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The Fast Fourier Transform (FFT)

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.
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Polynomials
Degrees and Degree bounds

A polynomial A(x) = a0 + . . .+ an−1x
n−1 is of degree n− 1 if an−1 �= 0. Then, any k > n− 1 is the degree bound of

A(x). Thus a polynomial of degree bound n may have degree 0, 1, . . . up to (inclusive) n − 1. If two polynomial A(x)
and B(x) of degree bounds a (i.e. of actual degree at most a− 1) and b (i.e. of actual degree at most b− 1) respectively
are multiplied, the product C(x) = A(x)B(x) is of actual degree a + b − 2 i.e. its degree bound is a + b− 1 which is at
most a+ b.

Although we will avoid the use of the term degree bound in the remainder, in any subsequent discussion a reference
to a polynomial of degree n may also imply that its degree is less than n.

Coefficient Representation of a polynomial.
Given a polynomial A(x) of degree bound n we represent it by the ordered tuple of its coefficients (a0, . . . , an−1).

Polynomial Evaluation
The operation that finds the value of a polynomial like A(x) at a point x = c is called polynomial evaluation and the

simplest way to evaluate A(c) is by using Horner’s rule that requires n additions and n multiplications.
Therefore the problem that given A(x) in the form (a0, . . . , an−1) and a number c and finding A(c), is called polynomial

evaluation.

Point-value Representation of a polynomial.
A polynomial A(x) of degree n− 1 can also be uniquely represented by n different point-value pairs, i.e. the tuple

((x0, A(x0), . . . , (xn−1A(xn−1)) where xi �= xj for all i, j

Given these n pairs the coefficients of A(x) can easily be found by an operation that is known as interpolation using
Lagrange’s formula in O(n2) time.
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Polynomial Interpolation
Lagrange’s Formula

Lagrange’s formula Consider n distinct point-value pairs ((x1, b1), . . . , (xn, bn)). We want to find the n− 1 degree
polynomial A(x) = an−1x

n−1 + . . .+ a1x+ a0 such that f(xi) = bi, 1 ≤ i ≤ n.

gi(x) =
(x− x1)(x− x2) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)

It is easy to verify that gi(xi) = 1 as the numerator and denominator cancel out, and gi(xj) = 0 for j �= i as (xj − xj)
appears in the numerator and the corresponding term in the denominator is xi − xj .

If we consider the polynomial derived from all gi(x) such that

g(x) = b1g1(x) + . . .+ bngn(x)

we observe that g(xi) = bi for all i = 1, . . . , n.
Therefore

A(x) = g(x).
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Polynomial Multiplication
Solution through Interpolation

Point-value Representation of the product of two polynomials.
Given A(x), B(x) the product C(x) = A(x)B(x) is of degree 2n−2. Therefore its point-value representation requires

2n − 1 pairs to be known in 2n − 1 distinct values. The point-value representation of A(x) and B(x) are available,
however, in only n points as they are both of degree n−1. Therefore we need to represent A(x) and B(x) in an extended
form of 2n−1 point-value pairs for this representation to be useful in establishing C(x)’s point-value pair representation.

Then let ((x0, a0), (x1, a1), . . . , (x2n−1, a2n−1) be the point-value representation of A(x) in extended form. Let similarly
((x0, b0), (x1, b1), . . . , (x2n−1, b2n−1) be the point-value representation of B(x) in extended form. Then since C(x) =
A(x)B(x) we know that C(xi) = A(xi)B(xi).

Therefore the point-value representation of C(x) is ((x0, a0b0), (x1, a1b1), . . . , (x2n−1, a2n−1b2n−1), and can be obtained
from those of A(x), B(x) by performing 2n − 1 multiplications only i.e. it’s very efficient compared to performing a
polynomial multiplication of A(x) and B(x) to obtain C(x) and then evaluating C(x) at 2n− 1 or 2n points for a total
cost of Θ(n2).

Given this representation, C(x) can be derived very easily by an additional interpolation operation.
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Polynomials
Multiplication=Evaluation+Interpolation

Therefore there are two ways to find C(x) = A(x)B(x) given A(x), B(x).

NaiveMultiply(A(x),B(x)) IntelligentMultiply(A(x),B(x))

1. C(x)=A(x)* B(x); *1. Evaluate A(x) at 2n points x_i.

2. return(C(x)); *2. Evaluate B(x) at 2n points x_i.

