task/Program Partitioning. How to split a single task among the processors so that each processor performs the
same amount of work, and all processors work collectively to complete the task.

2. Data Partitioning. How to split the data evenly among the processors in such a way that processor interaction is
minimized.

3. Communication/Arbitration. How we allow communication among different processors and how we arbitrate
communication related conflicts.

Of course related to these issues are challenges such as

1. Design of parallel computers so that we resolve the above issues.

2. Design, analysis and evaluation of parallel algorithms run on these machines.

3. Portability and scalability issues related to parallel programs and algorithms

4. Tools and libraries used in such systems.
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Introduction
Parallel Algorithms
2. What is a parallel algorithm?

A parallel algorithm is an algorithm designed for a parallel computer.
3. What is a parallel computer?

A parallel computer is a collection of processors that cooperatively solve computationally intensive problems faster
than other computers. Parallel algorithms allow the efficient programming of parallel computers. This way the waste of
computational resources can be avoided.

The term supercomputer refers to a general-purpose computer that can solve computational intensive problems faster
than traditional computers. A supercomputer may or may not be a parallel computer.

The cost of building a parallel computer has dropped significantly in the past years. One is able to build a parallel com-
puter using off-the-shelf commercial components. This way workstations can be arranged together in a cluster/network
and interconnected with a high-speed network (eg Myrinet siwtches, 100Mb/sec or Gigabit ethernet switches) and form
a high-performance parallel machine.

The construction of a parallel computer is more complicated than that of a sequential machine. One needs to take
into consideration not only those issues related with building a sequential machine but also issues related with the
interconnection of multiple processors and their efficient coordination. A complete network where each processor can
directly communicate with every other processors is not currently technologically feasible if the parallel machine consists
of more than a few processors. Methods thus need to be devised that allow the efficient dispatch of information from one
processor to another (routing protocols and algorithms). Problems like congestion (bottlenecks) may occur if someone
is not very careful in designing such methods.
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Introduction
Course Outline

4. Course outline

This course deals with the design, analysis and implementation of parallel algorithms and study of their performance.
An efficient sequential algorithm does not necessarily translate into an efficient parallel algorithm. Implementation of
an inappropriate algorithm in parallel may waste resources (eg computational power, memory). A sequential algorithm
needs perhaps to be split into pieces so that each piece is executed by a processor of the parallel machine. Each piece,
however, may need to interact with the piece held at another processor (say because it wants to access a memory location
held there). If a sequential algorithm utilizes M memory locations and solves a problem instance within time T , one
expects a parallel algorithm solving the same problem instance to utilize as many resources as its sequential counterpart.
If the algorithm is run on a p processor machine it is thus expected to utilize memory of overall size (over all p processors)
that is comparable to M and the sum of execution time over all p processors to be around T . The best one can hope for
is for the parallel algorithm to use M/p memory per processor and its parallel time to be T/p. In order to achieve such
a running time (and it is not clear that this is possible, even if it is feasible) an algorithm designer/programmer needs
to take into consideration the architecture of the parallel machine (eg how processors are interconnected). This optimal
speedup of a parallel program is more the exception rather than the rule in practice. The reason is that interprocessor
communication and synchronization are expensive operations and unavoidable in a parallel environment.
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Introduction
Users of Parallel Computers

5. Users of parallel computers
One usually associates parallel computer users with the defense and aerospace industry where there is a constant

need for computational power in order to solve weapon simulation problems, or to study the airflow around an aircraft
(be it a fighter or a passegner jet). There are, however, many science problems that can only be solved and studied by
using simulations. Such problems require extraordinary powerful computers and cannot be solved in reasonable amount
of time today. A collection of such problems that can be solved in parallel are the following grand challenge problems.

• Quantum chemistry, statistical mechanics, cosmology and astrophysics.

• Material sciences (eg superconductivity).

• Biology, biochemistry, gene sequencing.

• Medicine and human organ modeling (eg. to study the effects and dynamics of a heart attack).

• Environmental modeling and global weather prediction.

• Visualizaton (eg movie industry).

• Data Mining (find preferences of customers and then use more efficient direct marketing methods).

