
Subject 3
Fall 2004

PRAM algorithms continued

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 1

PRAM Algorithms Addendum
Parallel Prefix : A recursive version

In class we mentioned one more variation of parallel prefix that requires about 2 lgn parallel steps, P = n processors
and work W = Θ(n lgn), and W2 = Θ(n). One could describe that version due to Ladner-Fisccher as follows.

begin PPF recursive (In[0..n− 1],Out[0..n− 1],p = 0..n− 1)
1. Out[0] = In[0];
2. if n > 1 then
3. ∀ i = 0, . . . , n− 1 dopar
4. X[i] = In[2i] + In[2i+1];
5. enddo
6. Y=PPF recursive(X[0..n/2 − 1],Y [0..n/2 − 1],p = 0..n/2 − 1);
7. ∀ i = 0, . . . , n/2 − 1 dopar
8. Out[2i+1]=Y[i];
9. enddo
10. ∀ i = 1, . . . , n/2 − 1 dopar
11. Out[2i]=Y[i-1]+A[2i];
12. enddo
13. endif
end PPF recursive

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 2

PRAM Algorithms Addendum
Parallel Prefix : An iterative version

An iterative version of that algorithm is depicted below.

begin PPF iterative (In[0..n− 1],Out[0..n− 1],p = 0..n− 1)
1. ∀i = 0, . . . , n− 1 dopar
2. T[0,i] = In[i];
3. enddo
4. ∀j = 1, . . . , lg n do
5. ∀i = 0, . . . , n/2j − 1 dopar
6. T[j,i] = T[j-1,2i] + T[j-1,2i+1];
7. enddo
8. ∀j = lg n, . . . , 0 do
9. ∀i = 0 dopar
10. V[j,0] = T[j,0]; //Processor 0 executes only
11. ∀odd(i), 0 ≤ i ≤ n/2j − 1 dopar
12. V[j,i] = V[j+1,i/2]; //Processor odd(i) executes only
11. ∀even(i), 2 ≤ i ≤ n/2j − 1 dopar
12. V[j,i] = V[j+1,(i-1)/2]+T[j,i]; //Processor even(i) executes only
13. enddo
14. Out[i]=V[0,i];
end PPF iterative

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 3

PRAM Algorithms Addendum
Parallel Prefix : Segmented Parallel Prefix

A segmented prefix (scan) computation consists of a sequence of disjoint prefix computations. Let the xij below take
values from a set X and let ⊕ be an associative operator defined on the elements of set X. Then the segmented prefix
computation for

x11x12 . . . x1k1 | x21x22 . . . x2k2 | . . . | xm1xm2 . . . xmkm |
requires the computation of all

pij = xi1 ⊕ xi2 ⊕ . . .⊕ xij ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ ki

In bried the segment separator | terminates one prefix operation and starts another one.
One way to deal with a segmented prefix computation in parallel is to extend (X,⊕) into (X ′,⊗) so that

X ′ = X ∪ {|} ∪ {|x : x ∈ X}
i.e. X ′ has more than twice the elements of X: it has all the elements of X, the segment separator | and a new element
|x which consists of the segment separator and x. The new operator ⊗ is associative if we define it as follows.

| ⊗ |=| , | ⊗x =|x, | ⊗ |x =|x,
x⊗ |=|, |x⊗ |=|, x⊗ y = x⊕ y
|x⊗ y =|(x⊕ y) x⊗ |y =|y |x⊗ |y =|y

Now, if the length of the segmented prefix formula is n we can assign n processors to solve the problem with parallel
prefix in asymptotically the same time. Note that an element in X ′ requires for its representation no more than 2 extra
bits of the storage size of an element of X. If an ⊕ computation takes O(1) time so does an ⊗ computation.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 4

PRAM Algorithms Addendum
Integer Sorting

We introduce a special case of sorting n keys that are integers whose values are in the range of [0.. lgn − 1], where
lg n we assume it is also an integer. This is the well-known problem of count-sort. Sorting n keys in the range 0..k − 1
requires sequential time O(n + k). We show below that sorting n integer keys in the specified range with P = n/ lg n
processors can be done in time T = O(lgn) using W = W2 = Θ(n). Note that count-sort does not sort in place i.e. we
are going to use different arrays for input and output. Let M [1..n− 1] be the input and N [1...n− 1] the output arrays.