3. Pairwise multiply A(x_i)B(x_i)

4. Since C(x_i) = A(x_i) B(x_i)

Interpolate to find C(x)

5. return(C(x));

* : We only need evaluate the polynomials at 2n-1 points. The redundancy

(one extra evaluation is to simplify exposition).

In the naive method step 1 requires O(n2) time.
In the intelligent method step 3 requires O(n) time. If steps 1,2, and 4 are performed naively they would all require

O(n2) time and this method becomes dumber than the naive method. If we choose, however, the xi intelligently then,
steps 1 and 2 can be performed in O(n lgn) time using a divide-and-conquer method, and step 4 becomes an operation
similar to those of steps 1 and 2 and can also be performed in time O(n lgn). Thereforee total running time for the
Intelligent method becomes O(n lgn) compared to the O(n2) of the naive approach.

As a final note, whether A(x) is evaluated at 2n points or 2n− 1 is not that important. It helps the fact that 2n is
an even number, and so some extra redundancy makes calculations easier.
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Polynomials
Convolution

Let A(x) be a polynomial in indeterminate x of degree n−1, i.e. A(x) = ∑
j ajx

j . Let also B(x) be another polynomial
of the same degree, i.e. B(x) =

∑
j bjx

j . Then the product C(x) = A(x)B(x) of A and B is a polynomial C(x) of degree
the sum of the degrees of A(x) and B(x) i.e. C(x) =

∑2n−2
j=0 cjx

j . Elementary calculations show that

cj =
j∑

k=0

akbj−k,

i.e. ambn is a term of cm+n. The sequence of the cj is also called the convolution of ai’s and bi’s. Each one of the cj
requires time O(n) for computation.

Theorem Convolution. Convolution can be done in 5 lgn operations per cj .
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Discrete Fourier Transform
Introduction - Roots of unity

Let wn be the n-th primitive (or principal) root of unity, i.e. wn is the solution of x
n = 1 such that wn = cos(2π/n)+

i sin(2π/n) = e2πi/n,
All n distinct roots of unity, i.e. the solutions of xn = 1 are denoted wj

n in terms of the n-th primitive root of unity.
All roots w0

n = 1, w
1
n = wn, . . . w

n−1
n are distinct.

Some interesting properties of the roots of unity follow below

Property 1. All the n roots of unity are distinct, i.e. wk
n �= wj

n, 0 ≤ k �= j ≤ n− 1.

Property 2 (Cancellation). For any n, k, d, we have that wdk
dn = w

k
n.

Property 3. For any n > 0 wn/2
n = w2 = −1.

Property 4. If n > 0 is even, then the collection of w2j
n is the set of the n/2 primitive roots of unity, i.e. w2j

n is a
n/2-th root of unity, and the n squares correspond to n/2 different values (two n-th primitive roots of unity have squares
that are mapped to a single n/2-th primitive root of unity).

Proof Sketch (P4) (wk
n)

2 = wk
n/2 by P2. Also consider (w

k+n/2
n )2 = w2k+n

n = wn
n w

2k
n = w2k

n = (wk
n)

2, i.e. two n-th
roots whose indices are n/2 apart have the same square.

Property 5 (Summation)
∑n−1

j=0 (w
k
n)

j = 0.
Proof Sketch (P5).

n−1∑
j=0

(wk
n)

j = ((wk
n)

n − 1)/(wk
n − 1)

= ((wn
n)

k − 1)/(wk
n − 1)

= ((1)k − 1)/(wk
n − 1)

= 0.
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Discrete Fourier Transform
Introduction

Let A(x) = a0 + a1x + a2x
2 + . . . + an−1x

n−1, be an n − 1-st degree polynomial. Our objective is to evaluate this
polynomial in the n roots of unity fast (faster than O(n2)). We first observe that

A0 = a0 + a1w
0·1
n + a2w

0·2
n + . . .+ an−1w

0·(n−1)
n

A1 = a0 + a1w
1·1
n + a2w

1·2
n + . . .+ an−1w

1·(n−1)
n

. . .

Ak = a0 + a1w
k·1
n + a2w

k·2
n + . . .+ an−1w

k·(n−1)
n

. . .

