
Subject 2 (revised on Sep 30, 2004)
Fall 2004

The Parallel Random Access Machine

Part1

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 1

Introduction
The PRAM Model

The Parallel Random Access Machine (PRAM) is one of the simplest ways to model a parallel computer. A PRAM
consists of a collection of (sequential) processors that can synchronously access a global shared memory in unit time.
Each processor can thus access its shared memory as fast (and efficiently) as it can access its own local memory.
The main advantages of the PRAM is its simplicity in capturing parallelism and abstracting away communication and
synchronization issues related to parallel computing. Processors are considered to be in abundance and unlimited in
number. The resulting PRAM algorithms thus exhibit unlimited parallelism (number of processors used is a function of
problem size). The abstraction thus offered by the PRAM is a fully synchronous collection of processors and a shared
memory which makes it popular for parallel algorithm design. It is, however, this abstraction that also makes the
PRAM unrealistic from a practical point of view. Full synchronization offered by the PRAM is too expensive and time
demanding in parallel machines currently in use. Remote memory (i.e. shared memory) access is considerably more
expensive in real machines than local memory access as well and UMA machines with unlimited parallelism are difficult
to build.
Depending on how concurrent access to a single memory cell (of the shared memory) is resolved, there are various

PRAM variants. ER (Exclusive Read) or EW (Exclusive Write) PRAMs do not allow concurrent access of the shared
memory. It is allowed, however, for CR (Concurrent Read) or CW (Concurrent Write) PRAMs. Combining the rules
for read and write access there are four PRAM variants: EREW, ERCW, CREW and CRCW PRAMs. Moreover, for
CW PRAMs there are various rules that arbitrate how concurrent writes are handled.

Convention: In this subject we name processors arbitrarily either 0, 1, . . . , p − 1 or 1, 2, . . . , p.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 2

The PRAM
Types of PRAMs

(1) in the arbitrary PRAM, if multiple processors write into a single shared memory cell, then an arbitrary
processor succeeds in writing into this cell,

(2) in the common PRAM, processors must write the same value into the shared memory cell,

(3) in the priority PRAM the processor with the highest priority (smallest or largest indexed processor) succeeds
in writing,

(4) in the combining PRAM if more than one processors write into the same memory cell, the result written
into it depends on the combining operator. If it is the sum operator, the sum of the values is written, if it
is the maximum operator the maximum is written.

The EREW PRAM is the weakest among the four basic variants. A CREW PRAM can simulate an EREW one.
Both can be simulated by the more powerful CRCW PRAM. An algorithm designed for the common PRAM can be
executed on a priority or arbitrary PRAM and exhibit similar complexity. The same holds for an arbitrary PRAM
algorithm when run on a priority PRAM.

Assumptions
In this handout we examine parallel algorithms on the PRAM. In the course of the presentation of the various

algorithms some common assumptions will be made. The input to a particular problem would reside in the cells of the
shared memory. We assume, in order to simplify the exposition of our algorithms, that a cell is wide enough (in bits or
bytes) to accommodate a single instance of the input (eg. a key or a floating point number). If the input is of size n, the
first n cells numbered 0, . . . , n − 1 store the input. In the discussion below, we assume that the number of processors of
the PRAM is n or a polynomial function of the size n of the input. Processor indices are 0, 1, . . . , n − 1.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 3

PRAM Algorithms
Parallel Sum

Problem: Parallel Sum.
Input. x0, . . . , xn−1

Output. Evaluate x0 + . . .+ xn−1.
A sequential algorithm that solves this problem requires n − 1 additions. For a PRAM implementation, value xi is

initially stored in shared memory cell M [i]. The sum x0 + x1 + . . .+ xn−1 is to be computed in T = lg n parallel steps.
Without loss of generality, let n be a power of two. If a combining CRCW PRAM with arbitration rule sum is used to
solve this problem, the resulting algorithm is quite simple. In the first step processor i reads memory cell i storing xi.
In the following step processor i writes the read value into an agreed cell say 0. The time is T = O(1), and processor
utilization is P = O(n).
A more interesting algorithm is the one presented below for the EREW PRAM. The algorithm consists of lg n steps.

In step i, processor j < n/2i reads shared-memory cells M [2j] and M [2j + 1] combines (sums) these values and stores
the result into memory cell M [j]. After lg n steps the sum resides in cell 0. Algorithm Parallel Sum has T = O(lgn),
P = n and W = O(n lgn), W2 = O(n).

// pid() returns the id of the processor issuing the call.
begin Parallel Sum (n)
1. i = 1 ; j = pid();
2. while (j < n/2i)
3. a =M [2j];
4. b =M [2j + 1];
5. M [j] = a + b;
6. i = i+ 1;
7. end
end Parallel Sum

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 4

Parallel Sum
An Example
Algorithm Parallel Sum.

