
Subject 5
Fall 2004

Architecture Independent Parallel Modeling

The Bulk-Synchronous Parallel (BSP) model, and

The LogP model

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.

Required Reading. L.G.Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103-111, August 1990, accessible through the Course Web-page.

Recommended Reading. Culler, Karp, Patterson et al. LogP: Towards a Realistic model of parallel computation.
Proceedings of the 4th ACM SIGPLAN Symposium on Principles and practice of parallel programming, San Diego, CA,
USA. Pages 1-12. 1993.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 1



BSP Model
Motivation

Since the introduction and adaptation of the von-Neumann model for sequential computing, the effects of computer
revolution on society have been pretty significant. A general purpose computer performs well on computer programs
written on a variety of standardized programming languages like C, Fortran, Cobol or Lisp and the same computer
program can be easily ported on other platforms.

It has always been realized that parallel computers will eventually supersede sequential machines. This has yet
to happen despite advances in computer technology and the fact that chip technology seems to have reached physical
limitations; nowadays, fast machines are not much faster than the slowest ones which are as fast (or perhaps faster)
as a supercomputer of twenty years ago. Small incremental improvements that may lead to stagnation of sequential
computing seem inevitable. Despite these shortcomings of sequential computing, there has been no significant spread
of use of parallel computers and few companies have realized that their future may rely on parallel platforms. The
main reason for this has been that parallel computer platforms are built in such a way that are too hardware specific,
programs written for them exhibit poor performance unless the programmer fine-tunes its code to take into consideration
features of the particular architecture. Not only the code is non-portable but scalability comes at a high cost as well.
On the other hand parallel algorithms designed and analyzed by the theorists work on parallel models that usually
ignore communication and/or synchronization issues, like the PRAM and its variants, and work only under unlimited
parallelism assumptions.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 2



BSP Model
Parallel Computing Failures

One of the earliest attempts to model a parallel computer has been the Parallel Random Access Machine (PRAM)
which is one of the most widely studied abstract parallel models. A PRAM consists of a collection of processors which
work synchronously and which communicate with a global shared random access memory which can access in unit time.
There are many different types of PRAMs which are distinguished from the way they access the shared memory (eg
CRCW, EREW PRAMs). Numerous parallel algorithms have been developed for this parallel computer model.

More realistic models of parallel computing view a parallel computer as a collection of sequential processors, each one
having its own local memory (distributed-memory model). The processors are interconnected by a network which allows
them to communicate by sending and receiving messages. Constraints such as the maximum number of pins on a chip,
or the maximum width of a data bus, limit the capacity of a processor to communicate with any other processor. It is
only possible for a single processor to communicate directly with few others, in most cases those physically close to it.
If a message needs to be sent to a distant processor it is relayed through a number of intermediate processors.

As it has already been mentioned, the parallel machines built in the 1980s and early 90s failed to garner general
acceptance mainly because of the lack of a stable, unified and bridging parallel programming model. These deficiencies
made programming of such machines difficult (cf. assembly vs higher level programming languages), time consuming,
non-portable and architecture-specific. Recently, the introduction of realistic parallel computer models such as the
Bulk-Synchronous Parallel (BSP) model of computation by L.G. Valiant comes to address these limitations of paral-
lel computing. Our hope is that further architectural convergences will occur with the goal of writing software that
will be portable and run with high performance on a variety of architectures from networks/clusters of workstations
(NOW/COW) to parallel supercomputers.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 3



BSP Model
The Bulk-Synchronous Parallel model

The Bulk-Synchronous Parallel (BSP) model of computation has been proposed by L.G. Valiant, as a unified frame-
work for the design, analysis and programming of general purpose parallel computing systems. It allows the design of
algorithms that are both scalable and portable.

In a BSP program, processors jointly advance through its various phases called supersteps with the required com-
putations and remote communication occurring between them; at the end of a superstep processors check themselves in
order to proceed to the following superstep.

The BSP model consists of three parts:

(1) a collection of processor-memory components,

(2) a communication network that can deliver messages point-to-point among the components, and

(3) a facility for global synchronization, in barrier style, of all or a subset of the components.