The idea is to assign lg n keys per processor; for example if keys are in M [1..n − 1], processor i = 0, . . . , p− 1 deals
with keys i lgn+ j + 1, where j = 0, . . . , lg n− 1. The P processors collectively create an P × lg n array C initialized to
0. We assign to each procesor a single row of the array. Thus initialization take O(lgn) steps to zero the entries of row
i assigned to processor i. Entry (i, j) of the table would indicate how many keys with value j processor i is assigned to.
This information can be collected easily: processor i scans its keys and for each key it updates the counters of row i of C.
Total time is O(lgn). Then a parallel prefix operation is formed. It consists of the first column, the second column and
so on the last column. The purpose is to count all the keys with values 0 before the ones with value 1, before those with
value 2 and so on. Note that the prefix sequence is of length n. If we have n processors we can work it out in O(lgn)
time. Now that we have only P processors we can invoke Brent’s principle to do it in O(lgn) time as well but with O(n)
work. Note that during the prefix operation C is not overwritten; a new array D will hold the results. After the prefix
operation if the entry that corresponded initially to the (i, j) element of C has value t, this means that processor i will
store the keys assigned to it with value j to consecutive positions ending with memory location t of the output. Thus
if for example we have that C(i, j) = 3, then N[t-2] N[t-1] and N[t] will hold the three keys with value j of processor i.
Processor i, after D becomes available scans its keys and writes them into N as appropriately.
Thm. Sorting n keys in the range [0.. lgn − 1] with P = n/ lgn processors can be done in time T = O(lgn) and

work W = W2 = Θ(n).
Applying this theorem t times (i.e. use t rounds of count-sort to obtain a radix-sort algorithm) the following is

derived.
Thm. Sorting n keys in the range [0.. lgt n − 1] with P = n/ lg n processors can be done in time T = O(t lgn) and

work W = W2 = Θ(tn).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 5

PRAM Algorithms Addendum
Parallel Count-Sort: Sequential algorithm

We show the corresponding sequential algorithm which also indicates the ”sequential work” that each one of the P
processors will perform on its own lgn assigned keys.

Count-Sort(M[1..n],N[1..n],n,k)

// Initialize Counter array C

1. for(i=0;i<k;i++) C[i]=0;

3. for(j=1;j<=n;j++) C[M[j]] ++;

4. D[0]=C[0]; //Note that the extra D is not required; we can reuse C

5. for(i=1;i<k;i++)

6. D[i] = C[i]+D[i-1];

7. for(j=n;j>=1;j--) {

8. N[D[M[j]]]=M[j];

9. D[M[j]]--;

}

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 6

PRAM Algorithms Addendum
Parallel Count-Sort: An example

Step 1: Split keys and initialize C; Count keys and update C
M: 0 2 2 0 1 3 0 0 1 3 0 3 2 1 3 2 (n=16,lgn=4)
P: 0 1 2 3

C:
p 0 1 2 3
0 2 0 2 0 <<< Processor zero counted two 0’s and two 2’s for its elements
1 2 1 0 1
2 1 1 0 2
3 0 1 2 1

Step 3: For a prefix: take first column second colum ... lgn-th column

Prefix: Input: 2 2 1 0 0 1 1 1 2 0 0 2 0 1 2 1 : C array info
Output: 2 4 5 5 5 6 7 8 10 10 10 12 12 13 15 16 : D array info

The length of the prefix is n. n processors can do it in O(lg{n}) time.
n/lgn processors in O(lg{n}) time and O(n) work.

2 4 5 5 5 6 7 8 10 10 10 12 12 13 15 16 : D array info
* * * *

Processor 0 recovers four numbers 2,5,10,12 the last position occupied by
a 0,1, 2, 3 if it has them

It has 2 0’s that will occupy positions 1 and 2 of the output
and 2 2’s that will occupy positions 9 and 10 of the output
He copies them into N as dictated by array D (observe sequential algorithm)

SKIP THE NEXT 6 slides

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 7

Polynomial
Evaluation ***WILL NOT BE COVERED***

Suppose we are given a polynomial f(x) such that

f(x) = anx
n + an−1x

n−1 + . . .+ a0

where the indeterminate is x and the coefficients ai ∈ R. Depending on the circumstances ai could belong to the set of
integer numbers (denoted by Z) or the set of rational numbers (denoted by Q). Suppose we are given c ∈ R. Polynomial
evaluation deals with finding

f(c).

