Subject 7
Fall 2004

BSP ALGORITHM DESIGN: INTRODUCTION
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BSP Algorithms
Traditional vs Architecture Independent Parallel Algorithm Design

As an example of how traditional PRAM algorithm design differs from architecture independent parallel algorithm
design, example algorithm for broadcasting in a parallel machine is introduced.

Problem: In a parallel machine with p processors numbered 0,...,p — 1, one of them, say processor 0, holds a
one-word message The problem of broadcasting involves the dissemination of this message to the local memory of the
remaining p — 1 processors.

The performance of a well-known exclusive PRAM algorithm for broadcasting is analyzed below in two ways under
the assumption that no concurrent operations are allowed. One follows the traditional (PRAM) analysis that minimizes
parallel running time. The other takes into consideration the issues of communication and synchronization as viewed
under the BSP model. This leads to a modification of the PRAM-based algorithm to derive an architecture independent
algorithm for broadcasting whose performance is consistent with observations of broadcasting operations on real parallel
machines.
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BSP Algorithms
Broadcasting: PRAM Algorithm 1

Algorithm. Without loss of generality let us assume that p is a power of two. The message is broadcast in lg p rounds of
communication by binary replication. In round ¢ = 1,...,1lg p, each processor j with index j < 2=! sends the message it
currently holds to processor j + 2°~! (on a shared memory system, this may mean copying information into a cell read
by this processor). The number of processors with the message at the end of round 4 is thus 2°.

Analysis of Algorithm. Under the PRAM model the algorithm requires Ig p communication rounds and so many parallel
steps to complete. This cost, however, ignores synchronization which is for free, as PRAM processors work synchronously.
It also ignores communication, as in the PRAM the cost of accessing the shared memory is as small as the cost of accessing
local registers of the PRAM.

Under the BSP cost model each communication round is assigned a cost of max{L,g-1} as each processor in each
round sends or receives at most one message containing the one-word message. The BSP cost of the algorithm is
lgp - max{L, g -1}, as there are lgp rounds of communication. As the communicated information by any processors is
small in size, it is likely that latency issues prevail in the transmission time (ie bandwidth based cost g -1 is insignificant
compared to the latency/synchronization reflecting term L).

In high latency machines the dominant term would be Llgp rather than g lgp. Even though each communication
round would last for at least L time units, only a small fraction g of it is used for actual communication. The remainder
is wasted. It makes then sense to increase communication round utilization so that each processor sends the one-word
message to as many processors as it can accommodate within a round.
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BSP Algorithms
Broadcasting: Algorithm 2

Input: p processors numbered 0...p — 1. Processor 0 holds a message of length equal to one word.

Output: The problem of broadcasting involves the dissemination of this message to the remaining p — 1 processors.

Algorithm 2. In one superstep, processor 0 sends the message to be broadcast to processors 1,...,p — 1 in turn (a
“sequential”-looking algorithm).

Analysis of Algorithm 2.

The communication time of Algorithm 2 is 1 - max{L,(p — 1) - g} (in a single superstep, the message is replicated
p — 1 times by processor 0).
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BSP Algorithms
Broadcasting: Algorithm 3

Algorithm 3. Both Algorithm 1 and Algorithm 2 can be viewed as extreme cases of an Algorithm 3. The main
observation is that up to L/g words can be sent in a superstep at a cost of L. Then, It makes sense for each processor
to send L/g messages to other processors. Let k — 1 be the number of messages a processor sends to other processors
in a broadcasting step. The number of processors with the message at the end of a broadcasting superstep would be £
times larger than that in the start. We call k£ the degree of replication of the broadcast operation.

Architecture independent Algorithm 3. In each round, every processor sends the message to k — 1 other processors. In
round i = 0, 1, ..., each processor j with index j < k% sends the message to k — 1 distinct processors numbered j + k* - [,
wherel = 1,...,k—1. At the end of round i (the (i+1)-st overall round), the message is broadcast to k?-(k—1)+k* = k!
processors. The number of rounds required is the minimum integer r such that £ > p, The number of rounds necessary
for full dissemination is thus decreased to lg, p, and the total cost becomes lg, pmax{L, (k — 1)g}.