A time step (as opposed to a CPU instruction or cycle) would refer to the time needed to perform a local computation
(such as a fetch from memory and a floating-point operation followed by a store operation).

It should be noted that, although the model stresses global barrier-style synchronization, pairs of processing units may
synchronize pairwise by sending messages to and from an agreed memory location. However, such message exchanges
should respect the superstep rules.

As mentioned, computation on the BSP model proceeds in a succession of supersteps. A superstep may be thought
of as a segment of computation during which each processor performs a given task using data already available there
locally before the start of the superstep. Such a task may include (i) local computations, (ii) message transmissions, and
(iii) message receipts.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 4



BSP Model
Hardware Abstraction: Parameters (p,L,g)

The tuple (p, L, g) characterizes the behavior and performance of a BSP computer.

• p is the number of components available.

• L is the minimum time between successive synchronization operations,

• g is the ratio of the total throughput of the whole system (in a steady state, i.e. in a state of continu-
ous message usage) in terms of basic computational operations, to the throughput of the communication
network in terms of words of information delivered.

• A lower bound on the value of L is the time for a remote memory operation/message dispatch to become
effective and is thus dependent on say, the diameter of the interconnection network.

• The time for barrier synchronization also poses a lower bound on the effective value of L.

• An upper bound on L is application specific and expressed in terms of problem size n as well.

• The value of g is measured while the network is in a steady state, i.e. latency issues become insignificant
in the measurement of communication time; parameter L is large enough for the theoretical bound on g to
be realizable.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 5



BSP Model
How to find parameter g

The theoretical definition of g relates to the routing of h-relations; when each processor sends or receives at most h
messages (of the same size) an h-relation is realized and the cost assigned to this communication is gh provided that
h ≥ h0, where h0 is a machine dependent parameter.

Otherwise the cost of communication is L.
This way latency issues associated with small message size/messages are taken into consideration.
In practice, and in various libraries implementing the BSP model message requests issued/accepted by processors are

of variable size. The h of an h-relation relates then to the total size of communicated data and g is expressed in terms of
basic computational operations (sometimes, floating-point operations) or absolute time (seconds) per data-unit (a byte
or word of information).

In practice, the parameter L of the BSP model not only hides the cost of communication when each processor sends
or receives a small number of messages but also the cost of communication where each processor may send or receive a
large number of messages but each one is of small size.

For any BSP computer, the values of L and g are likely to be a non-decreasing functions of p.
The use of L and g to characterize the communication and synchronization performance of a BSP computer is

important because such issues are abstracted in only two parameters thus allowing considerations to be moved from a
local level to a global one.

For the sake of an example, the values for L and g for some abstract network topologies are as follows. A ring has
L = O(p), g = O(p), a 2d-array (mesh) L = O(

√
p), g = O(

√
p), a butterfly L = O(log p), g = O(log p), and a hypercube

L = O(log p), g = O(1). For the case of a hypercube, as g = O(1) the cost of routing a permutation, i.e. an one-relation
is not 1 · g but L. Thus h0 for the hypercube is such that h0 = Θ(log p).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 6



BSP Model
Cost Modeling under the BSP model

If in a superstep

(1) an h-relation is realized, and

(2) x computational operations are performed,

then, the cost of the superstep is given by the following formula.

(1) max {L, x + gh}.

Alternative costs are max {L, x, gh} and L + x + gh.
The maximum size of a superstep depends on the problem in hand. Under the BSP programming paradigm the

objective is to maximize the size of supersteps, decrease their number and increase processor utilization.
The description of BSP programs can be simplified by separating computation and communication and assuming

that each superstep contains either local computations or communication.

Machine Mflop (≥) p L (≥) in flops/µsec g in flops/word/µsec/word
SGI Power Challenge 80 4 2000/26 9.3/0.13
MultiProc Sun 10 4 120/12 4.1/0.41
IBM SP2 30 4 3600/140 8.0/0.30
Digital Alpha Farm 10 4 47000/4664 81/8.10
PCs in Cluster 200 4 180000/900 65/0.325

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 7



BSP Model
Optimality of Algorithms under the BSP model

Two modes of programming on the BSP model were envisaged: automatic mode where programs are written,
say PRAM style, in a high level language that hides memory distribution from the user and direct mode where the
programmer retains control of memory allocation. In the direct mode of programming small multiplicative constant
factors in runtime are important. It can be shown that the automatic mode achieves optimality within constant factors
by simulating say PRAM algorithms on the BSP.