M[0] M[1] M[2] M[3] M[4] M[5] M[6] M[7]

x0 x1 x2 x3 x4 x5 x6 x7 t=0

x0+x1 x2+x3 x4+x5 x6+x7 t=1

x0+...+x3 x4+...+x7 t=2

x0+...+x7 t=3

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 5

PRAM Algorithms
Parallel Sum continued
Algorithm Parallel Sum can be easily extended to include the case where n is not a power of two. Parallel Sum

is the first instance of a sequential problem that has a trivial sequential but more complex parallel solution. Instead
of operator Sum other operators like Multiply, Maximum, Minimum, or in general, any associative operator could have
been used. As associative operator ⊗ is one such that (a ⊗ b)⊗ c = a ⊗ (b ⊗ c).

Exercise 1 Can you improve Parallel Sum so that T remains the same, P = O(n/ lgn), and W = O(n)? Explain.

Exercise 2 What if i have p processors where p < n ? (You may assume that n is a multiple of p).

Exercise 3 Generalize the Parallel Sum algorithm to any associative operator.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 6

PRAM Algorithms
Parallel Copy: Broadcasting

A word is stored in memory location M[0] of the shared memory. We would like this word to be read by all n
processors of a PRAM. On a CREW PRAM this requires one parallel step (processor i concurrently reads cell 0). On
an EREW PRAM broadcasting can be performed in O(lgn) steps. The structure of the algorithm is the reverse of the
previous one. In lg n steps the word is broadcast as follows. In step i each processor with index j less than 2i reads the
contents of cell M [j] and copies it into cell M [j + 2i]. After lg n steps each processor i reads the message by reading the
contents of cell i.

begin Broadcast (M)
1. i = 0 ; j = pid(); M[0]=M;
2. while (2i < P)
3. if (j < 2i)
5. M [j + 2i] =M [j];
6. i = i+ 1;
6. end
7. Processor j reads M from M [j].
end Broadcast

A CR?W PRAM algorithm that solves the broadcasting problem has performance P = O(n), T = O(1), and
W = O(n).
The EREW PRAM algorithm that solves the broadcasting problem has performance P = O(n), T = O(lgn), and

W = O(n lgn), W2 = O(n).

Exercise 4 Broadcasting on a hypercube and a butterfly (Hint: Base your solution on the Broadcast algorithm).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 7

Parallel Operations with Multiple Outputs
Parallel Prefix

Given a set of n values x0, x1, . . . , xn−1 and an associative operator, say +, the parallel prefix problem is to compute the
following n results/“sums”.

0: x0,

1: x0 + x1,

2: x0 + x1 + x2,

. . .

n − 1: x0 + x1 + . . .+ xn−1.

Parallel prefix is also called prefix sums or scan. It has many uses in parallel computing such as in load-balancing the
work assigned to processors and compacting data structures such as arrays. We shall prove that computing ALL THE
SUMS is no more difficult that computing the single sum x0 + . . . xn−1. An algorithm for parallel prefix on an EREW
PRAM would require lgn phases. In phase i, processor j reads the contents of cells j and j − 2i (if it exists) combines
them and stores the result in cell j.
The EREW PRAM algorithm that solves the parallel prefix problem has performance P = O(n), T = O(lgn), and

W = O(n lgn), W2 = O(n).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 8

Parallel Prefix
A divide and Conquer Approach

x0 x1 x2 x3 x4 x5 x6 x7 <<Paralel Prefix "Box" for 8 inputs

| | | | | | | |

----------- ----------

| 1 | | 2 | <<< 2 PP Boxes for 4 inputs each

----------- ---------

| | | |\\\ | | |

| | | | \\\\| | | Take rightmost output of Box 1 and

| | | | | \\\ | | combine it with the outputs of Box2

| | | | | | \\ |

| | | | | | \\ \|

x0+...+x3 x0+..+x7

x0+...+x2 x0+...+x6

x0+x1 x0+...+x5

x0 x0+...+x4

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 9

PRAM Algorithms
Parallel Prefix : Another Algorithm

// We write below[1:2] to denote X[1]+X[2]

// [i:j] to denote X[i]+X[i+1]+...+X[j]

// [i:i] is X[i] NOT X[i]+X[i]

// [1:2][3:4]=[1:2]+[3:4]= (X[1]+X[2])+(X[3]+X[4])=X[1]+X[2]+X[3]+X[4]

// Input : M[j]= X[j]=[j:j] for j=1,...,n.

// Output: M[j]= X[1]+...+X[j] = [1:j] for j=1,...,n.

ParallelPrefix(n) // .