At the end of each superstep the number of processors possessing the message is k times more than that of the previous
superstep. During each superstep each processor sends the message to exactly k—1 other processors. Algorithm 3 consists
of a number of rounds between 1 (and it becomes Algorithm 2) and lgp (and it becomes Algorithm 1).

BROADCAST (0, p,k)
my_pid = bsp_pid(); mask_pid = 1;
while (mask_pid < p) {
if (my_pid < mask_pid)
for (i =1,j = mask pid;i < k;i + +, j+ = mask pid) {
target_pid = my _pid + 7;
if (target_pid < p)
bsp_put(target_pid, &M, &M, 0, sizeof (M));
}
bsp_sync();
mask_pid = mask_pid * k;

}
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BSP Algorithms
Broadcasting n > p words: Algorithm 4

Now suppose that the message to be broadcast consists of not a single word but is of size n > p. Algorithm 4 may be
a better choice than the previous algorithms as one of the processors sends or receives substantially more than n words
of information. There is a broadcasting algorithm, call it Algorithm 4, that requires only two communication rounds
and is optimal (for the communication model abstracted by L and g) in terms of the amount of information (up to a
constant) each processor sends or receives.

Algorithm 4.

Two-phase broadcasting

The idea is to split the message into p pieces, have processor 0 send piece ¢ to processor ¢ in the first round and in
the second round processor ¢ replicates the i-th piece p — 1 times by sending each copy to each of the remaining p — 1
processors (see attached figure).
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BSP Algorithms
Broadcasting n > p words: Example

Piece
0
Step O
1
Processor 0 splits message into p pieces
2
3
Step 1
Processor 0 sends piece i to processor i
Step 2
Processor i sends piece i that is local to it to
every other processor by replicating it.
Processor 0 1 2 3
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BSP Algorithms
Parallel Prefix

Fzxercise.  What can you say about parallel prefix? Analyze the BSP performance of the PRAM algorithm for
parallel prefix. Can you halve its number of supersteps yet maintain the same BSP cost?

The structure of the four algorithms described for broadcasting can also be used to derive algorithms for parallel
prefix that require similar number of supersteps (at most twice as many).

Algorithm 1 gives rise to a “sequential”-like parallel prefix algorithm. Algorithm 2 gives rise to the binary tree based
algorithm that requires 2 lgn supersteps. The corresponding PRAM algorithm, however, (that also runs on the butterfly)
requires half as many supersteps and is thus more efficient on the BSP model. Algorithm 3 gives rise to the equivalents
of 2 when the number of supersteps needs to be decreased.

We can generalize the prefix problem so that each processor instead of holding a single scalar value, holds a se-
quence/vector of scalar values n. In the case n > p, implementations following the counterparts of Algorithm 1,2 and 3
for broadcasting fail to provide optimal algorithms.

Algorithm 4 gives rise to a two-phase parallel prefix algorithm that is more efficient in architectures with large L for
large independent prefix problems n.
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BSP Algorithms
Matrix Computations

SPMD program design stipulates that processors executes a single program on different pieces of data. For matrix
related computations it makes sense to distribute a matrix evenly among the p processors of a parallel computer. Such
a distribution should also take into consideration the storage of the matrix by say the compiler so that locality issues
are also taken into consideration (filling cache lines efficiently to speedup computation). The are various ways to divide
a matrix. Some of the most common one are described below.

One way to distribute a matrix is by using block distributions. Split an array into blocks of size n/p; X n/py so that
p = p1 X py and assign the i-th block to processor i. This distribution is suitable for matrices as long as the amount of
work for different elements of the matrix is the same.