The term slack in the context of algorithm design refers to the ratio of the problem size over the processor number
of the BSP machine. The question is whether the direct mode can be beneficial in circumstances where:

• small multiplicative constant factors in runtime are important,

• where smaller problem instances can be run more efficiently in direct mode (less slack is required) than in
automatic mode,

• where the available machine has high g (automatic mode requires g to be constant), and

• L is high for direct but not for automatic mode for the problem instance in hand.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 8



BSP Model
One-Optimality under the BSP model

Although it is difficult to measure performance to high accuracy, since the operations that are counted have to be
carefully defined, we can make such measures meaningful by measuring ratios between runtimes on pairs of models that
have the same set of local instructions.

The performance of a BSP algorithm P is thus described in three parts.

• A sequential algorithm S with which we are comparing P is first specified.

• The model of computation used for both algorithms is then defined and the basic computational operations
that will be counted in both P and S are also described and the charging policy is made explicit.

• Second, two ratios π and µ are specified.

• π, is the ratio between the computation time CP , of the BSP algorithm, over the time CS of the
comparing sequential algorithm divided by p, i.e., π = pCP/CS.

• µ, is the ratio between the communication time MP required by the communication supersteps of
the BSP algorithm and the computation time of S divided by p, i.e., µ = pMP /CS.

• When communication time is described, it is necessary that the amount of information that can be
conveyed in a single message be made explicit.

• Finally, conditions on n, p, L and g are specified that are sufficient for the algorithm to be plausible
and the claimed bounds on π and µ to be valid.

Corollaries describe sufficient conditions for the most interesting optimality criteria, such as c-optimality, i.e., π =
c + o(1) and µ = o(1). All asymptotic bounds refer to the problem size as n → ∞.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 9



BSP Model
Software Support under the BSP model

The BSP model, unlike other models of parallel computation, is not just an architectural-oriented theoretical model;
it can also serve as a paradigm for programming parallel computers.

(1) The fundamental concept introduced by the BSP model is the notion of the superstep, and that all remote
memory accesses occur between supersteps as part of a global operation among the processors the results
of these accesses become effective at the end of the current superstep.

Although it may have been apparent why some consider the BSP as a satisfactory unifying and bridging model
for parallel computation, one may ask the question of how successful it has been as a practical model and what level
of software support there is for BSP. The BSP model has been realized as a library of functions for process creation
and destruction, remote memory access and message passing, and global, barrier-style, synchronization The abstraction
offered by the BSP model is such that any library offering such facilities can be used for programming according to
the BSP programming paradigm. The Oxford BSP Library that supports Direct Remote Memory Access (DRMA) for
parallel programs, the Green BSP library that supports message passing and the Oxford BSP Toolset that supports
both DRMA and message passing are some of the libraries that specifically allow programming according to the BSP
paradigm. Just as the von-Neumann model encompasses various programming language paradigms eg. functional, logic
programming, the BSP does not dictate a particular mode of programming as well. All three libraries present a particular
set of choices to the user. Some of the elements of this set are:

• Data Parallel Program Structure. It allows large-scale parallelism by splitting data and concurrently
working on the individual pieces.

• SPMD programs. A Single Program Multiple Data programming style is used as perhaps implied by
the structure of supersteps.

• Direct mode of global memory management. The programmer has direct access to memory allocation
and determines how data are partitioned.

• Static processor allocation. The number of participating processors is determined in the beginning of
the execution and cannot vary during the computation dynamically.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 10



BSP Model
Performance vs Running Time Prediction

Whereas performance of a particular BSP algorithm can be reliably predicted, one should not expect the BSP cost
model to accurately predict the running time and behavior of a particular implementation. Accurate prediction is difficult
even for sequential algorithms due to the existence of varying memory hierarchies on real machines; adding parallelism
and the side-effects of communication introduces two more difficulties.