1.i=1; // At this step M[j]= [j:j]=[j+1-2**(i-1):j]

2.while (i < n) {

3. j=pid();

4. if (j-2**(i-1) >0) {

5. a=M[j]; // Before this stepM[j] = [j+1-2**(i-1):j]

6. b=M[j-2**(i-1)];// Before this stepM[j-2**(i-1)]= [j-2**(i-1)+1-2**(i-1):j-2**(i-

1)]

7. M[j]=a+b; // After this step M[j]= M[j]+M[j-2**(i-1)]=[j-2**(i-1)+1-2**(i-1

):j-2**(i-1)]

// [j+1-2**(i-1):j] =

// [j-2**(i-1)+1-2**(i-1

):j]=

// [j+1-2**i:j]

8. }

9. i=i*2;

}

At step 5, memory location j − 2i−1 is read provided that j − 2i−1 ≥ 1. This is true for all times i ≤ tj = lg (j − 1) + 1.
For i > tj the test of lin e 4 fails and lines 5-8 are not executed.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 10

PRAM Algorithms
Parallel Prefix : Another Algorithm
For visualization purposes, the second step is written in two different lines. When we write x1 + . . . + x5 we mean

x1 + x2 + x3 + x4 + x5.

x1 x2 x3 x4 x5 x6 x7 x8

1. x1+x2 x2+x3 x3+x4 x4+x5 x5+x6 x6+x7 x7+x8

2. x1+(x2+x3) (x2+x3)+(x4+x5) (x4+x5)+(x6+x7)

2. (x1+x2)+(x3+x4) (x3+x4)+(x5+x6) (x5+x6+x7+x8)

3. x1+...+x5 x1+...+x7

3. x1+...+x6 x1+...+x8

Finally

F. x1 x1+x2 x1+...+x3 x1+...+x4 x1+...+x5 x1+...+x6 x1+...+x7 x1+...+x8

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 11

PRAM Algorithms
Parallel Prefix Example 2
For visualization purposes, the second step is written in two different lines. When we write [1 : 5] we mean x1+ x2+

x3 + x4 + x5.

We write below [1:2] to denote x1+x2

[i:j] to denote xi + ... + x5

[i:i] is xi NOT xi+xi!

[1:2][3:4]=[1:2]+[3:4]= (x1+x2) + (x3+x4) = x1+x2+x3+x4

A * indicates value above remains the same in subsequent steps

0 x1 x2 x3 x4 x5 x6 x7 x8

0 [1:1] [2:2] [3:3] [4:4] [5:5] [6:6] [7:7] [8:8]

1 * [1:1][2:2] [2:2][3:3] [3:3][4:4] [4:4][5:5] [5:5][6:6] [6:6][7:7] [7:7][8:8]

1. * [1:2] [2:3] [3:4] [4:5] [5:6] [6:7] [7:8]

2. * * [1:1][2:3] [1:2][3:4] [2:3][4:5] [3:4][5:6] [4:5][6:7] [5:6][7:8]

2. * * [1:3] [1:4] [2:5] [3:6] [4:7] [5:8]

3. * * * * [1:1][2:5] [1:2][3:6] [1:3][4:7] [1:4][5:8]

3. * * * * [1:5] [1:6] [1:7] [1:8]

[1:1] [1:2] [1:3] [1:4] [1:5] [1:6] [1:7] [1:8]

x1 x1+x2 x1+x2+x3 x1+...+x4 x1+...+x5 x1+...+x6 x1+...+x7 x1+...+x8

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 12

PRAM Algorithms
Parallel Prefix : Yet another algorithm
Consider the following variation of parallel prefix on n inputs that works on a complete binary tree with n leaves

(assume n is a power of two).

Action by nodes

1. Non-leaf : If it receives l and r from left and right children, computes l + r and

sends it up and send down to its right child the l.

2. Root : Step [1] except nothing is sent up.

3. Non-leaf : If it gets p from parent it transmits it to its left/right children.

4. Leaf : If it holds l and receives p from its parent it sets l = p + l (this order)

[note p is the left argument, l is the right one, order matters]

x1+x2+x3+x4+x5+x6+x7+x8

/ \

/ \

/ \

/ \

/ \

/ \

/ \ \x1+x2+x3+x4

/ \

/ \

/ \

/ \

/ \

/ \

/ \

x1+x2+x3+x4 x5+x6+x7+X8

/ \ /\

/ \ / \

/ \ x1+x2+x3+x4 / \ \x1+x2+x3+x4

/ \ \x1+x2 / \ \x5+x6

/ \ / \

/ \ / \

/ \ / \

x1+x2 x3+x4 x5+x6 x7+x8

/\ /\ x1+..+x4/\ <x1+x2+x3+x4>/\ \ x1+x2+x3+x4

/ \ x1+x2 / \ \x1+x2 / \ x5+x6/ \ \ x5+x6

/ \ \x1 / \ \x3 / \ \x5 / \ \x7

/ \ / \ / \ / \

x1 x2 x3 x4 x5 x6 x7 x8 Originally

x1+x2 x3+x4 x5+x6 x7+x8 after recving

x1+.+x3 x1+..+x4 x1+.+x5 x1+.+x6 x5+.+x7 x5+.+x8

x1+.+x3 x1+..+x4 x1+.+x5 x1+.+x6 x1+.+x7 x1+.+x8

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 13

PRAM Algorithms Addendum
Parallel Prefix : A recursive version
The parallel prefix algorithm of the previous page (tree-based) requires about 2 lg n+1 parallel steps, P = n processors

and work W = Θ(n lg n), and W2 = Θ(n). One could describe that version due to Ladner and Fischer as follows. By
rescheduling the computation and using P = n/ lgn processors, the work can be reduced to linear.