• Computational-Fluid Dynamics (CFD) for aircraft and automotive vehicle design.

For local weather prediction, an area 2000nm×2000nm is broken into cubic cells each 0.1mile wide, from the surface
to an altitude of 10-12 miles. There are 20000×20000×100 = 4 ·1010 cells overall each one requiring around 200 floating
operations for each iteration of a weather prediction program. Each iteration gives the state of the atmosphere for a
15 minute interval and therefore approximately 200 iterations are required for a 3 day forecast for a total computation
count of 1015 flops. A commercial processor rated at 1 Gigaflops would require 11 days to predict the weather more than
one week ago! N -body simulation involves the calculation of forces and therefore of the position of N bodies in three-
dimensional space. There are approximately 1011 stars in our galaxy. A single iteration of such a program would require
several divisions and multiplications. On a uniprocessor machine it would take a year to complete a single iteration of
the simulation. In order to predict whether a meteorite is going to hit earth in the distant future one would need to
sacrifice precision over running time or the other way around.
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Introduction
Parallel Computers: Past and Present

In the 1980’s a Cray supercomputer was 20-100 times faster than other computers (mainframes, minicomputers) in
use at that time. Because of this, there was an immediate pay-off in investing on a supercomputer (a tenfold price
increase was worth 20-100 times improvement in peformance). In the 1990’s a “Cray”-like CPU is on the average twice
- four times as fast as (and sometimes, slower than) a microprocessor. Paying 10-20 times more to buy a supercomputer
does not make much sense. The solution to the need for computational power is a massively parallel computer, where
tens to hundreds of commercial off-the-shelf processors are used to build a machine whose performance is much greater
than that of a single processor.

Various questions arise when such a combining of processor power takes place.

• How does one combine processors efficiently?

• Do processors work independently?

• Do they cooperate? If they cooperate how do they interact with each other?

• How are the processors interconnected?

• How can we make programs portable?

• How does one program such machines so that programs run efficiently and do not waste resources?

Answers to many of these questions will be provided in this course.
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Parallel Computer Taxonomy
Flynn’s taxonomy

1. Flynn’s Taxonomy of computer architectures (control mechanism)
Depending on the execution and data streams computer architectures can be distinguished into the following groups.

(1) SISD (Single Instruction Single Data) : This is a sequential computer.

(2) SIMD (Single Instruction Multiple Data) : This is a parallel machine like the TM CM-200. SIMD machines
are suited for data-parallel programs programs where the same set of instructions are executed on a large
data set.

(3) MISD (Multiple Instructions Single Data) : Some consider a systolic array a member of this group.

(4) MIMD (Multiple Instructions Multiple Data) : All other parallel machines. A MIMD architecture can
be an MPMD or an SPMD. In a Multiple Program Multiple Data organization, each processor executes
its own program as opposed to a single program that is executed by all processors on a Single Program
Multiple Data architecture.

Some consider CM-5 as a combination of a MIMD and SIMD as it contains control hardware that allows it to operate
in a SIMD mode.
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Parallel Computer Taxonomy
Address-Space Organization (memory distribution) based

2. Taxonomy based on Address-Space Organization (memory distribution)

(1) In a distributed memory machine each processor has its own memory. Each processor can access its own
memory faster than it can access the memory of a remote processor (NUMA for Non-Uniform Memory
Access). This architecture is also known as message-passing architecture and such machines are commonly
referred to as multicomputers. Examples: Cray T3D/T3E, IBM SP1/SP2.

(2) Shared Address Space Architecture. Provides hardware support for read/write to a shared address
space. Machines built this way are often called multiprocessors.

(1) A shared memory machine has a single address space shared by all processors (UMA, for Uniform
Memory Access). Examples: SGI Power Challenge, SMP machines.

(2) A distributed shared memory system is a hybrid between the two previous ones. A global address
space is shared among the processors but is distributed among them. Example: SGI Origin 2000.