The most common block distributions are.

e column-wise (block) distribution. Split matrix into p column stripes so that n/p consecutive columns
form the i-th stripe that will be stored in processor i. This is p; = 1 and p; = p.

e row-wise (block) distribution. Split matrix into p row stripes so that n/p consecutive rows form the i-th
stripe that will be stored in processor ¢. This is p; = p and py = 1.

e block or square distribution. This is the case p; = p; = /p, i.e. the blocks are of size n/\/p x n/,/p and
store block 7 to processor 1.

There are certain cases (eg. LU decomposition, Cholesky factorization), where the amount of work differs for different
elements of a matrix. For these cases block distributions are not suitable.
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BSP Algorithms
Block distributions

rocessor index
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BSP Algorithms
Matrix Distributions : Block cyclic

In block cyclic distributions the rows (similarly for columns) are split into ¢ groups of n/q consecutive rows per group,

where potentially ¢ > p, and the i-th group is assigned to a processor in a cyclic fashion.

e column-cyclic distribution. This is an one-dimensional cyclic distribution. Split matrix into ¢ column
stripes so that n/q consecutive columns form the i-th stripe that will be stored in processor %p. The symbol
% is the mod (remainder of the division) operator. Usually ¢ > p. Sometimes the term wrapped-around
column distribution is used for the case where n/q =1, i.e. ¢ =n.

e row-cyclic distribution. This is an one-dimensional cyclic distribution. Split matrix into ¢ row stripes so
that n/q consecutive rows form the i-th stripe that will be stored in processor i%p. The symbol % is the
mod (remainder of the division) operator. Usually ¢ > p. Sometimes the term wrapped-around row
distribution is used for the case where n/q =1, i.e. ¢ = n.

e scattered distribution. Let p = ¢; - ¢; processors be divided into ¢; groups each group P; consisting of ¢;
processors. Particularly, P; = {j¢; +1 | 0 <1 < ¢ — 1}. Processor jg; + [ is called the [-th processor of
group P;. This way matrix element (4, j), 0 < 4,j < n, is assigned to the (i mod g;)-th processor of group
P mod ;). A scattered distribution refers to the special case ¢; = q; = /p.
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BSP Algorithms
Block cyclic distributions
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BSP Algorithms
Scattered Distribution
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BSP Algorithms
Matrix Multiplication

The BSP algorithm for matrix multiplication presented below was presented in the seminal work of Valiant. It works
for p < n?. Each processor is assigned the task of computing an n/ /P X n//p submatrix of the product A x B. The
input matrices A and B are divided into p block-submatrices, each one of dimension m x m, where m = n/,/p. We call
this distribution of the input among the processors block distribution. This way, element A(7,7), 0 <i <n,0 < j <mn,
belongs to the (j/m)x*/p+ (i/m)-th block that is subsequently assigned to the memory of the same-numbered processor.
Let A; (respectively, B;) denote the i-th block of A (respectively, B) stored in processor i. With these conventions the
algorithm can be described in Figure 1. The following Proposition describes the performance of the aforementioned
algorithm.

begin MuLT_A (C,A,Bn,p)
1. Letm=n/\p;
Each processor is also assigned a unique processor number ¢;
Let p; = gmod \/p ; p; = q//p; Cq = 0;
ap — Apitisyp 0 <1< /P
b < Bpsyprt; 0 <1< \/p;
for 0 <[ < N/l do
Cq:Cq+al X bl;
end MULT_A

Ol WD

Figure 1: Procedure MULT_A.
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BSP Algorithms
Matrix Multiplication: Alg A

Proposition 1 Algorithm MULT_A for multiplying two n X n matrices A and B stored according to the block distribution
requires, for any p < n%, computation time Cpy(n) that is given by

(2n — 1)n?