In order to compute f(c) the naive method for evaluation first finds

1, c, c2, . . . , cn for a total of (n− 1) multiplications

then computes all products of ci with ai

a0, a1c, a2c
2, . . . , anc

n for a total of n multiplications

and finally adds up the partial products to derive f(c)

f(c) = a0 + a1c+ a2c
2 + . . .+ anc

n for a total of n additions

Naive(a[0..n],n,x)

1. result = a[0]; xn=1;

2. for(j=1;j<=n;j++) {

3. xn *= x;

4. result = result + xn * a[j];

5. }

6. return(result);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 8

Polynomial
The naive algorithm- Analysis ***WILL NOT BE COVERED***

Therefore the total cost of this method is : (2n− 1) M’s (for multiplications) and n A’s (for additions).
There is a faster way to perform polynomial evaluation however using a method that is known as Horner’s method/rule

or Horner-Newton rule. According to this method

f(x) = ((anx+ an−1)x+ an−2)x+ . . .+ a1)x+ a0.

i.e. f(x) = a3x
3 + a2x

2 + a1x + a0 = ((a3x + a2)x + a1)x + a0. This method requires n M’s and n A’s, i.e. it is faster
than the naive method.

Horner(a[0..n],n,x)

1. result = a[n];

2. for(j=n-1;j>=0;j--) {

3. result = result * x + a[j];

4. }

5. return(result);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 9

Expression Evaluation
Parallelization ***WILL NOT BE COVERED***
Theorem PSum. Let the minimum number of operations for computing an expression E bem ≥ p. Then evaluation

of E in parallel using p processors requires time at least T ≥ (m+ 1)/p+ lg p− 1.

Proof. We assume that each processor computes at every step a simple expression z = x o y, where o ∈ {+,−, /, ∗}.
Let k = �lg p�. In the last step of the evaluation of E, the T -th step, a single operation like E = z1oz2, is performed

on a single processor.
Then, in step T − 1, operations z1 = y1oy2 and z2 = y3oy4 may be performed, i.e. at most two operations are

performed in parallel on two processors.
Then in the T − i-th step 2i operations are performed in parallel on 2i processors. In the last step T − k we have

2k = 2�lg p� operations are performed on the same number of processors. If 2k = p, then call a1, . . . , ap these operations.
Operation ai = bioci and all suboperations required for bi, ci will then be performed sequentially in processor i for all
1 ≤ i ≤ p.

Therefore the first 1 + 2 + 22 + . . . + 2k = 2k+1 − 1 = 2�lg p�+1 − 1 operations are performed on a fraction of the
processors (some processors remained idle during those computations) in k + 1 = �lg p� + 1 parallel steps. This is at
least 2�lg p� − 1 operations.

In the remaining T − k − 1 steps, the remaining operations can be performed each processor performing one such
operation per step. Therefore the total number of operations that can be performed in these steps is p(T − k − 1) =
p(T − �lg p� − 1) ≥ p(T − �lg p�).

The total number of operations performed is thus at least 2�lg p�− 1 + p(T −�lg p�). Since the expressions requires m
operations to be evaluated for 2�lg p� − 1 + p(T − �lg p�) > m, T must be at least

T ≥ �m− 2�lg p� + 1

p
� + �lg p�

This simplifies as T = (m− p+ 1)/p+ lg p = (m+ 1)/p+ lg p− 1.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 10

Polynomial Evaluation
Munro-Paterson method ***WILL NOT BE COVERED***
Theorem M-P. Let n = 2m + 1 be odd. Let f(x) = anx

n + . . . + a1x + a0, and let p lgn ≤ n. Then f(x) can be
evaluated in T = 2n/p+ lg p+ c multiplications and additions, where c is a constant less than 4. The constant c absorbs
the contributions of �lg p� factors that are simplified as lg p.
Proof. Phase 1. We keep processors busy by performing a Horner rule computation and a parallel prefix computation

f(x) = ((anx+ an−1)x+ . . . by working as follows.
(a) We first compute in parallel b0 = a0 +a1x, b1 = a2 +a3x, . . . , bm = an−1 +anx. The number of terms we compute

in parallel is (n + 1)/2 = m + 1, and we thus need to perform a total of m + 1 A’s and m + 1’s M’s to complete this
subtask of Phase 1. The total parallel running time is 2(m+ 1)/p = (n+ 1)/p.

(b) We then compute t = x2 and then by performing a parallel prefix operation we compute t, t2, t3, tp. This requires
a total of p M’s. Since these can be performed in parallel no processor performs more than �lg p� = lg p + 1 M’s (and
the 1 is absorbed in c hereafter).

The two steps can be interleaved. Between the two steps, the computation of step (a) takes more time. Therefore
the total time for Phase 1 is (n + 1)/p.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 11

Polynomial Evaluation
Munro-Paterson method (continued) ***WILL NOT BE COVERED***
Phase 2. Let b0 = a0 + a1x, b1 = a2 + a3x . . . , bm = an−1 + anx.
Then, for t = x2, f(x) can be rewritten as follows.

f(x) = b0 + b1x
2 + b2x

4 + . . .+ bmx
2m = b0 + b1t+ b2t

2 + . . .+ bmt
m.