The existence of a cache in shared-memory parallel machines cause cache coherence problems when a cached
variable is modified by a processor and the shared-variable is requested by another processor. cc-NUMA for cache-
coherent NUMA architectures (Origin 2000).
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Parallel Computer Taxonomy
Continued (3)

3. Taxonomy based on processor granularity
The granularity sometimes refers to the power of individual processors. Sometimes is also used to denote the degree

of parallelism.

(1) A coarse-grained architecture consists of (usually few) powerful processors (eg old Cray machines).

(2) a fine-grained architecture consists of (usually many inexpensive) processors (eg TM CM-200, CM-2).

(3) a medium-grained architecture is between the two (eg CM-5).

Process Granularity refers to the amount of computation assigned to a particular processor of a parallel machine
for a given parallel program. It also refers, within a single program, to the amount of computation performed before
communication is issued. If the amount of computation is small (low degree of concurrency) a process is fine-grained.
Otherwise granularity is coarse.

4. Taxonomy based on processor synchronization

(1) In a fully synchronous system a global clock is used to synchronize all operations performed by the proces-
sors.

(2) An asynchronous system lacks any synchronization facilities. Processor synchronization needs to be explicit
in a user’s program.

(3) A bulk-synchronous system comes in between a fully synhronous and an asynchronous system. Synchro-
nization of processors is required only at certain parts of the execution of a parallel program.
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Performance Characteristics
Definitions

5. Performance Characteristics of a Parallel Algorithm
The performance of a parallel algorithm A that solves some problem instance can be measured in terms of various

measures.

• Parallel Time T gives the execution time of the parallel algorithm and T = max iTi, where Ti is the running
time of algorithm A on processor i.

• Processor size P is the number of processors assigned to solve a particular problem instance.

• Work is the product P · T . Sometimes the actual work
∑T

j=1 Pj ≤ W is used instead, where Pj is the
number of processors that are active in step j.

• Speedup given by s = Ts/T is the ratio of the execution time Ts of the most efficient sequential algorithm
that solves a particular problem instance to parallel time T of A on the same instance.

• Scaled speedup is the ratio T1/Tp, where Ti here denotes the parallel time T of A when i processors are used
to solve that particular problem instance.

• Efficiency e = s/p, which is sometimes expressed as a percentage. It is also the case that e = Ts/W , where
W = TP .

• Scaled Efficiency, which is derived similarly from scaled speedup.
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Topics to be covered
More details

The course can be divided into three parts.
1. Simple Parallel Algorithms on a shared memory system
Parallel computing is introduced in the context of the Parallel Random Access Machine (PRAM in short) model. A

PRAM consists of a collection of processors that can synchronously access a global shared memory in unit time. The
advantage of the PRAM is its simplicity in capturing parallelism and describing parallel programs. Its disadvantage is
that it ignores synchronization and communication issues which are quite important in currently built parallel machines.

2. Algorithms on fixed connection networks.
Fixed connection networks are processor interconnection networks whose links are fixed in time. A variety of parallel

algorithms that are network specific will be described in this part of the course.
3. Realistic parallel computer models
Hardware designers sometimes ignore theory thus creating parallel machines that are very hard to program and

therefore, programmers need to know the intricate details of the architecture to be able to effectively use such machines.
In the past, there were no parallel computing models that would abstract parallel hardware in such a way that would
allow parallel programs to be written that are portable (work equally well on shared and distributed memory machines of
various manufacturers), scalable and efficient. Algorithms that are both portable and scalable will be called transportable.

Network algorithms are architecture dependent and an algorithm that works well on a given network may not work
well on another one. Many of the network and PRAM algorithms that will be examined assume that unlimited parallelism
is available (eg in order to multiply two n× n matrices, a machine with O(n2) or O(n3)processors would be utilized). In
real life, large problem sizes (say, n = 10000) are solved on machines with few processors (up to 1024 in most cases).

Realistic parallel computer models such as the BSP and LogP are subsequently introduced. Design and analysis of
parallel algorithms in an arcitecture independent way that result in algorithms that are parallel efficient (transportable
and efficient) and also practical (implementable in real parallel machines) is then undertaken.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 11



Fixed Connection Networks
Introduction

In this course we examine fixed processor interconnection networks, that is, networks whose links do not change (fail)
during the course of a computation. One can view an interconnection network as a graph whose nodes correspond to
processors and its edges to links connecting neighboring processors. The properties of these interconnection networks
can be described in terms of a number of criteria.

