
Subject 8
Fall 2004

The Message Passing Interface

MPI and MPI-2

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 1

The Message Passing Interface
Introduction

BSP programming assumes that program conform to a bulk-synchronous paradigm, where processor occasionally syn-
chronize; all or a subset of the processors can participate in these reocurring synchronizations. BSPlib in particular, does
not fully implement the BSP model; it allows for global processor synchronization (no subset processor synchronization
is available). In addition, bulk-synchronization is achieved in BSPlib through barrier-style synchronization.

An extreme case of parallel programming is the fully-asynchronous or the loosely synchronous paradigm. In the
former all concurrent/parallel task are executed asynchronously, thus supporting MIMD programming, not just SPMD.
However in asynchronous programming race conditions may occur and reasoning about program correctness migh be
more difficult. In loosely synchronous systems task work independently as being asynchronous; however at certain points
they synchronize to perform certain tasks.

The Message-Passing Interface (MPI) is an attempt to create a standard to allow tasks executing on multiple pro-
cessors to communicate through some standardized communication primitives. It defines a standard library for message
passing that one can use to develop message-passing program using C or Fortran. The MPI standard define both the
syntax and the semantics of these functional interface to message passing. MPI comes intro a variety of flavors, freely
available such as LAM-MPI and MPIch, and also commercial versions such as Critical Software’s WMPI. It supporst
message-passing on a variety of platforms from Linux-based or Windows-based PC to supercomputer and multiprocessor
systems.

After the introduction of MPI whose functionality includes a set of 125 functions, a revision of the standard took
place that added C++ support, external memory accessibility and also Remote Memory Access (similar to BSP’s put
and get capability) to the standard. The resulting standard is known as MPI-2 and has grown to almost 241 functions.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 2

The Message Passing Interface
A minimum set

A minimum set of MPI functions is described below. MPI functions use the prefix MPI and after the prefix the
remaining keyword start with a capital letter. One case observe some similarities between BSPlib and MPI.

A brief explation of the primitives can be found on the textbook (beginning page 242). A more elaborate presentation
is available in the optional book.

Function Class Standard Function Operation
Initialization MPI MPI Init Start of SPMD code
and Termination MPI MPI Finalize End of SPMD code
Abnormal Stop MPI MPI Abort One process halts all
Process Control MPI MPI Comm size Number of processes

MPI MPI Comm rank Identifier of Calling Process
MPI MPI Wtime Local (wall-clock) time

Synchronization MPI MPI Barrier Global Synchronization
DRMA MPI-2 MPI Win create Make memory info global

MPI-2 MPI Win free Undo global effect
MPI-2 MPI Put Copy into remote memory
MPI-2 MPI Get Copy from remote memory

Message Passing MPI MPI Send Send message to remote proc.
MPI MPI Recv Receive mess. from remot proc.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 3

The Message Passing Interface
Comparison to same set of BSPlib

Function Class Function Operation
Initialization bsp begin Start of SPMD code
and Termination bsp end End of SPMD code
Abnormal Stop bsp abort One process halts all
Process Control bsp nprocs Number of processes

bsp pid Identifier of Calling Process
bsp time Local (wall-clock) time

Synchronization bsp sync Global Synchronization
DRMA bsp push reg Make memory info global

bsp pop reg Undo global effect
bsp put Copy into remote memory
bsp get Copy from remote memory
bsp hpput High performance put
bsp hpget High performance get

Message Passing bsp send Send message to remote proc.
bsp move Receive from local receiving message queue

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 4

MPI and MPI-2
Initialization and Termination

#include <mpi.h>

int MPI_Init (int *argc, char **argv); // similar to bsp_begin

int MPI_Finalize(void); // similar to bsp_end

int MPI_Abort(MPI_Comm comm, int errcode);// similar to bsp_abort()

Multiple processes from the same source are created by issuing the function MPI Init and these processes are safely
terminated by issuing a MPI Finalize. The arguments of MPI Init are the command line arguments minus the ones
that were used/processed by the MPI implementation. Thus command line processing should only be performed in the
program after the execution of this function call. Successful return returns a MPI SUCCESS; otherwise an error-code that
is implementation dependent is returned.

Note that MPI Abort that aborts an MPI program cleanly has a different set of arguments than the BSPlib function.
The first one is a communicator (see next page for details) and second argument is an integer error code. A default
communicator is MPI COMM WORLD.

Definitions are available in <mpi.h>. Note the angled brackets. They are not double quotes as in ”bsp.h”!

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 5

MPI and MPI-2
Communicators; Process Control

Under MPI, a communication domain is a set of processors that are allowed to communicate with each other.
Information about such a domain is stored in a communicator that uniquely identify the processors that participate in
a communication operation.

A default communication domain is all the processors of a parallel execution; it is called MPI COMM WORLD. By using
multiple communicators between possibly overlapping groups of processors we make sure that messages are not interfering
with each other.