An−1 = a0 + a1w
(n−1)1
n + a2w

(n−1)2
n + . . .+ an−1w

(n−1)(n−1)
n

Then Ak = A(w
k
n), 0 ≤ k ≤ n− 1. The vector of Ak can be written in matrix form as follows.




A0

A1

A2

. . .
An−1



=




1 1 1 . . . 1
1 wn w2

n . . . wn−1
n

1 w2
n w2·2

n . . . w2(n−1)
n

. . . . . . . . . . . . . . .
1 wn−1

n w(n−1)·2
n . . . w(n−1)(n−1)

n







a0
a1
a2
. . .
an−1



.

The vector Ak is called the Discrete Fourier Transform of the coefficient vector ak. We sometimes write �A =
DFTn(�a). This implies that the relationship between vectors A and a is that through the n × n matrix Fn(wn), whose
(i, j)-th entry is wij

n if i, j start from 0 and w(i−1)(j−1)
n if i, j start from 1.

Therefore we can also write this in a simpler form as follows. Let �A = Fn�a, for the two vectors �a, �A.
DFT can be computed efficiently through a method that is called FFT (Fast Fourier Transform).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 8



Fast Fourier Transform
Introduction (continued)

The following theorem tells us how fast we can perform this polynomial evaluation problem on the n roots of unity.
The method is a divide and conquer strategy.

Theorem Tukey-Cooley. FFT, i.e. the computation of vector �A such that �A = Fn�a can be computed by 5n lg n
real operations provided that n = 2m.

Note: If n is not a power of n we can always make it so by padding (i.e. evaluating f(x) in additional points for
a larger n). Such an approach may double in the worst case the value of n, i.e. worsening the FFT computation by a
multiplicative factor of at most 2.

Proof of Tukey-Cooley theorem.
Let

A(x) = a0 + a1x+ . . .+ an−1x
n−1 = (a0 + a2x

2 + . . .+ an−2x
n−2) + x(a1 + x3x

2 + . . .+ an−1x
n−2)

= L(x2) + xR(x2)

where L(x) = a0 + a2x + . . . + an−2x
n/2−1, is the n/2 − 1-degree polynomial of the even coefficients and R(x)

R(x) = a1 + a3x+ . . .+ an−1x
n/2−1 is the n/2− 1-degree polynonial of the odd coefficients of A(x). Note that A(x) has

n coefficients and R(x), L(x) have n/2 each.
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Fast Fourier Transform
Introduction (continued)

Then, since Ak = A(w
k
n) we have that for 0 ≤ k ≤ n/2− 1,

Ak = A(w
k
n) = L((wk

n)
2) + wk

nR((w
k
n)

2)

= L(w2k
n ) + w

k
nR(w

2k
n )

= L(wk
n/2) + w

k
nR(w

k
n/2)

= Lk + w
k
nRk

(1)

Similarly, Ak+n/2, 0 ≤ k ≤ n/2− 1, is given by the following expression. We also note that wn/2
n = −1, and wn

n = 1.

Ak+n/2 = A(w
k+n/2
n ) = L((wk+n/2

n )2) + wk+n/2
n R((wk+n/2

n )2)

= L(w2k+n
n ) + wk

nw
n/2
n R(w

2k+n
n )

= L(w2k
n )− wk

nR(w
2k
n )

= L(wk
n/2)− wk

nR(w
k
n/2)

= Lk − wk
nRk (2)

(3)

Observation. The set of n Ak values depend on n/2 L(.) values and n/2 R(.) values. In fact Ak and Ak+n/2 that
are n/2 part are expressed in terms of the same L(.) and R(.) values. In addition the computation of Lk, Rk requires a
DFT on n/2 values, the wk

n/2 n/2-roots of unity.

In vector form we have therefore established the following.
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Fast Fourier Transform
Introduction (continued)

By assumption we have that



A0

. . .
An−1


 = Fn(wn)



a0
. . .
an−1


 .

By definition following the derivations of Eq. 1 and Eq. 2 we obtain that




L0

L1

. . .
Ln/2−1


 = Fn/2(wn/2)




a0
a2
. . .
an−2


 .

and




R0

R1

. . .
Rn/2−1


 = Fn/2(wn/2)




a1
a3
. . .
an−1


 .
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Fast Fourier Transform
Introduction (continued)

Then Eq. 1 and Eq. 2 can be rewritten in vector form as follows.