(1) Set of processor nodes V . The cardinality of V is the number of processors p (also denoted by n).

(2) Set of edges E linking the processors. An edge e = (u, v) is represented by a pair (u, v) of nodes. If the
graph G = (V, E) is directed, this means that there is a unidirectional link from processor u to v. If the
graph is undirected, the link is bidirectional. In almost all networks that will be considered in this course
communication links will be bidirectional. The exceptions will be clearly distinguished.

(3) The degree du of node u is the number of links containing u as an endpoint. If graph G is directed we
distinguish between the out-degree of u (number of pairs (u, v) ∈ E, for any v ∈ V ) and similarly, the
in-degree of u. The degree d of graph G is the maximum of the degrees of its nodes i.e. d = maxudu.

(4) The diameter D of graph G is the maximum of the lengths of the shortest paths linking any two nodes of
G. A shortest path between u and v is the path of minimal length linking u and v. We denote the length
of this shortest path by duv. Then, D = maxu,vduv. The diameter of a graph G denotes the maximum
delay (in terms of number of links traversed) that will be incurred when a packet is transmitted from one
node to the other of the pair that contributes to D (i.e. from u to v or the other way around, if D = duv).
Of course such a delay would hold if messages follow shortest paths (the case for most routing algorithms).

(5) latency is the total time to send a message including software overhead. Message latency is the time to
send a zero-length message.

(6) bandwidth is the number of bits transmitted in unit time.

(7) bisection width is the number of links that need to be removed from G to split the nodes into two sets of
about the same size (±1).
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Fixed Connection Networks
Processor interconnection networks

Below we present the network characteristics for some of the most popular networks that we shall be examining in this
course. We refer to the textbook for more detailed definitions of these networks.

1. Linear array
In a linear array with N processors, processors are ordered in a single dimension so that each processor is connected

to its two neighbors (except for the first and last processor). For such a network |V | = N , |E| = N−1, d = 2, D = N−1,
bw = 1 (bisection width).

2. 2d-array or 2d-mesh or mesh
The processors are ordered to form a 2-dimensional structure (square) so that each processor is connected to its four

neighbor (north, south, east, west) except perhaps for the processors of the boundary. For |V | = N , we have a
√

N ×√
N

mesh structure, with |E| ≤ 2N = O(N), d = 4, D = 2
√

N − 2, bw =
√

N .

3. 3d-mesh
A generalization of a 2d-mesh in three dimensions. Exercise: Find the characteristics of this network and its gener-

alization in k dimensions (k > 2).

4. Complete Binary Tree (CBT) on N = 2n leaves
For a complete binary tree on N leaves, we define the level of a node to be its distance from the root. The root is of

level 0 and the number of nodes of level i is 2i. Then, |V | = 2N − 1, |E| ≤ 2N − 2 = O(N), d = 3, D = 2 lgN , bw = 1
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Fixed Connection Networks
Processor interconnection networks (continued)

5. 2d-Mesh of Trees
The 2d-Mesh of Trees (2d-MOT) combines the advantages of 2d-meshes and binary trees. A 2d-mesh has large

bisection width but large diameter (
√

N). On the other hand a binary tree on N leaves has small bisection width but
small diameter. The 2d-MOT has small diameter and large bisection width.

An N2-leaf 2d-MOT consists of N2 nodes ordered as in a 2d-array N ×N (but without the links). The N rows and N
columns of the 2d-MOT form N row CBT and N column CBTs respectively. For such a network, |V | = N2+2N(N −1),
|E| = O(N2), d = 3, D = 4 lgN , bw = N The 2d-MOT posseses an interesting decomposition property. If the 2N roots
of the CBT’s are removed we get 4 N/2× N/2 CBTs.