Cou(n) = max {L, ;

2

and communication time M, (n) that is given by the expression

mul\ T max L, g .
: \/]_9

One immediately realizes that algorithm MULT_A is not memory efficient since it requires more local memory per
processor — by a factor of \/p — than the required one. Algorithm MULT_B shown in Figure 2 is the memory efficient
variant of MULT_A. It is not synchronization efficient though since its number of supersteps is not constant any more;
it has been increased by a factor of \/p. The performance of algorithm MULT_B is summarized in Proposition 2.
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BSP Algorithms
Matrix Multiplication: Alg B

begin Murt_B (C,A,B,n,p)
1. Letm=n/\p;
Each processor is also assigned a unique processor number ¢;

2. Let p;=qmod \/p;p;=q/\/p;Cqi=0;
3. for0<[<,/pdo

begin
4. @ A((pitp+1) mod yp)sy/p+ps’
. b = B((p;+p;+1) mod \/p)+p;+\/B
6. Cy=Cq+axb

end
end MuLT_B

Figure 2: Procedure MuLT_B.

Proposition 2 Algorithm MULT_B for multiplying two n x n matrices A and B stored according to the block distribution
requires, for any p < n?, computation time Cru(n) that is given by

Cru(n) = /p max{L, (2711;7/21)71}

and communication time M, (n) that is given by the expression

o2n?
Mypu(n) = \/p max {L, g?}
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BSP Algorithms
Experimental Results

In order to show the efficiency of algorithm design on the BSP model we present some experimental results for
matrix multiplication on Cray T3D; additional results can be found in the author’s Web page. Algorithm MuLTT_B
is a variation of MULT_B where in order to multiply A with B, matrix A is first transposed and the loop for matrix
multiplication is changed accordingly. This way the access patterns for both A and B are the same (column - column as
opposed to row - column) thus improving locality (cache usage), and subsequently program performance.

Algorithm MurLT_B
p=1 p=4 p =16 p =64
n Time | Mfl | Time | Mfl | Time | Mfl | Time | Mfl
(sec) | rate || (sec) | rate || (sec) | rate | (sec) | rate
256 || 4.1 7.9 1.1 7.8 || 0.28 | 7.4 | 0.03 | 13.9
512 || 34.0 | 7.8 8.4 7.9 2.1 7.7 | 0.56 | 74
1024 || 289.8 | 74 | 684 | 7.8 16.9 | 7.9 4.3 7.7
2048 - - - - 136.8 | 7.8 || 33.8 | 7.9

Table 1: Execution time for MULT_B on the Cray T3D

Algorithm MurLTT_B
p=1 p=4 p =16 p =64
n Time | Mfl || Time | Mfl || Time | Mfl || Time | Mfl
(sec) | rate || (sec) | rate || (sec) | rate || (sec) | rate
256 23 | 143 058 | 144 | 0.15 | 13.7| 0.03 | 15.1
512 || 20.7 | 129 | 4.7 | 141 1.16 | 14.4 | 0.30 | 13.5
1024 || 202.7 | 10.5 || 41.7 | 12.8 94 | 141 2.3 | 143
2048 - - - - 83.5 | 12.8 | 19.0 | 14.1

Table 2: Execution time for MULTT_B on the Cray T3D
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BSP Algorithms
Matrix Multiplication: Algorithm C

Finally, we outline a matrix multiplication algorithm that is computation, communication and synchronization ef-
ficient. It fails, however, to be memory efficient, as its memory requirements are a multiplicative factor p'/3 from the
optimal. Algorithm MULTT _C is outlined in the remainder of this section.

In MuLTT_C matrices A and B (and the result C') are split into two ways into submatrices. Each matrix (A, B and
the result C) is split into p “physical” block-submatrices, as in the previous algorithms, each of size n/p'/? x n/p'/2.
A “physical” block-submatrix indicates the part of the matrix stored in a single physical (processor) location (i.e.
block-submatrix A; is stored in processor 7). At the same time, each of the three matrices is split into p*? “virtual”
block-submatrices each of size n/p*/? x n/p'/3. A “virtual” block-submatrix indicates the block geometry that will be
used in the matrix multiplication algorithm to be outlined below. The elements of a “virtual” block-submatrix may be
stored in more than one physical processors.