A0

A1

. . .
An/2−1

An/2

An/2+1

. . .
An−1




=




L0

L1

. . .
Ln/2−1

L0

L1

. . .
Ln/2−1




+




w0
nR0

w1
nR1

. . .
wn/2−1

n Rn/2−1

−w0
nR0

−w1
nR1

. . .
−wn/2−1

n Rn/2−1




(4)

We note that the evaluation of A(t) at the n roots of unity is equivalent to the evaluation of the vector Ak (i.e. �A).

We conclude from Eq. 1, 2 that the evaluation of �A is equivalent to the evaluation first of the two vectors �L and �R,
and then, their combination through Eq. 4.

Each one of �L, �R is of length n/2, half of that of �A. The evaluation of �L is equivalent to the evaluation of L(x) in
the n/2 n/2-th roots of unity (evident from Eq. 1, 2).

Therefore divide and conquer reduced the original problem of (vector) size n into two subproblems of size n/2. After
a solution of the two subproblems is found, i.e. Lk, Rk become available, then from Eq. 4, the determination of the
two vector elements Ak and Ak+n/2 requires three additional operations (one multiplication, one addition for Ak, and
one subtraction for Ak+n/2) in order to be found, i.e. a total of 3n/2 additional complex operations for the n/2 pairs of
vector elements Ak and Ak+n/2, for all 0 ≤ k ≤ n/2− 1.

Note that the operations performed are in general complex additions and multiplications. A complex addition requires
2 real additions. A complex multiplication require 4 real multiplications and 2 real additions.
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Fast Fourier Transform
Running time - Operation Count

Let Mc(n) and Ac(n) be the number of complex multiplications and additions required to find the FFT of n num-
bers/points. Then

Mc(n) = 2Mc(n/2) + n/2

The solution to this recurrence is Mc(n) = n lg n/2.
Similarly

Ac(n) = 2Ac(n/2) + n

The solution to this recurrence is Ac(n) = n lgn.
In order to derive the number of real additions and multiplications A(n) and B(n) respectively we take into consid-

eration the observation of the previous page.
We then obtain that M(n) = 2n lg n and A(n) = 3n lgn. respectively.
Therefore the total number of operations (real additions, subtractions, and multiplications performed) is the total of

T (n) =M(n) + A(n) = 5n lgn operations as originally claimed.
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Fast Fourier Transform
Pseudocode

// w_n is n-th root of unity ; w_n/2 is n/2-th root of unity.

FFT (a,n) // a is a vector a=[a_0..a_n-1] of n points

1. if (n==1)

2. return (a);

3. w_n = exp(2*pi*i/n); // pi=3.14... i is i*i=-1 complex number.

4. w = 1;

5. l = [ a_0 , a_2 , ... , a_n-2 ]; // L is a vector

6. r = [ a_1 , a_3 , ... , a_n-1 ]; // R is also a vector

7. L = FFT(l,n/2);

8. R = FFT(r,n/2);

9. for(k=0;k<n/2;k++) {

10. A[k] = L[k] + w R[k];

11. A[k+n/2] = L[k] - w R[k];

12. w = w * w_n;

13 }

14.return(A);

In the code above, all variables are complex and so are the matrices/vectors. The operation in line 3 is not exponen-
tiation; the cosine and sine of real numbers need to be established.
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Fast Fourier Transform
Polynomial Evaluation at roots of unity and Interpolation

So far we have solved the following polynomial evaluation.
Let A(x) = an−1x

n−1 + . . .+ a1x+ a0 be an n− 1-degree polynomial in indeterminate x.
The evaluation of A at the n-th roots of unity wi

n yields the n point-value pairs (wi
n, f(w

i
n)), where A(w

i
n) =

an−1w
i(n−1)
n + . . .+ a1w

i
n + a0 and therefore



A(w0

n)
. . .
A(wn−1

n )


 = Fn(wn)



a0
. . .
an−1




Given the n point-value pairs at the roots of unity for A, the interpolation problem determines the coefficients of A,
i.e. the coefficient vector of ai’s. This is expressed as a matrix operation as follows.



a0
. . .
an−1


 = F−1

n (wn)



A(w0

n)
. . .
A(wn−1

n )




The question that arises is how much F−1
n (wn) is, and how efficiently the new matrix vector product can be computed.