#include <mpi.h>

int MPI_Comm_size (MPI_Comm comm, int *size);

int MPI_Comm_rank (MPI_Comm comm, int *rank);

Thus

MPI_Comm_size (MPI_COMM_WORLD, &nprocs);

MPI_Comm_rank (MPI_COMM_WORLD, &pid);

return the number of processors nprocs and the processor id pid of the calling processor. A hello world! program
in MPI is the following one.

#include <mpi.h>
int main(int argc, char **argv) {
int nprocs, mypid;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&mypid);
printf("Hello world from process %d of total %d\n",mypid,nprocs);
MPI_Finalize();

}

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 6

MPI
A LAM (Local Area Multicomputer)

One can compile this MPI program as follows where instead of directly issuing the local C compiler, we call the
LAMMPI frontend that handles all relevant work for us. Compilation is no more complicated than the compilation of
the corresponding sequential code. LAM MPI is already preinstalled. There is nothing for you to install on our system.
You compile code as follows.

% mpicc hello.c -o hello //no optimizations chosen

If optimization options are required,

% mpicc -O3 hello.c -o hello // -O3 optimization -O is - Oh not - zero!

In LAM MPI we can define a cluster similarly to .bsptcphosts of BSPlib. Just define a file of any name eg lamhosts.
The first name is assigned a processor id 0, the second 1, and so on. If one machine has two CPUs, you can enter it
twice in this file.

pcc16

pcc13

pcc14

pcc15

A LAM is initiated similarly to bsplibd. One issues the command

% lamboot -v lamhosts

A LAM is terminated similarly to bspshutd. One issues the command

% wipe -v lamhosts

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 7

MPI
LAM MPI: How to run things on a Linux cluster

Following our BSPlib convetion in executing programs (i.e. creating a run directory on all machines and ccp’ing the
executable to that directory of all machines, we can follow that convention with LAM MPI. A parallel program under
LAM MPI can then be executed by

% mpirun -np 4 ./hello

The parameter to np is the number of processes that will be initiated and will be assigned one-to-one to the machines
listed in lamhosts.

Hello World from process 3 of total 4

Hello World from process 1 of total 4

Hello World from process 0 of total 4

Hello World from process 2 of total 4

Note that printing wise, MPI is more disciplined and reliable that BSPlib. The order of printing however can be
arbitrary on the standard output.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 8

MPI
Timing Control

#include <mpi.h>

double MPI_Wtime(void);

It returns the time in seconds since an arbitrary point in the past on the calling processor. Gives wall clock time.
Note the difference between MPI Wtime and bsp time(). The latter gives the time since the beginning of the bsp

program. There are no such guarantees for the former. If you want to maintain the bsp time() functionality under
MPI, you may need to do something like the fragment below.

double t1; double t1, mpi_basetime;
bsp_begin() MPI_Init(&argc,&argv), mpi_basetime = MPI_Wtime();

t1= bsp_time(); t1= (MPI_Wtime()-mpi_basetime);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 9

MPI
Barrier Synchronization

#include <mpi.h>

int MPI_Barrier(MPI_Comm comm);

It blocks the caller until all group members have called it; the call returns at any process only after all group members
have entered the call.

Note that bsp sync() does more that MPI Barrier. The former also effects all communication performed in the cur-
rent superstep. There is no such thing as a superstep or BSP in LAM MPI. MPI Barrier is just a barrier synchronization.
No side-effect other than the obvious is effected.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 10

MPI-2 in LAM MPI
Remote Memory Access: MPI Put

The RMA (Remote Memory Access) facility allowed by LAM MPI according the MPI-2 implementation is effected
by MPI Put and MPI Get. There are multiple ways one can use such operations under LAM MPI. We mention only one.

#include <mpi.h>
int MPI_Put(orgaddr, orgcnt, orgtype, rank, targdisp, targcnt, targtype, win)

void *orgaddr;
int orgcnt;
MPI_Datatype orgtype;
int rank;
MPI_Aint targdisp;
int targcnt;
MPI_Datatype targtype;
MPI_Win win;

Input Parameters are:

orgaddr

- initial address of origin buffer (choice)

orgcnt - number of entries in origin buffer (nonnegative integer)

orgtype

- datatype of each entry in origin buffer (handle)

rank - rank of target (nonnegative integer)

targdisp

- displacement from start of window to target buffer (nonnega-

tive integer)

targcnt

- number of entries in target buffer (nonnegative integer)

targtype

- datatype of each entry in target buffer (handle)

win - window object used for communication (handle)

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 11

MPI-2 in LAM MPI
Remote Memory Access: MPI Get

A get has a similar syntax.