Whereas in the first two algorithms “physical” and “virtual” block-submatrices coincided in number and dimension,
in this communication efficient algorithm are clearly distinguished.

Let the “virtual” block-submatrices be identified as A;;, B;; and C;;. Matrix multiplication will thus require the

. / /
computation of all Cj; = ,’;lzi Cijk = Zizi A By;, where Cjj, = Aix By,
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BSP Algorithms
Algorithm C: Description

The algorithm consists of the following steps. We name the processors (i, j, k) the way we did in the matrix multi-
plication algorithm on the hypercubic networks.
Step 1. Processor (i, j, k) gets A;; and By;. Note that each of these two “virtual” block-submatrices may originate from
more than one processors. Each processor sends at most 2n?/p elements (but each one replicated p'/? times) and receives
at most 2n?/p?/3 elements. The communication cost of Step 1 is max {L, 2gn?/p*?}. Subsequently, the two submatrices
are multiplied as in the sequential case a step requiring at most max{L,2n3/p} time. Partial-submatrix Cj;; is thus
computed on processor (i, j, k). Each element of such a submatrix is a partial sum of an element ¢, of the result matrix
C.
Step 2. Each element of Cj; is transmitted from (4, j, k) to that physical processor that stores the “physical” block-
submatrix of C' whose elements will be formed as sums of the receiving elements (partial sums) of C;;;. Note that each
(1,7, k) processor may send its elements to more than one physical processors. At the completion of this step, each of
the p processors storing a block-submatrix of C' of dimension n/p'/? x n/p'/? receives at most p'/3 - n?/p such elements
(partial sums). The complex communication performed in this step requires time max {L, gn?/p?/3}.
Step 3. The received partial sums are added. p'/3 partial sums are summed to give an element of C' stored at a physical

processor, for a total of n?/p such elements (of a “physical” block-submatrix). The total computation time performed is
max { L, n?/p*/3}.

Proposition 3 Algorithm MurLT_C for multiplying two n X n matrices A and B stored according to the block distribution
requires, for any p < n%, computation time Cpy(n) that is given by

Cmul(”) S max {L, 2n3/p} -+ max {L, th/pz/?)}7

and communication time M, (n) that is given by the expression
n2

2
n
Mpu(n) = max {L, ng} + max {L, gp2/3 b
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BSP Algorithms
Algorithm C: Optimality

The optimality in communication of the algorithm is established by the following result.

Theorem 1 On a model of computation that allows the operations {+,*} only, if any processor reads s elements of A
and B and computes at most s partial sums of C, it can compute at most O(s%?) multiplicative terms for these sums.

This way, if a processor reads at most s elements of A and B it can compute at most O(s*?) multiplicative terms of
C. Combined, all p processors can compute p O(s%?) such terms which must be Q(n?). Therefore s = Q(n?/p*?3) and
thus algorithm MuLT_C is communication optimal.

How can one prove the Theorem? It suffices to show that if A has s 1’s in arbitrary posisition (all other positions are
0) and so has B, then the product C' = A x B requires at most O(s%?) non-trivial multiplications (i.e. multiplications
where both terms are non-zero). This can be proved by considering two sets of rows for A, the small ones having at
most /s ones on each such row and the large one. Call Ag the submatrix of A formed by these small rows, and A; the
submatrix consisting of the large rows having at least /s ones. We can only have at most /s rows in A;. Consider
A; x B. The results can contribute at most s3/2 non-trivial multiplications in C. The reason for that is that each row of
A; can contribute s ones when multiplied with B since B has only s ones. There are at most /s in A;, i.e. claim follows.
For Ay x B just note that each row of A, has at most /s ones. Since only s terms are computed in C, and a term
involves a row of A, that has at most /s elements, this A, x B product can only involve at most s*2 multiplications.
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