We know from prior discussion that the form of F is

Fn(wn) = (w
ij
n ).

i.e. the element at row i and column j of Fn(wn) is w
ij
n . Matrices with such a form are known in matrix algebra as

Vandermonde matrices. Then, the inverse of Fn(wn) is given by

Fn(wn)
−1 =

1

n
Fn(w

−1
n )T

and therefore
F−1

n (wn) = (w
−ij
n /n).

Therefore in order to establish the ai’s from the Ai’s we switch the roles of A and a in the FFT pseudocode, replace wn

by 1/wn and divide each element of the result by n.
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Fast Fourier Transform
Interpolation at roots of unity

If FFT(a,w,n,A) is the function that returns A given a, w, n, then the function that interpolates polynomial a, i.e.
returns vector a given A,w, n can be defined as follows. This shows that Interpolation is also an FFT problem plus O(n)
additional operations.

// A= FFT(a,w,n); A= FFT(a) = F_n (a)

Interpolate (A,w,n)

1. a= FFT(A,(1/w),n);

2. for(i=0;i<n;i++)

3. a[i] = a[i]/n;

Another way to perform interpolation is by noting that in Fn the entry for row i and column j is w
ij
n , whereas in

F−1
n , the inverse of Fn, the (i, j) entry of the inverse is w

−ij
n = w(n−i)j

n . If the (i, j)-th entry of F−1
n is the (n− i, j) entry

of Fn. Therefore

// A= FFT(a,w,n); A= FFT(a) = F_n (a)

Interpolate (A,w,n)

1. aux= FFT(A,w,n);

2. a[0]=aux[0]/n;

3. for(i=1;i<n;i++)

4. a[i] = aux[n-i]/n;
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Fast Fourier Transform
Polynomial Interpolation (continued)

We now prove the claim that FnF
−1
n = In, the identity n× n matrix.

Fn(wn)F
−1
n (w−1

n ) =
n−1∑
k=0

wik
n w

−kj
n /n =

n−1∑
k=0

w(i−j)k
n /n

We distinguish two cases.
Case a. i = j (case of a diagonal element of the product. Then

Fn(wn)F
−1
n (w−1

n ) =
n−1∑
k=0

w(i−j)k
n /n =

n−1∑
k=0

1/n = n/n = 1.

This implies that the diagonal elements of the product are 1.
Case b. i �= j. Then

Fn(wn)F
−1
n (w−1

n ) =
n−1∑
k=0

w(i−j)k
n /n =

1

n

n−1∑
k=0

w(i−j)n
n − 1
w

(i−j)
n − 1

=
1

n

n−1∑
k=0

(wn
n)

i−j − 1
w

(i−j)
n − 1

=
1

n

n−1∑
k=0

1− 1
w

(i−j)
n − 1

= 0.

Therefore all non diagonal elements that have i �= j are zero. This proves the claim that the product of the two
matrices is I.

Therefore polynomial interpolation is as difficult as polynomial evaluation (at the n-th roots of unity): it requires
the solution of an FFT problem on the inverses of the n-th roots of unity (which are also roots of unity).
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Fast Fourier Transform
Polynomial Multiplication

We return to the polynomial multiplication problem by slightly generalizing it i.e. we allow the two polynomials to
have different degrees.

Consider two polynomials A(x) = an−1x
n−1 + . . . a1x+ a0, and B(x) = bm−1b

m−1 + . . . b1x+ b0,
Polynomial multiplication is the operation that multiplies A(x) and B(x) i.e. C(x) = A(x)B(x) and is a polynomial

of degree n + m − 2. Polynomial Multiplication. Given two vectors �a = (a0, . . . , an−1), and �b = (b0, . . . , bm−1),
computer vector �c = (c0, . . . , cn+m−2), where the elements of vector �c are given by Eq 5.

cj =
j∑

k=0

akbj−k (5)

Vector �c is also called the convolution vector.
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Fast Fourier Transform
Polynomial Multiplication and Convolution

Polynomial multiplication can be solved as follows.