begin PPF recursive (In[0..n − 1],Out[0..n − 1],p = 0..n − 1)
1. Out[0] = In[0];
2. if n > 1 then
3. ∀ i = 0, . . . , n − 1 dopar
4. X[i] = In[2i] + In[2i+1];
5. enddo
6. Y=PPF recursive(X[0..n/2 − 1],Y [0..n/2− 1],p = 0..n/2− 1);
7. ∀ i = 0, . . . , n/2− 1 dopar
8. Out[2i+1]=Y[i];
9. enddo
10. ∀ i = 1, . . . , n/2− 1 dopar
11. Out[2i]=Y[i-1]+A[2i];
12. enddo
13. endif
end PPF recursive

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 14

PRAM Algorithms Addendum
Parallel Prefix : An iterative version
An iterative version of that algorithm is depicted below.

begin PPF iterative (In[0..n − 1],Out[0..n − 1],p = 0..n − 1)
1. for i = 0, . . . , n − 1dopar
2. T[0,i] = In[i];
3. enddo
4. for j = 1, . . . , lg ndo
5. for i = 0, . . . , n/2j − 1 dopar
6. T[j,i] = T[j-1,2i] + T[j-1,2i+1];
7. enddo
8. for j = lg n, . . . , 0do
9. for i = 0dopar
10. V[j,0] = T[j,0]; //Processor 0 executes only
11. for odd(i), 0 ≤ i ≤ n/2j − 1dopar
12. V[j,i] = V[j+1,i/2]; //Processor odd(i) executes only
11. for even(i), 2 ≤ i ≤ n/2j − 1dopar
12. V[j,i] = V[j+1,(i-1)/2]+T[j,i]; //Processor even(i) executes only
13. enddo
14. Out[i]=V[0,i];
end PPF iterative

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 15

An application of parallel prefix
Binary number addition

• Add two n-bit binary numbers in 2 lgn+ 1 steps using an n-leaf c.b.t.

Sequential algorithm requires n steps.

16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
a 0 1 0 1 1 1 0 0 1 0 0 1 0 0 1 0
b 0 1 1 0 1 0 0 0 0 1 0 1 1 1 0 0

s g p p g p s s p p s g p p p s s
c
a+ b

Table 1: Binary addition example

(a + b)i = ai ⊕ bi ⊕ ci−1, where ⊕ = XOR.

• s: stops a carry bit (0 + 0)

• g: generates a carry bit (1 + 1)

• p: propagates a carry bit (0 + 1 or 1 + 0).

Problem: In order to compute the k-th bit the k − 1-st carry needs to be computed as well. There exists a non-trivial
non-obvious parallel solution.
We shall try for each bit position to find the carry bit required for addition so that all bit positions can be added in

parallel. We shall show that carry computation takes Θ(lgn) time on a binary tree with a computation that is known
to us: parallel prefix.

Observation. The i-th carry bit is one if the leftmost non-p to the right of the i-th bit is a g.
Question. How can we find i-th carry bit?

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 16

Integer Arithmetic
Parallel Addition
The previous observation takes the following algorithmic form.
Scan for j=i, ... , 0

if p ignore else

if g

carry=1

exit;

else

carry=0

exit;

Such a computation requires O(n) time for j = n (n-th bit). Let the i-th bit position symbol (p, s, g) be denoted by
xi. Then

c0 = x0 = s
c1 = x0 ⊗ x1

c2 = x0 ⊗ x1 ⊗ x2

c16 = x0 ⊗ . . . ⊗ x16, where

⊗ s p g
s s s g
p s p g
g s g g

Algorithm for parallel addition
Step 1. Compute symbol ({s, p, g}) for i bit in parallel for all i.
Step 2. Perform a parallel prefix computation on the n symbols plus 0-th symbol s in parallel where operator is

defined as in previous table.
Step 3. Combine (exclusive OR) the carry bit from bit position i − 1 (interpret g as an 1 and an s as a 0) with the

exclusive OR of bits in position i to find the i-th bit of the sum.