A 3d-MOT can be defined similarly.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 14



Fixed Connection Networks
Processor interconnection networks: Hypercube

6. Hypercube
The hypercube is the major representative of a class of networks that are called hypercubic networks. Other such

networks is the butterfly, the shuffle-exchange graph, de-Bruijn graph, Cube-connected cycles etc.
Each vertex of an n-dimensional hypercube is represented by a binary string of length n. Therefore there are

|V | = 2n = N vertices in such a hypercube. Two vertices are connected by an edge if their strings differ in exactly one bit
position. Let u = u1u2 . . . ui . . . un. An edge is a dimension i edge if it links two nodes that differ in the i-th bit position.
This way vertex u is connected to vertex ui = u1u2 . . . ūi . . . un with a dimension i edge. Therefore |E| = N lgN/2 and
d = lgN = n. The hypercube is the first network examined so far that has degree that is not a constant but a very slowly
growing function of N . The diameter of the hypercube is D = lgN . A path from node u to node v can be determined
by correcting the bits of u to agree with those of v starting from dimension 1 in a “left-to-right” fashion. The bisection
width of the hypercube is bw = N . This is a result of the following property of the hypercube. If all edges of dimension
i are removed from an n dimensional hypercube, we get two hypercubes each one of dimension n − 1.
7. Butterfly.

The set of vertices of a butterfly are represented by (w, i), where w is a binary string of length n and 0 ≤ i ≤ n.
Therefore |V | = (n + 1)2n = (lgN + 1)N . Two vertices (w, i) and (w′, i′) are connected by an edge if i′ = i + 1 and
either (a) w = w′ or (b) w and w′ differ in the i′ bit. As a result |E| = O(N lgN), d = 4, D = 2 lgN = 2n, and bw = N .
Nodes with i = j are called level-j nodes. If we remove the nodes of level 0 we get two butterflies of size N/2. If we
collapse all levels of an n dimensional butterfly into one, we get a hypercube.
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Fixed Connection Networks
Processor interconnection networks: Other

Other hypercubic networks is cube-connected cycles (CCC), which is a hypercube whose nodes are replaced by
rings/cycles of length n so that the resulting network has constant degree). This network can also be viewed as a
butterfly whose first and last levels collapse into one. For such a network |V | = N lgN = n2n, |E| = 3n2n−1, d = 3,
D = 2 lgN , bw = N/2. The shuffle-exchange graph and the de-Bruijn graph are the last two members of the hypercube
family that will be considered in this course.
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Parallel vs Sequential Computing
Amdahl’s

Parallel vs Sequential Computing

Theorem 0.1 (Amdahl’s Law) Let f , 0 ≤ f ≤ 1, be the fraction of a computation that is inherently sequential. Then
the maximum obtainable speedup S on p processors is

S ≤ 1

f + (1− f)/p

Proof. Let T be the sequential running time for the named computation. fT is the time spent on the inherently
sequential part of the program. On p processors the remaining computation, if fully paralelizable, would achieve a
running time of at most (1− f)T/p. This way the running time of the parallel program on p processors is the sum of the
execution time of the sequential and parallel components that is, fT + (1− f)T/p. The maximum allowable speedup is
therefore

S ≤ T/(fT + (1− f)T/p)

and the result is proven.
Amdahl used this observation to advocate the building of even more powerful sequential machines as one cannot

gain much by using parallel machines. For example if f = 10%, then S ≤ 10 as p → ∞. The underlying assumption
in Amdahl’s Law is that the sequential component of a program is a constant fraction of the whole program. In many
instances as problem size increases the fraction of computation that is inherently sequential decreases with time. In
many cases even a speedup of 10 is quite significant by itself.

In addition Amdahl’s law is based on the concept that parallel computing always tries to minimize parallel time.
In some cases a parallel computer is used to increase the problem size that can be solved in a fixed amount of time.
For example in weather prediction this would increase the accuracy of say a three-day forecast or would allow a more
accurate five-day forecast.
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Parallel vs Sequential Computing
Gustaffson’s Law

Theorem 0.2 (Gustafson’s Law) Let the execution time of a parallel algorithm consist of a sequential segment fT
and a parallel segment (1− f)T and the sequential segment is constant. The scaled speedup of the algorithm is then.