• Pad the two polynomials, by adding zero coefficient higher order terms until both become of artificial degree
n+m− 2, i.e. of as ”big” degree as their product. The following discussion assumes that N = n+m− 1
is a power of 2. If it is not, continue padding until a power of two is reached (this requires doubling of the
degree of the padded (not the original) polynomial.

• Evaluate A(x) and B(x) in the N = n + m − 1 roots of unity using FFT i.e. find Ak = A(w
k
N) and

Bk = B(w
k
N). This requires 2 · 5N lgN real operations.

• Multiply N pairs of values Ak and Bk to find C(x) at the N roots of unity. Given that C(x) = A(x)B(x)
we also have that C(wk

N) = A(w
k
N)B(w

k
N) i.e. Ck = AkBk. This requires N complex multiplications (2

additions, 4 multiplications each) for a total of 6N operations.

• Interpolate on the Ck to find degree N−1 polynomial C(x). This requires an FFT operation and 5N lgN+
O(N) operations.

Theorem. A(x)B(x) can be computed in 15N lgN +O(N) real operations, where N = deg(A) + deg(B) + 1.

Convolution. Convolution is asymptotically as difficult as polynomial evaluation.
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Fast Fourier Transform
Efficiency Issues

In lines 10-11 of the FFT pseudocode the operations performed can be described by an operation that is known as
butterfly. In particular consider the schematic below. At Ak the input lines from Lk and Rk meet; the line from Rk

feeds Rk multiplies by the value shown on that line w. Similarly the line from Lk to Ak+n/2 has −w i.e. Lk should be
multiplied by −w

L[k]-------- A[k] = L[k] +w R[k]

\ /

\ / w

\/

/\

/ \-w

/ \

R[k]-------- A[k+n/2]= L[k] -w R[k]

We then show how the FFT recursive calls unfold, i.e. how the input is distributed in the various recursive calls.

<a0 a1 a2 a3 a4 a5 a6 a7> Level 0

/ \

<a0 a2 a4 a6> <a1 a3 a5 a7> Level 1

/ \ / \

<a0 a4> <a2 a6> <a1 a5> <a3 a7> Level 2

/ \ / \ / \ / \

<a0> <a4> <a2> <a6> <a1> <a5> <a3> <a7> Level 3

x = 000 100 010 110 001 101 011 111 Index of a in binary

rev(x)= 000 001 010 011 100 101 110 111 Reverse of a index in binary

rev(x)= 0 1 2 3 4 5 6 7 Reverse of a index in decimal

Conclusion: The i-th leaf from the left is rev(bin(i))

Eaxample : The 0-th leaf is rev(bin(0))=0 i.e. a0, the 3-rd is rev(bin(3))=6 i.e. a6.
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Fast Fourier Transform
Efficiency Issues (continued)

We also observe the following about the bit representation of the indices (0 . . . 7). For x a binary string of zeroes and
ones, let rev(x) be the reverse string of x where x is written in binary, i.e. rev(100) = 001.

Bit positions are numbered right (least significant) to left (most signif.)

In level 1: 0,2,4,6, are 000, 010, 100, 110 i.e. all have 0 in bit 1

and 1,3,5,7 are 001, 011, 101, 111 i.e. all have 1 in but 1

In level 2: 0 4 are 000 100 1,5 are 001 101 all have 0 in bit 2

2 6 are 010 110 3,7 are 011 111 all have 1 in bit 2

In level 3: 0 2 1 3 are 000 010 001 011 all have 0 in bit 3

4 6 5 7 are 100 110 101 111 all have 1 in bit 3.

Conclusion 1: A node at level i if it is left child it has 0 in bit i,

whereas if it is right child it has 1 in bit i.

Conclusion 2: The j-th leaf from the left is rev(j).