We note that the m-th term bmt
m = (an−1 + anx)tm = (an−1 + anx)x2m = (an−1x

n−1 + anx
n) contributes the two highest

degree terms of f(x). Then, we can rewrite f(x) as follows.

f(x) = t0(b0 + bpt
p + b2pt

2p + . . .+ bk0pt
k0p) +

t1(b1 + bp+1t
p + b2p+1t

2p + . . .+ bk1p+1t
k1p) +

. . .

tp−1(bp−1 + b2p−1t
p + b3p−1t

2p + . . .+ bkp−1p+1t
kp−1p)

= t0g0(t
p) + t1g1(tp) + . . .+ tigi(t

p) + . . .+ tp−1gp−1(t
p)

where gi(t
p)ti is the sum of all bjt

j such that j ≡ i mod p. Each gi(t
p) is a polynomial of degree ki ≤ m/p in tp.

Phase 2 then consists of the following three steps (a), (b) and (c).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 12

Polynomial Evaluation
Munro-Paterson method (continued) ***WILL NOT BE COVERED***

(a) Assign processor i to computing gi(t
p) for all 0 ≤ i ≤ p− 1. tp was computed in step (b) of Phase 1. Processor i

then evaluates polynomial gi(t
p) given by

gi(t
p) = bi + bp+i(t

p)1 + b2p+i(t
p)2 + . . .+ bkip+i(t

p)ki

The polynomial is of degree an most m/p in tp, and thus its evaluation requires m/p A’s and m/p M’s by using Horner’s
rule for a total of 2m/p = (n− 1)/p.

(b) Compute on processor i, gi(t
p)ti, in parallel, by performing one multiplication per processor noting that all the

ti’s have become available since the parallel prefix of Phase 1.

(c) The p results gi(t
p)ti of step (b) are summed up in lg p steps to evaluate f at x. Using a parallel sum no processor

performs more than �lg p� A’s for a total of lg p parallel A’s (and one more unit contribution to c).

Total running time of all steps is (n+ 1)/p+ (n− 1)/p+ lg p+ 1 + d = 2n/p+ lg p+ c. Note that d is no more than
2, and thus c is no more than 3.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 13

PRAM Algorithms
Graph Theory

Let G = (V,E) be an undirected graph. By convention |V | = n and |E| = m.
(a) Two vertices u, v are connected by an edge if (u, v) ∈ E.
(b) The degree of node u is the number of edges incident on u, ie the number of v such that (u, v) ∈ E.

A directed graph G is like an undirected one but the edges are assigned directions. We represent G by G = (N,A),
where N is the set of nodes(vertices of a directed graph) and A is the set of arcs (directed edges). If u, v are connected
by an arc from u to v, then we ought to write < u, v >∈ A. For simplicity, we will write (u, v) ∈ A as well, using the
same symbols for both a directed and undirected graph.

(a) The out-degree of a node u is the number of vertices v such that (u, v) ∈ A. The in-degree of v is the number of
vertices w such that (w, v) ∈ A.

(b) For a graph G, a path is a sequence of vertices v1, v2, . . . , vj such that (v1, v2), (v2, v3), . . . , (vj−1vj) are edges in
the undirected case or < v1, v2 >,< v2, v3 >, . . . , < vj−1vj > are arcs in the directed case.

(c) The length of the path is the number of edges/arcs on the path ie j − 1 in the example above.
For undirected graphs discussed in this handout we assume that they are simple i.e. they have no self-loops (edges

(v, v)) or multiple edges.
(i)An undirected graph G is connected if there is a path connecting every pair of vertices. (ii) If a simple connected

undirected graph has n− 1 edges it is called a tree. (iii) A collection of trees forms a forest.
A rooted directed tree T = (V,A) is a directed graph with a special node r called the root such that

• (a) ∀v ∈ V − {r} node v has out-degree 1, and r has out-degree 0, and

• (b) ∀v ∈ V − {r} there exists a unique directed path from v to r.

In other words, T is rooted if the undirected graph resulting from T is a tree. The level of a vertex/node in a tree is
the number of edges on the path to the root.