There have been various attempts to more accurately predict parallel performance by extending the BSP model. The
E-BSP model is one such approach and is more explicit and specific about the communication network of a particular
hardware platform, and the patterns of communication involved in routing. The attractiveness of the BSP cost model
is its simplicity and generality; introducing more parameters to describe the performance of a communication network
under various patterns of communication increases the complexity of describing the performance of all but the simplest
algorithms with perhaps only small gains in prediction accuracy. Such an approach may also be problematic as it is the
main reason parallel computing failed in the past: the attempt to realize for a particular algorithm those patterns of
communication that are optimal for a given platform (and communication network), whereas they may lead in significant
degradation in performance, if utilized in other platforms (portability vs. efficiency). Another variant of the BSP model
introduces one more parameter, B, related to message size, and associates g with that message size, enforcing this way
coarse-grained communication of messages of size equal to B. The original BSP model does not elaborate in detail
between fine-grained and coarse-grained communication. If small h-relations are communicated (where “small” is to
mean less than some parameter h0, usually assumed to be equal to L/g) a cost L is assigned to such a communication;
no mention of message size is inferred. Presumably, for BSP to be an abstract and general-purpose model, details of
how communication is performed efficiently are left to the BSP library implementor. In practice, the generality of the
BSP model works well if one interprets the cost model so as to absorb in L not only “small” h-relations but also “small”
messages; therefore, the value of B is reflected in the choice of L and g (as is, h0 as well) without the need of introducing
an extra parameter.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 11



The LogP Model
Introduction

The LogP model (Culler, Karp, Patterson, Sahay, Schauser, Santos, Subramonian and von Eicken, 1993) has also
been suggested as a realistic model for the design of parallel algorithms that work predictably well on a wide range of
parallel machines. It models a parallel machine as a distributed memory multiprocessor in which processors communicate
by point-to-point messages. It is an asynchronous model that does not enforce synchronization of the processors, as the
BSP model does. If processor synchronization is required in a program, the programmer must provide it. A parallel
machine under the LogP model can be characterized by the following tuple (p, L, g, o) of parameters. Each parameter is
explained in more detail below (note that LogP may use the same notation for some of its parameters as the BSP model
but these may have different meaning).

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 12



The LogP Model
Parameters

p: The number of processor/memory components (as in the BSP model).

L: an upper bound on the latency or delay of the machine, incurred while communicating a message of very small
size (one or a small number of words) from a source to a destination component. In other words, such messages
are delivered by the router within time L.

o: the overhead, defined as the length of time that a processor is engaged in the transmission or receipt of each
message (i.e the time required for the submission of a message to the router or acquisition of a received message
from it).

g: the gap, defined as the minimum time interval between consecutive message transmissions or consecutive message
receptions at a processor. 1/g gives the bandwidth of the system per processor.

In addition, the communication capacity of the system is limited. This means that at most L/g messages can originate
or be destined to any processor at any time. If a processor needs to transmit a message that would violate this condition,
it stalls until this transmission is possible (i.e. there is some available capacity). Writing under the LogP model into a
remote memory location takes time L + 2o.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 13



The LogP Model
BSP vs LogP

Although BSP and LogP are similarly powered models (one can simulate a BSP computation on the LogP and the
other way around), the BSP model seems to be more usable as a theoretical model for the design and analysis of parallel
algorithms and as a programming paradigm for writing parallel software that is scalable and transportable (portable and
efficient among a variety of hardware platforms).

The importance of BSP is that it introduces a new abstraction for communication in terms of the BSP parameters L
and g so that considerations in programming parallel machines move from a local (detailed) level to a global (abstract)
one. The two parameters abstract all communication and synchronization issues related to parallel computing and allow
the design of software (a unifying property) that work on any machine independent of the underlying architecture (eg.
shared memory vs distributed memory).

Under the BSP model, an algorithm designer describes the performance of a parallel algorithm in terms of p, L, g and
problem size n. A collection of algorithms that solves a given problem can then be formed with varying performance
characteristics (for example, one algorithm may be suitable for machines with small L, another for machines with small
g or n, and so on). For a given machine whose BSP parameters are known or are measurable, that algorithm is chosen
from the collection whose performance (computation and communication) on the particular machine is the best available.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 14