Steps 1 and 3 require constant time. Step 2, on a complete binary tree on n leaves would require 2 lgn steps.
T = 1 + 1 + 2 lgn. P = 2n − 1 = O(n).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 17

PRAM Algorithms Addendum
Parallel Prefix : Segmented Parallel Prefix
A segmented prefix (scan) computation consists of a sequence of disjoint prefix computations. Let the xij below take

values from a set X and let ⊕ be an associative operator defined on the elements of set X. Then the segmented prefix
computation for

x11x12 . . . x1k1 | x21x22 . . . x2k2 | . . . | xm1xm2 . . . xmkm |
requires the computation of all

pij = xi1 ⊕ xi2 ⊕ . . . ⊕ xij ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ ki

In bried the segment separator | terminates one prefix operation and starts another one.
One way to deal with a segmented prefix computation in parallel is to extend (X,⊕) into (X ′,⊗) so that

X ′ = X ∪ {|} ∪ {|x : x ∈ X}
i.e. X ′ has more than twice the elements of X: it has all the elements of X, the segment separator | and a new element
|x which consists of the segment separator and x. The new operator ⊗ is associative if we define it as follows.

| ⊗ |=| , | ⊗x =|x, | ⊗ |x =|x,
x⊗ |=|, |x⊗ |=|, x ⊗ y = x ⊕ y
|x ⊗ y =|(x ⊕ y) x⊗ |y =|y |x⊗ |y =|y

Now, if the length of the segmented prefix formula is n we can assign n processors to solve the problem with parallel
prefix in asymptotically the same time. Note that an element in X ′ requires for its representation no more than 2 extra
bits of the storage size of an element of X. If an ⊕ computation takes O(1) time so does an ⊗ computation.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 18

PRAM Algorithms
Segmented Parallel Prefix: Example and Refinements
Example

{2, 3} {1, 7, 2} {1, 3, 6}.
Create

2 3 |1 7 2|1 3 6.
And result is:

2 5|1 8 10|1 4 10.
We can refine the previous algorithm as follows.

⊕ b
a (a ⊕ b)

⊗ b |b
a (a ⊕ b) b
|a |(a ⊕ b) b

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 19

PRAM Algorithms
Matrix Multiplication

Matrix Multiplication
A simple algorithm for multiplying two n × n matrices on a CREW PRAM with time complexity T = O(lgn) and

P = n3 follows. For convenience, processors are indexed as triples (i, j, k), where i, j, k = 1, . . . , n. In the first step
processor (i, j, k) concurrently reads aij and bjk and performs the multiplication aijbjk. In the following steps, for all i, k
the results (i, ∗, k) are combined, using the parallel sum algorithm to form cik =

∑
j aijbjk. After lgn steps, the result cik

is thus computed.
The same algorithm also works on the EREW PRAM with the same time and processor complexity. The first step of

the CREW algorithm need to be changed only. We avoid concurrency by broadcasting element aij to processors (i, j, ∗)
using the broadcasting algorithm of the EREW PRAM in O(lgn) steps. Similarly, bjk is broadcast to processors (∗, j, k).
The above algorithm also shows how an n-processor EREW PRAM can simulate an n-processor CREW PRAM with

an O(lg n) slowdown.

CREW EREW

1. aij to all (i,j,*) procs O(1) O(lgn)

bjk to all (*,j,k) procs O(1) O(lgn)

2. aij*bjk at (i,j,k) proc O(1) O(1)

3. parallel sum aij *bjk (i,*,k) procs O(lgn) O(lgn) n procs participate

j

4. cik = sum aij*bjk O(1) O(1)

j

3 3 3

T=O(lgn),P=O(n) W=O(n lgn) W = O(n)

2

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 20

PRAM Algorithms
Logical AND operation
Problem. Let X1 . . . , Xn be binary/boolean values. Find X = X1 ∧ X2 ∧ . . . ∧ Xn.

The sequential problem accepts a P = 1, T = O(n), W = O(n) direct solution.

An EREW PRAM algorithm solution for this problem works the same way as the PARALLEL SUM algorithm and
its performance is P = O(n), T = O(lgn), W = O(n lgn) along with the improvements in P and W mentioned for the
PARALLEL SUM algorithm.
In the remainder we will investigate a CRCW PRAM algorithm. Let binary value Xi reside in the shared memory

location i. We can find X = X1 ∧ X2 ∧ . . . ∧ Xn in constant time on a CRCW PRAM. Processor 1 first writes an 1 in
shared memory cell 0. If Xi = 0, processor i writes a 0 in memory cell 0. The result X is then stored in this memory
cell.

begin Logical AND (X1 . . .Xn)
1. Proc 1 writes an 1 in cell 0.
2. if Xi = 0 processor i writes 0 into cell 0.
end Logical AND

The result stored in cell 0 is 1 (TRUE) unless a processor writes a 0 in cell 0; then one of the Xi is 0 (FALSE) and
the result X should be FALSE, as it is.

Exercise 5 Give an O(1) CRCW algorithm for LOGICAL OR.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 21

PRAM Algorithms
Maximum finding

Problem. Let X1 . . . , XN be n keys. Find X = max{X1, X2, . . . , XN}.