S =
fT + (1− f)Tp

fT + (1− f)T
= f + (1− f)p

For f = 0.05, we get S = 19.05, whereas Amdahl’s law gives an S ≤ 10.26. Amdahl’s law assumes that problem size
is fixed, while Gustafson’s law assumes that running time is fixed.

1 proc p proc

fT fT

(1-f)Tp (1-f)T

T(f+(1-f)p) T

Amdahl’s Law assumes that problem size is fixed when it deals with scalability.
Gustafson’s Law assumes that running time is fixed.
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Brent’s Scheduling Principle
Emulations

Suppose we have an unlimited parallelism efficient parallel algorithm, i.e. an algorithm that runs on zillions of
processors. In practice zillions of processors may not available. Suppose we have only p processors. A question that
arises is what can we do to “run” the efficient zillion processor algorithm on our limited machine.

One answer is emulation: simulate the zillion processor algorithm on the p processor machine.

Theorem 0.3 (Brent’s Principle) Let the execution time of a parallel algorithm requires m operations and runs in
parallel time t. Then running this algorithm on a limited processor machine with only p processors would require time
m/p+ t.

Proof: Let mi be the number of computational operations at the i-th step, i.e.
∑

mi = m. If we assign the p processors
on the i-th step to work on these mi operations they can conclude in time �mi/p
 ≤ mi/p + 1. Thus the total running
time on p processors would be.

∑

i

�mi/p
 ≤
t∑

i=1

mi/p+ 1 = t+
∑

i

mi/p = t+m/p.
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Conclusion
Terminology

Parallel Processing is the concurrent manipulation of data distributed on one or more processors solving a single com-
putationally intensive problem.

A parallel computer is a multiple processor computer capable of parallel processing.
Supercomputer is a general-purpose computer capable of solving problems at high computational speeds and faster

than traditional computers.
Process Granularity refers to the amount of computation assigned to a particular processor of a parallel program. It

also refers, within a single program, to the amount of computation performed before communication is issued. If the
amount of computation is small a process is fine-grained. Otherwise granularity is coarse.

Throughput is the number of results produced in one time unit (usually, one second).
UMA (Uniform Memory Access). It refers to that processor organization where the cost of accessing a memory

location is the same for any processor. In a machine supporting UMA all processors work through a centralized switch to
reach a shared memory. Examples of such machines are Encore Multimax, Sequent Symmetry and SGI Power Challenge.

NUMA (Non-Uniform Memory Access). It refers to that processor organization where the cost of accessing a memory
location is not uniform. Parallel machines with multiple memory hierarchies fall into this category. Example of such
machines is the BBN TC2000 butterfly supporting up to 128 processors, IBM SP1/SP2, SGI/Cray T3D/T3E and SGI
Origin 2000.

Multiprocessor system. A collection of processors sharing a global shared memory. An SMP (Symmetric MultiPro-
cessor) is an instance of a UMA multiprocessor system.

Multicomputer system. A collection of computers (each one consisting of at least one processor with its own memory).
Examples of such machines are the Intel Paragon, Thinking Machines CM-5, Cray T3D/T3E, IBM SP1/SP2, etc.
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Conclusion
Terminology continued

Message Passing is the method of interprocessor communication where each processor sends/receives messages. A
store-and-forward protocol (used in nCUBE/10, T800 transputers) requires that the message be copied into the memory
of the receiving processor before it is dispatched away. In circuit-switched message passing (eg ATM, nCUBE 2) no
intermediate processor (other than source and destination) stores the message. A communication “pipe” is opened
between source and destination and then a communication is initiated.

One way one can increase the level of parallelism is to use the technique of pipelining where a computation is split
into stages so that the output of one stage becomes the input of the following one. This way after some initial delay
different data are processed at different stages/levels of the pipeline. An alternative to pipelining is data parallelism
where multiple units operate on different pieces of data. Note that the level of parallelism for pipelining is fixed (number
of stages) where as for data parallelism it is not fixed. In this course we deal a lot with data parallelism.

The term scalability refers to both algorithm scalability and architectural scalability. Algorithmic scalability means
that the level of parallelism increases at least linearly with problem size. For architectural scalability, it means that the
same performance per processor is maintained if number of processors increases.
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