Let F be a forest consisting of a set of rooted directed trees. Forest F is represented by an array P (P stands for
“parent”) of length n such that P (i) = j if (i, j) is an arc of F . For a root i, it is P (i) = i. We examine a technique called
pointer jumping or also called pointer doubling that finds many applications in designing algorithms for linked list
and graph theory problems.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 14

PRAM Algorithms
Pointer Jumping: Introduction

Problem Given forest F and array P construct array R where R(j) is the root of the tree containing node j.
Proof. We use pointer jumping, that is we iteratively make the successor of any node i to become the successor of its
successor. This way the distance of a node from its root is halved after a single pointer jumping step. After k iterations
(pointer jumping steps) the distance, in the original graph, between i and its current successor R(i) is 2k (in terms of
number of edges in the original graph) unless R(i) is the root (in the original forest represented by P). In the latter case
the procedure is successfully completed. The PRAM algorithm Find Root implements pointer jumping.

begin Find Root (P ,R)
Input: Forest on n vertices represented by the parent array P [...].
Output: An array R[...] giving the root of the tree containing each vertex
1. ∀ i dopar
2. R(i) = P (i) ;
3. enddo
4. ∀ i dopar
5. while(R(i) �= R(R(i)))
6. R(i) = R(R(i)).
7. enddo
end Find Root

Let h be the maximum height of any tree in forest F . The running time of this algorithm on an CREW PRAM is is
T = O(lg h), P = O(n) and W = W2 = O(n lg h).
From this point on, in the remainder, we primarily use the alternative definition of work W , i.e. W2 to

indicate the actual number of operations performed by all the processors (which is not necessarily P · T);
in most of the cases to be examined it will not make a difference which definition is used.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 15

PRAM Algorithms
Pointer Jumping continued

Problem Assume that associated with each node i of forest F is a value V (i). Compute W (i), for all i, where W (i) is
the sum of the V (j) over all nodes j in the path from i to its root (a parallel prefix-like operation in a list/tree).
Proof. The PRAM algorithm works as follows.

begin Find Root (P ,R)
Input: Forest on n vertices represented by the parent array P [...].
Output: An array R[...] giving the root of the tree containing each vertex
1. ∀ i dopar
2. R(i) = P (i) ; W(i)=V(i); ⇐= : New line
3. enddo
4. ∀ i dopar
5. while(R(i) �= R(R(i)))
5a W (i) = W (i) +W (R(i)). ⇐= : New line
6. R(i) = R(R(i)).
7. enddo
end Find Root

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 16

PRAM Algorithms
Cycle Coloring - Symmetry Breaking

Definition 1 A directed cycle is a directed graph G = (V,E) such that the in-degree and out-degree of every node is
one. Then, for every u, v ∈ V there is a directed path from u to v (and from v to u as well). A k-coloring of G is a
mapping c : V → {0, . . . , k − 1} such that c(i) �= c(j), ∀i �= j and (i, j) ∈ E.

We are interested in 3-colorings of directed cycles. In the sequential case, this problem is easy to solve. Color vertices
of the cycle alternately with two colors 0 and 1 and at the end, a third color may be required for the last node of the
cycle, if the first and the node before the last are colored differently. In a parallel setting this problem looks difficult to
parallelize because it looks so symmetric!

All vertices look alike. In order to solve this problem in parallel we represent the graph by defining V = {0, . . . , n−1}
and an array S, the successor array, so that S(i) = j if (i, j) ∈ E. A predecessor array can be easily derived from property
P (S(i)) = i. For a number i let i = in−1 . . . i1i0 be its binary representation. Then ik is the k-th lsb (least significant
bit) of i. A wrapper function (initialization function for all coloring algorithms) is Color0 below.

0 3 Array S Cycle

1 0 2->1->0->3->4->5->7->6-|

2 1 ^ |

3 4 |______________________|

4 5

5 7

6 2

7 6 Figure 1.

begin Color0 (P ,S,c,n)
Input: A circular linked-list (ring) of n keys and S(.)
Output: Coloring c of n colors
1. ∀0 ≤ i < n dopar
2. C(i)=i;
3. if S(i) �=NULL P (S(i)) = i;
3. Color1 (P, S, c);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 17

PRAM Algorithms
Symmetry Breaking: A first approximation

begin Color1 (P ,S,c)
Input: Coloring c with r colors
Output: Coloring c with 2 lg r colors
1. ∀ 0 ≤ i < n dopar
2. Let k be the lsb position that c(i) and c(S(i)) differ;
3. Set nc(i) = 2k + (k-th lsb of c(i); i.e. the pair (k, k-th lsb of c(i));
4. Set c(i) = nc(i).
end Color1

Claim 1. After a single call to Color1 a (valid) coloring is derived from a previously (valid) coloring.
Proof. Before the call to Color1 adjacent vertices are colored differently by a coloring say coloring C1. Let us assume
for the sake of contradiction that an application of Color1 results in a coloring C2 that fails to color properly two vertices
i, j, i.e nc(i) = nc(j) for (i, j) ∈ E. These colors were obtained after an application of step 3, i.e. nc(i) = 2k+ c(i)|k and
nc(j) = 2l + c(j)|l. Since nc(i) = nc(j) we must have that k = l and moreover c(i)|k = c(j)|k, i.e. the previous colors
of i and j (in C1) agreed in the k-th lsb. This contradicts the assumption that k is the first lsb position where c(i) and
c(j) differ under C1. ✷