The sequential problem accepts a P = 1, T = O(N), W = O(N) direct solution.

An EREW PRAM algorithm solution for this problem works the same way as the PARALLEL SUM algorithm and
its performance is P = O(N), T = O(lgN), W = O(N lgN), W2 = O(N) along with the improvements in P and W
mentioned for the PARALLEL SUM algorithm.

In the remainder we will investigate a CRCW PRAM algorithm. Let binary value Xi reside in the local memory of
processor i.
The CRCW PRAM algorithmMAX1 to be presented has performance T = O(1), P = O(N2), and work W2 = W =

O(N2).
The second algorithm to be presented in the following pages utilizes what is called a doubly-logarithmic depth tree

and achieves T = O(lglgN), P = O(N) and W = W2 = O(N lglgN).
The third algorithm is a combination of the EREW PRAM algorithm and the CRCW doubly-logarithmic depth

tree-based algorithm and requires T = O(lglgN), P = O(N) and W2 = O(N).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 22

PRAM Algorithms
Algorithm MAX1

begin Max1 (X1 . . .XN)
1. in proc (i, j) if Xi ≥ Xj then xij = 1;
2. else xij = 0;
3. Yi = xi1 ∧ . . . ∧ xin ;
4. Processor i reads Yi ;
5. if Yi = 1 processor i writes i into cell 0.
end Max1

In the algorithm, we rename processors so that pair (i, j) could refer to processor j × n+ i. Variable Yi is equal to 1
if and only if Xi is the maximum.
The CRCW PRAM algorithm MAX1 has performance T = O(1), P = O(N2), and work W2 =W = O(N2).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 23

PRAM Algorithms
Doubly Logarithmic-Depth Tree
In preparation of algorithm Max2 we introduce a doubly logarithmic-depth tree.
Let N = 22

n
, for some integer n.

A doubly logarithmic-depth tree with N leaves is defined as follows.

(1) The root of the tree at level 0 has 22
n−1
= N1/2 children in level 1.

(2) Each node at level 1 has 22
n−2
= N1/22

children in level 2.

(3) Each node of level i has 22
n−(i+1)

= N1/2i+1
children in level i+ 1.

(4) Each node of level n − 1 (the level before the last) has 22n−n
= N1/2n

= 2 children in level n = lglgN .

(5) The nodes of level n are the leaves of the tree.

Some properties of a doubly logarithmic-depth tree are listed below.

(1) The height of the tree is n = lglgN .

(2) A node of level i has 22
n−(i+1)

children in level i+ 1.

(3) The TOTAL number of level i nodes is 22
n−1
22

n−2
. . . 22

n−i
= 22

n−2n−i
.

(4) The Product (22
n−i−1

)2 × 22n−2n−i
is O(22

n
) = O(N).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 24

PRAM Algorithms
Algorithm MAX2

Algorithm Max2 below achieves better work performance than Max1 T = O(lglgN), P = O(N), and W = W2 =
O(N lglgN).
Algorithm Max2 works as follows.

(1) Initially, items Xi are on the N leaves of the tree.

(2) The root will hold the result at the completion of the algorithm.

(3) Processors are assigned to the nodes of the tree in some predetermined fashion.

(4) All nodes of the tree other than the leaves hold an UNDEFINED value in the beginning of the execution.

(5) If a node u at level i holds an UNDEFINED value and its M children hold some intermediate results
M2 processors are assigned to u to find the maximum of M numbers (the partial results of the children
of u) using Max1 in constant time. Node u then holds the computed maximum (and ceases to hold an
UNDEFINED value).

begin Max2 (X1 . . .XN)
0. The i-th cell contains Xi; N = 22

n
.

1. for (i = n − 1; i ≥ 0; i −−) do
2 begin

3. Assign to each node u of level i, (22
n−i−1

)2 processors (i.e. the square of its children in level i+ 1.) ;
4. Use algorithm Max1 and these processors to find the maximum

of the values stored at the children of u and store the result at u;
5. Node u ceases to hold an UNDEFINED.
6. end
end Max2

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 25

PRAM Algorithms
Algorithm MAX3

Algorithm Max2 has W = W2 = O(N lglgN). Algorithm Max3 below has W2 = O(N). It uses Max2 and the
EREW PRAM algorithm as subroutines.
The EREW algorithm finds the SUM or the MAXIMUM of N numbers by working from the leaves to the root of a

binary tree, ie lgN levels. If we stop the computation after i levels, we have N/2i partial results, each result being the
MAXIMUM of 2i numbers initially stored in the leavs of the subtree rooted at the partial result.