The operations performed during an FFT computation, are sometimes referred to as the butterfly network.
The FFT network was introduced for the purpose of performing FFTs efficiently and in parallel. Each parallel step

of an n point FFT is carried out on one level of a lg n-dimensional butterfly. In level 3, the w2 are used, in level 2, w4

and in level 1, w8.
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Butterfly
FFT on the butterfly
a0-----------x---x--x------x---x--------------x A0

\ / \ / \ /

\ \ / \ /

/ \ \/ \ /

a1 x---x--x------x---x---\----------x A1

\ / \ / \/ \ \ / /

\ / \ /\ \ \ / /

\ / / \/ \ \ \ / /

a2-----------x---x--x------x---x---\---\---/--x A2

\ / \ / / \ \ \ / \ / /

\ \ / \ \ \ / /

/ \ / \ / \ \ / \ / \ /

a3 / \---x---x--x------x---x---\---\---\--x A3

\ / \ \ / \ / \ / \/

\ \ \ \ \ /\

/ \ \ / \ / \ / \/ \

a4 \ x---x--x------x---x---\---\---\--x A4

\ \ / \ / / \ / \ / \

\ \ \ / / / \ \

\ / \ \/ / / \ / \ \

a5-----------x---x--x------x---x---/---\---\--x A5

\ \ / \/ / / \ \

\ / /\ / / \ \

\ / \/ \ / / \ \

a6 x---x--x------x---x---/-------\--x A6

\ / /\ / \

\ / \ / \

/ \ / \ / \

a7-----------x---x--x------x---x--------------x A7

<-Routeinput><-------------Butterfly---------->
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Butterfly
FFT on the butterfly

The butterfly network was introduced for the purpose of performing FFTs. Each parallel step of an n point FFT is
carried out on one level of a lg n-dimensional butterfly. For the sake of definition, let bin(k) be the binary representation
of decimal integer k representing a row of a butterlfly. Let rev(i) be the reverse of bin(k).

In the butterfly network that computes �A, input �a is input through the vertices of level lg n and output is obtained
through the vertices of level 0. This reverse butterfly network is depicted in the figure of the previous page so that level
lg n appears on the left and level 0 on the right.

Therefore level 0 of a lg n+ 1-level butterfly computes n-element vector A.
The interesting observation that was made previously and will be proven rigorously on the following page is that ak

is input through line rev(bin(k)) of the butterfly.
The proof is going to be constructive and will use induction. As in level 0 outputs Ak are computed, the inputs in

level 1 will be Lk in the top n/2 rows and Ri in the bottom n/2 rows. As Ak = Lk+w
k
nRk and Ak+n/2 = Lk+w

k+n/2
n Rk =

Li − wk
nRk, the computations performed along the cross and level edges are obvious.

Let us assume by induction (inductive hypothesis) that a lg n level buttefly computes �L or �R on n/2 inputs. Then a
lg n+1-level butterfly on n inputs, consists of two lg n-level butterflies if level 0 nodes are removed. Let L0, L1, . . . Ln/2−1,
R0, R1, . . . Rn/2−1 be the outputs of the two butterflies in the inductive step. The operation (related to level 0 and 1)
discussed in the previous paragraph shows that Ak is going to be output in the k-th row of level 0 of the lg n + 1-level
butterfly.
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Butterfly
FFT continued

Question Given that the top n/2 butterfly computes �L and the bottom �R what are the inputs to each such butterfly?

Answer Vector �L requires among all a0, . . . an−1 only the even indexed elements and �R the odd-indexed elements.
The former have a 0 in the 1-st rightmost bit poistion (also known as lsb position); the latter have an 1 there. The
former even-indexed elements are to be associated with the top butterfly; all rows of the top butterfly have a 0 in the
1-st leftmost bit bosition. The latter odd-indexed ak elements are to be associated with the bottom butterfly; all rows
of the bottom butterfly have an 1 in the 1-st leftmost bit bosition. That is the 1-st leftmost bit position of the butterfly
input line is the same as the 1-st rightmost bit position of the elements that will be associated with it.

Repeat this for the second recursive unfolding and so on. Then, the i-th rightmost bit position of an element a must
be equal to the i-th leftmost bit position of the row this a is input.

Unfolding the recursion we get that ai is input to row rev(bin(i)) of the butterfly.
A node 〈b, j〉 of the butterfly performs the following computation.
• the high-numbered node of previous level (i.e. the one with 1 in j + 1-st bit position of b) is multiplied
with wi

n/2j = wi2j

n .

• the low-numbered node of previous level (i.e. the one with 0 in j + 1-st bit position of b) is then added to
this result.

Remark. wi2j

n is a function of row i and level j. Therefore all the values can be precomputed in time O(lgn) and
stored locally.

Question. Hypercube implementation?
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