A question might arise in how to do the computation of step 3 of the algorithm. This would require a few computa-
tional operations. Consider A = i− S(i), B = A− 1, and A⊕B (⊕ = exclusive OR) to computer k.
A has zeroes in lsb positions with 1 in position k (where i and S(i) differ). B = A− 1 has 0 in position k and 1’s in

lesser lsb positions. A⊕ B can provide k + 1 in unary representation.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 18

PRAM Algorithms
Symmetry Breaking: A second approximation

What Claim 1 tells us is that starting with an n coloring of a cycle we can get in one parallel step an 2(lgn− 1) + 2
coloring. This is because n colors can increase nc(i) in line 3 into 2(�lg n� − 1) + 1 and thus the number of colors taking
values [0..2�lg n� − 1] is 2�lg n�.

Let lg(1) n = lg n, and let lg(i) n = lg lg(i−1) n. Then, lg∗ n is the minimum i such that lg(i) n ≤ 2.
If we repeat Color 1 about O(lg∗ n) times starting from an n coloring, we first get a O(lgn) coloring, then an

O(lg lg n) coloring and so on. After O(lg∗ n) time steps and iteration of the basic coloring algorithm we end up say with
a 3-bit coloring i.e. an 8-coloring. Can we get less? One more iteration turns this 8-coloring into a 2 ∗ (3− 1) + 1 + 1 = 6
coloring. This is Color2. Having had a 6-coloring can we go further down? Color3 achieves a 3-coloring by perturbing
a 6-coloring.

begin Color2 (P ,S,c)
1. ∀ 0 ≤ i < n dopar c(i) = i;
2. repeat
3. Color1 (P ,S,c) ;
4. until at most 6 colors are used in c.
end Color2

Claim 2. Algorithm Color2 6-colors a directed cycle.
Proof. Algorithm Color2 initially colors the vertices with n colors using c bits, i.e 2c−1 ≤ n < 2c. After the first
iteration, �lg c� + 1 bits are only used (colors 0, . . . , 2c− 1 are used). Let us define lg(1)(x) = lg x, lg(2)(x) = lglgx and
in general lg(i)(x) = lg (lg(i−1)(x)). We then define lg∗(x) = min{i : lg(i)(x) ≤ 1}. After the first iteration of Loop 2-4 an
O(lgn)-coloring is derived. After O(lg∗(n)) iterations a 6-coloring is derived. The complexity of the algorithm is thus
T = O(lg∗(n)) and W = O(n lg∗(n)).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 19

PRAM Algorithms
Symmetry Breaking: A third approximation

A question arises whether a 3-coloring is possible. As soon as a 6-coloring is obtained, a 3-coloring can be derived by
perturbing the 6-coloring as in step 3 of Color3 below that colors the vertices of a directed cycles with 3 colors.

begin Color3 (P ,S,c)
1. Color2 (P ,S,c);
2. do for each 3 ≤ i ≤ 5 ;
3. if a vertex is colored i recolor it with the smallest

possible color from {0, 1, 2};
end Color3

Step 3 is realized in O(1) parallel steps, loop 2 is repeated 3 times (once for each of the 3,4,5 colors) and Color3

has the same asymptotic time complexity as Color2.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 20

PRAM Algorithms
Symmetry Breaking: A fourth approximation

Algorithms Color3 or Color2 are not work-efficient because of the repeated calls to Color1. Color4 is work-
efficient; it uses the integer sorting algorithm we introduced earlier that is work efficient and requires only a single call
to Color1. By grouping nodes (as a byproduct of integer sorting in step 3) according to their color, in steps 4-8 only
nodes of a certain color are active at a time and the processors assigned to these nodes. Therefore the work performed
by Color4 can be reduced to W2 = Θ(n) even though T (n) = Θ(lg n) and W = O(n lgn).

begin Color4 (P ,S,c)
1. ∀ 0 ≤ i < n dopar c(i) = i;
2. Color1 (P ,S,c) ;
3. Sort vertices with respect to c(i);
4. for (j = 3; j ≤ �lg n�; j + +)
5 begin
6. ∀ 0 ≤ i < n with c(i) = j dopar
8. Color i with the smallest color in {0, 1, 2} that is

different from the colors of its two neighbors
end Color4

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 21

PRAM Algorithms
List Ranking: Introduction

Consider a linked list L of n nodes whose order is specified by the use of a successor array (S(i) is the successor of i
in the linked list, 0 ≤ i < n). If t is the tail of the list, S(t) = NULL. The problem of list-ranking is to determine the
distance/rank V (i) of each node i from the tail of the list. If S(i) == NULL, then V (i) = 0, otherwise V (i) = V (S(i))+1.