Max3 first runs the EREW PRAM algorithm for i = lglglgN levels so that a total of N/ lglgN partial MAXIMA
are computed.
Then it applies Max2 where N in Max2 is equal to the number of partial results ie N/ lglgN .

begin Max3 (X1 . . . XN)
0. The i-th cell contains Xi;
1 begin
2. Use the EREW PRAM algorithm on a complete binary tree on N leaves to

reduce the original problem to computing the maximum of N/ lglgN values
(ie proceed from the leaves up to the nodes of level lgN − lglglgN);

3. Use Max2 to find the maximum of the N/ lglgN values of Step2;
4. end
end Max3

Step 2 of algorithm Max3 requires T = O(lglglgN), P = O(N) and O(N) work (number of comparisons is at most
the number of edges of the tree).
Step 3 requires P = O(N), T = O(lglgN) and total work W = W2 = O(N) by the analysis of Max2.

Question. Is there a p ≤ n processor CRCW PRAM algorithm that finds the maximum of N keys faster than Max2

or Max3?

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 26

PRAM Algorithms for MAX finding
A matching Lower bound and Turan’s Theorem
Definition. On an undirected graph G = (V, E), an independent set is a set of vertices such that no two vertices are
connected by an edge.

Definition. On an undirected graph G = (V, E), a clique is a set of vertices such any two vertices are connected by an
edge.
A clique on n vertices is the ”complement” of an independent set on the same n vertices. The complete graph on n

vertices is a clique on n vertices by default. A clique of n vertices has n(n − 1)/2 edges.
Theorem (Turan) Let G = (V, E) be an undirected graph, where |V | = n and |E| = m. Graph G has an independent
set of size at least n2/(2m+ n).
Another formulation of Turan’s Theorem is the following one.

Theorem (Turan): Second version Let G = (V, E) be an undirected graph, where |V | = n and |E| = m. If graph G
has no p clique then it has at most (1− 1/(p − 1))n2/2 edges.

Proof. If n ≤ p − 1 then G does not have obviously a p-clique and G has at most n(n − 1)/2 edges. It is obvious
that n(n − 1)/2 ≤ (1− 1/(p − 1))n2/2 by elementary calculation.
Thus the interesting case left is n ≥ p. If graph G has the maximum number of edges but does not have a p-clique

it must have a (p − 1)-clique. This is because otherwise we could add edges to G to create such a (p − 1)-clique; this
would contradict the maximality of edges of G. Call C a (p − 1)-clique of G. C has (p − 1)(p − 2)/2 edges. Call G′ the
graph G without C, i.e. G′ = G − C. Graph G′ has m′ edges. Let k be the number of edges that go from G′ to C. By
induction on G′ we have that m′ ≤ (1− 1/(p− 1))(n− p+ 1)2/2. Since G does not have a p-clique every vertex of G′ is
connected to at most p − 2 vertices of C (since if it were connected to all the vertices of C a p-clique would have been
formed). Thus k ≤ (p − 2)(n − p+ 1).
Therefore the number of edges m of G is

m ≤ (p − 1)(p − 2)/2 + (1− 1/(p − 1))(n − p+ 1)2/2 + (p − 2)(n − p+ 1) ≤ (1− 1/(p − 1))n2/2.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 27

PRAM Algorithms for MAX finding
A matching Lower bound and Turan’s Theorem
If we solve this inequality for p we get

p − 1 ≥ n2

n2 − 2m
Therefore an equivalent formulation is that G has a p − 1 clique of size at least n2

n2−2m
.

Now take the complementary graph (where an edge becomes a non-edge and a non-edge becomes an edge). The
complement of G has N = n vertices and M = n(n − 1)/2 − m edges. From the latter we get that 2m = n(n −
1) − 2M = n2 − n − 2M . A p − 1 clique in G becomes an independent set in its complement whose size is at least

n2

n2−2m
= N2

N2−2m
= N2

N2−n2+n+2M
= N2

N+2M
, noting that N = n. This latter bound is the expression in the first version of

Turan’s theorem.
An easy corollary is that a graph with n/k vertices, k ≥ 1, and n edges has an independent set of size at least n/4k2.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 28

Lower bounds for MAX finding
Some preliminry results
We are going to show some lower bounds on finding the MAXIMUM of n keys. The model of computation we are

going to use is the decision tree model, and in fact the parallel decision tree model where we allow p processors
to work at any time step each one performing a single comparison between two keys. The decision tree model in the
case p = 1 was used to prove the lower bound Ω(n lg n) for comparison-based sorting. Note that this model deals
with information gathering to compute the MAXIMUM. One also needs to process this information to derive the
MAXIMUM. The model assume that processing is for free. We can do so because we plan to establish a lower-bound
(minimum possible running time) not to establish an algorithm for realizing this bound.
We know from the sequential setting that finding the MAXIMUM of n keys requires at least n − 1 comparisons.

Lemma 1. MAX can be found in ONE parallel step with n(n − 1)/2 processors.
Proof. n keys allow n(n − 1)/2 pairs and thus comparisons to be realized to obtain all the information required to

find the MAXIMUM (one needs to do some additional processing eg. establishing the rank but that it is for free!). If we
have that many processors each one responsible for one comparison, this concludes the proof.

Lemma 2. In order to find MAX in ONE parallel step we need at least n(n − 1)/2 processors.
Proof. In order to prove a lower bound, we use a proof by contradiction. Suppose we can do it with one fewer

processor P = n(n− 1)/2− 1. Since there are n(n− 1)/2 pairs of keys to compares, one such pair is not compared. Call
the keys of the pair x, y. What we are going to show, by playing the role of an adversary, is that we can set up the values
of the n input keys so that the missing comparison of the x, y is the crucial one to establish the maximum. We thus
play the role of an adversary whose only mission is to make the algorithm that uses P processors to fail. To do so, we
set the results of the comparisons in such a way that x, y are the MAX and SECOND MAX keys. Thus the comparison
between x, y (that is not being performed) is CRUCIAL in determining the MAXIMUM of the n keys. Since it is not
performed we cannot find the MAX with P processors. Contradiction is established.

Question. What can you prove about SECOND MAX?

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 29

Lower bounds for MAX finding
Some preliminry results
An interesting question is how many processors one needs to use to find the MAX of n keys not in one parallel step

but in two parallel steps.
Problem 1. Find MAX in two steps with O(n3/2) processors.
Hint. Split n keys into groups of

√
n. Compute MAX of each group in first step, and MAX of MAXes in second

step.
Problem 2. Find MAX in two steps with O(n4/3) processors.
Hint. Optimize the splitting.

√
n might not be optimal.

Problem 3. Show that MAX in two steps requires Ω(n4/3) processors.
The Proof is a repetition of the arguments of the proof of Theorem 1.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 30

PRAM Algorithms
A matching lower bound
Theorem 1 (Valiant) Computing the maximum of n keys requires at least lglgn parallel steps with p ≤ n processors.
Proof. (by induction) It is proved by what we call an adversary argument through induction. An adversary for
this problem is allowed to choose the input keys by modifying their values in such a way so as to force the algorithm to
run for at least lglgn steps. These modifications should not invalidate, however, the operations of the algorithm already
performed.
View step i as a graph Gi = (Vi, Ei). The vertices are the keys and the edges are the comparisons performed at step

i.
Consider initially graph G which becomes G1. Since any max finding algorithm can perform no mores than p ≤ n

comparisons at any time step, |E1| ≤ n and |V1| = n. So by Turan’s theorem G1 has an independent set of size n/4.
Call this set of keys I1. Consider now the computation where all the I1 keys are the larger than anything in V1 − I1.
In this case every node in I1 wins in the comparisons performed and is a candidate for the maximum. Since I1 is an
independent set we have no information on the relative order of the keys in I1.
Consider now G2 and take the intersection of G2 and I1. It has ≤ n edges (since p ≤ n can be performed at a time)

and at least n/4 vertices (lower bound for I1 size. So the graph G2 intersected by I1 has an independent set of size at
least n/64 and call it I2. Repeating the same thing for Gi and Ii−1 we end up with an independent set of size n/22

i+1−2.
So if we repeat this procedure about Ω(lg lgn) times the independent set will drop below 2 and the maximum will be
established. This takes however Ω(lg lg n) parallel steps.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 31

Lower bounds for MAX
One step back
Let us prove Problem 3.
Proof (Problem 3). We set up a graph, just as in Theorem 1, with n vertices. Let us have p processors. In one step

they can force p comparisons. By Turan’s theorem the graph on n vertices and p edges must have an independent set of
size at least k = n2/(n+2p). We can set the values of the keys or equivalently determine the output of the comparisons
so that the keys of the named independent set are all candidates for the MAX. Since they form an independent set none
has been compared to any other key of the set. Thus in the second round we can find the MAX among these k keys in
k(k − 1)/2 comparisons/processors using Lemma 1, if and only if we can afford to do so i.e. p ≤ k(k − 1)/2, which leads
to p = Ω(n4/3). ✷

Problem 4. Is there an algorithm that finds the MAX in O(lg lg n) parallel steps using n processors? What is the
work of the algorithm?

Long Hint. Consider n keys. Splits into n/3 groups of 3 keys each. For each group we can detemine the MAX in
3(3− 1)/2 = 3 comparisons using 3 procs per group. Total number of processors used is n/3 · 3 = n. Thus we are left
with determining the max of n/3 keys.
Take the n/3 Maxima, and split them into groups of 7. We have n/(3 · 7) groups of 7 keys. Each group requires

7(7− 1)/2 = 21 processors to find the MAX of the group. Total processors used is n/21 · 21 = n, that we can afford to.
Thus after the second second it suffices to find the max of n/21 keys to determine the MAX of the original n keys.
How do we split the n/21 keys next? What is the pattern?
Say we at some point we end up having n/s keys. We split them into groups of t so that t(t − 1)/2 compar-

isons/processors per group. You can fill in the details to show that this way lg lgn can be achieved.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 32