The sequential complexity of list ranking is linear in n and the sequential problem is a prefix-like problem that can
be solved for example as follows.

• Find for every element i, its predecessor P (i), in the list. One can find the predecessor of every i as follows:
if S(i) != NULL then P(S(i))=i.

• Trace the list backwards from tail to the head of the list and compute V (i) for every i.

The sequential complexity with P = 1 is T = W = W2 = O(n).
Parallel list ranking has many applications in parallel graph theory in particular.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 22

PRAM Algorithms
List Ranking: First Algorithm

Algorithm List1a uses pointer jumping/doubling. One can improve List1a by List1

begin List1a (S)
Input: S(.) matrix
Output: V (i) is rank or distance from tail of node i;
1. ∀0 ≤ i < n do in parallel
2. if (S(i) �= NULL) V (i) = 1;
3. else V (i) = 0;
4. ∀0 ≤ i < n do in parallel
5 B(i) = S(i);
6. // left empty
7. while (B(i) �= NULL ∧B(B(i)) �= NULL) do
8. V (i) = V (i) + V (B(i));
9. B(i) = B(B(i));
end List1a

The time complexity of List1a on an EREW PRAM is T = O(lgn) and W = O(n lgn). The while loop can be
removed as follows.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 23

PRAM Algorithms
List Ranking: First Algorithm fine-tuned

begin List1 (S)
Input: S(.) matrix
Output: V (i) is rank or distance from tail of node i;
1. ∀0 ≤ i < n do in parallel
2. if (S(i) �= NULL) V (i) = 1;
3. else V (i) = 0;
4. ∀0 ≤ i < n do in parallel
5 B(i) = S(i);
6. ∀0 ≤ i < n do in parallel
7. for k = 1 to lgn do
8. V (i) = V (i) + V (B(i));
9. B(i) = B(B(i));
end List1

Claim. Upon completion of List1, V (i) has the rank of vertex i.
Proof. After iteration k, the following inveriants apply: (a) distance, i.e. number of edges between i and S(i), is

V (i) (ignoring as edge the NULL pointer), and (b) as long as S(i) �= NULL, V (i) = 2k. Therefore after �lg n� iterations
(to be more accurate) List1 computes the correct distance information. ✷.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 24

PRAM Algorithms
List Ranking: Improving upon List1

In the remainder we will show how we can reduce the work performed in list-ranking to linear; the corresponding
running time will be ω(lgn). We can reduce running time to Θ(lg n) by a more elaborate algorithms and still maintain
the linear work bound.

The idea behind the approach we will follow is easy: (a) do something elaborate but for few iterations. Few iterations
means, that we will reduced the list ranking problems of ranking n elements into one of ranking n/ lgn of them. (b) Use
the non-optimal List1 algorithm to rank the n/ lgn elements, and then (c) in O(n) work time reduce the rank of each
one of the original n elements from the ranks of the n/ lgn elements.

Step (a) will use Color4. Step (b) uses List1 with P = n/ lgn, T = O(lgn), and thus W = W2 = O(n). The
reconstruction of step3 will require, O(lgn) time and O(n) work as a total.

We provide more details below. For the sake of an example, consider the very simple case where S(i) = i + 1, and
S(n−1) = NULL. It is obvious now how to separate the odd-indexed from the even-indexed elements of the list in O(1)
time. If we manage to somehow rank the odd-indexed elements which are n/2 in number, then ranking the even-indexed
elements is an O(1) operation: for an even k, V (k) = V (S(k)) + 1, and V (S(k)) is the rank of an odd-indexed element
whose rank was somehow computed. In practice however we cannot have such a nice even split.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 25

PRAM Algorithms
List Ranking: Preliminaries for List2

The key to the list ranking algorithm List2 (L) that we will present are the following operations described in the
previous page

• to find a large enough subset T of the nodes which contains at least a constant fraction of the elements of the list,
but no two successive elements of input linked list L.

• Every element of T is then removed from L; if t is such an element we can do that by performing an S(P (t)) = S(t)
in parallel for every t ∈ T .

• the remainder L − T is compacted with array S storing the S(.) pointers residing into a smaller array M . The
compaction operations uses parallel prefix (a homework problem).

• Recursively list-rank M .

• Use the M ranking to rank T then, thus ranking all elements of L. This is possible since elements of T are not
successive in L, thus for t ∈ T we know that S(t) �∈ T .

We give below an outline of the work-optimal list-ranking algorithm in the form of the summarized List2a.

begin List3 (L,S,P ,V)
Input: Linked list L, with S(.), P (.) successor/predecessor arrays
Output: V (i) is rank or distance from tail of node i;
1. Run Algorithm List2 outlined above until problem;

size reduced to n/ lg n. // List2 code on page after next
2. Run List1 on the output;
end List3

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 26

PRAM Algorithms
List Ranking: Analyzing List2a

The running time of List3 can be summarized by the following recurrence

T (n) = T (dn) +O(lgn)

where b is a constant less than one. The solution to the recurrence is O(lg2 n) if base case is T (1) = 1. dn is the
size of the linked list remaining after the compaction. If however, we stop the algorithm, as we do, at T (n/ lgn), then
T (n) = O(lgn lg lg n). For work the corresponding recurrence is

W2(n) = W2(dn) + Θ(n)

which gives W2(n) = Θ(n).

We provide a helpful definition before we detail the steps of List3 and thus form List2.
Definition. A set T which is a subset of a linked-list L is called a b-ruling set of L, 0 < b ≤ 1/2, if and only if the

following two conditions apply

1. If an element t is not in T , then at least one of its b successors is in T ; for example for a 2-ruling set S(t) or
S(S(t)) must be in T , if t is not in T .

2. If element t is in T , then S(t) is not in T .

Thus finding T is equivalent to finding a ruling set. Finding T will be equivalent in filling array T such that T (i) = 1
indicates i is in T and T (i) = 0 indicates that i is not in T . Property 1 is equivalent to saying that any b+ 1 successive
elements of L contain at least one element in T .

We now make a connection between the ring-coloring algorithms and 2-ruling sets. If the nodes of a ring are 3-colored,
then a 2-ruling set can be established by the nodes of a single color. A 2-ruling set exists of size of at least n/3.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 27

PRAM Algorithms
List Ranking: List2

begin List2 (L,S,P ,V ,n)
Input: Linked list L, with S(.), P (.) successor/predecessor arrays
Output: V (i) is rank or distance from tail of node i;
1. if n == 1 return;
2. T=Ruling Set (b, n, L, S, P, V);
3. ∀ 0 ≤ i < n and i ∈ T dopar
4. V(P(i))=V(P(i))+V(i);
5. S(P(i))=S(i);
6. enddo ;
7. M=Compact (L− T, T, L, P, S, V, n); //Compact L into M
8. List2(M,S, P, V,m); // m =| L− T |
9. ∀ 0 ≤ i < n and i ∈ T dopar
10. V (i) = V (i) + V (S(i));
end List2

An example explains the steps

1 1 1 1 1 1 1 1 1 1 0

L o-->o-->o-->o-->o-->o-->o-->o-->o-->o-->o

* * * * : to become T

2 2 1 2 2 1 0

L-T o------>o------>o-->o------>o------>o-->o

recur

10 8 6 5 3 1 0

L-T o------>o------>o-->o------>o------>o-->o

retrieve L

10 9 8 7 6 5 4 3 2 1 0

L o-->o-->o-->o-->o-->o-->o-->o-->o-->o-->o

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 28

PRAM Algorithms
List Ranking: Ruling Set

Task: Starting with a linked list L and its successor array S find a 2-ruling set T .

begin Ruling Set (b,n,L,S,P ,V)
Input: Linked list L in the form of successor S(.) matrix
Output: T () is a 2-ruling set indicator array of L; if T (i) = 1, then i ∈ T .
1. ∀0 ≤ i < n do in parallel
2. P (S(i)) = i if S(i) �= NULL.
3. c(i) = i;
4. Color1 (P ,S,c); // One iteration of Color1; c[i] ∈ [0, 2 lgn− 1].
5. ∀0 ≤ i < n do in parallel
6. T(i) =1;
7. for k = 0 to 2 lgn− 1 do
8. ∀0 ≤ i < nwithc(i) = k do in parallel
9. if T (P (i)) == T (S(i)) == 1
10. then T(i) = 0;
11. endfor
end Task1

Claim. Set T is a 2-ruling set.
Proof. An element i with c(i) is selected to be in T at iteration c(i). S(i) and P (i) are of different colors from i and

thus not looked at this iteration. If i is selected in T , then S(i) will not be selected because of step 9; so won’t be P (i).
If element i was not selected in T , then P (i) or S(i) must be; otherwise if both P (i) and S(i) are not selected, Task1

should select i. ✷. Steps 1-4 take T = O(1) and W = O(n). Steps 5-6 have the same bounds. Number of iterations is
O(lgn) and so is T = O(lgn). W2 = O(n). ✷.

As a conclusion,
Thm. List3 has T = O(lgn lglgn), P = n/ lg n, and W = Θ(n).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 29