#include <mpi.h>
int MPI_Get(orgaddr, orgcnt, orgtype, rank, targdisp, targcnt, targtype, win)

void *orgaddr;
int orgcnt;
MPI_Datatype orgtype;
int rank;
MPI_Aint targdisp;
int targcnt;
MPI_Datatype targtype;
MPI_Win win;

orgaddr

- initial address of origin buffer (choice)

orgcnt - number of entries in origin buffer (nonnegative integer)

orgtype

- datatype of each entry in origin buffer (handle)

rank - rank of target (nonnegative integer)

targdisp

- displacement from window start to the beginning of the tar-

get buffer (nonnegative integer)

targcnt

- number of entries in target buffer (nonnegative integer)

targtype

- datatype of each entry in target buffer (handle)

win - window object used for communication (handle)

Memory is copied from target memory to the origin. The origin datatype may not specify overlapping entries in the
origin bugger. The target buffer must be contained within the target window, and the copied data must fit, without
truncation, in the origin buffer.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 12

MPI-2 in LAM MPI
Communication Windows

Similar to BSPlib registration of DRMA requests, MPI-2 requires that RMA requests be registered through window
creation and termination operations.

#include <mpi.h>

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, MPI_Win *newwin)

int MPI_Win_free(MPI_Win *newwin)

int MPI_Win_fence(int assertion, MPI_Win newwin)

Operation MPI Win create creates a window for remote memory access operation.

base - initial address of window (choice)

size - size of window in bytes (nonnegative integer)

disp_unit

- local unit size for displacements, in bytes (positive inte-

ger)

info - info argument (handle)

comm - communicator (handle)

newwin - window object returned by the call (handle)

assertion - A suggestion to the communication algorithm; use 0 if you don’w know

what values are acceptable.

Operation MPI Win free frees the window object newwin and returns a null handle (equal to MPI WIN NULL). The
MPI call MPI Win fence(assertion, newwin) synchronizes RMA calls on newwin. The call is collective on the group
of newwin. All RMA operations on newwin originating at a given process and started before the fence call will complete
at that process before the fence call returns. They will be completed at their target before the fence call returns at the
target. RMA operations on newwin started by a process after the fence call returns will access their target window only
after MPI Win fence has been called by the target process. Calls to MPI Win fence should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls.

MPI Win create is similar to a bsp pushregister, MPI Win free is similar to a bsp popregister, and MPI Win fence

statements must surround an MPI-2 RMA put or get operation.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 13

MPI-2 in LAM MPI
BSPlib and MPI-2 correspondence

The syntax of RMA operations under MPI-2 is complicated and quite different from that of the corresponding BSPlib
primitives. We how how to do MPI-2 communication using put and get operations using the BSPlib function calls as a
point of reference.

Suppose that processor 0 wants to write his x value into processor 5’s y value.

#include "bsp.h" #include <mpi.h>
int x,y; int x,y;
int pid, nprocs; int pid, nprocs;

MPI_Win win;

..... We assume we have retrieved pid using an appropriate function call

bsp_pushregister(&y,sizeof(int)); MPI_Win_create(&y,sizeof(int),1,
MPI_INFO_NULL,MPI_COMM_WORLD,&win);

bsp_sync(); MPI_Win_fence(0,win);
if (pid ==0) { if (pid == 0) {
bsp_put(5,&x,&y,0,sizeof(int)); MPI_Put(&x,sizeof(int),MPI_CHAR,5,0,

sizeof(int),MPI_CHAR,win);
} }
bsp_sync(); MPI_Win_fence(0,win);
bsp_popregister(&y); MPI_Win_free(0,&win);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 14

MPI-2 in LAM MPI
BSPlib and MPI-2 correspondence: Put and Get examples

In the general case,

//bsp_put vs MPI_Put ***
char *des,*src; char *des,*src;
int dp,off,size,K; int dp,off,size,K;

bsp_pushregister(des,K); MPI_Win_create(des,(K),1,MPI_INFO_NULL,
MPI_COMM_WORLD,&win);

bsp_sync(); MPI_Win_fence(0,win);

if (pid==0) { if (pid == 0) {
bsp_put(dp,src,des,off,size) MPI_Put(src,size,MPI_CHAR,dp,off,size,

MPI_CHAR,win);
} }
bsp_sync(); MPI_Win_fence(0,win);
bsp_popregister(des); MPI_Win_free(0,&win);

The correspondence between bsp get and MPI Get is also symmetric.

//bsp_get vs MPI_Get ***
bsp_pushregister(src,K); MPI_Win_create((src),(K),1,MPI_INFO_NULL,

MPI_COMM_WORLD,&win)
bsp_sync(); MPI_Win_fence(0,win);

if (pid==0) { if (pid == 0) {
bsp_get(dp,src,off,des,size); MPI_Get(des,size,MPI_CHAR,dp,off,size,

MPI_CHAR,win);
} }
bsp_sync(); MPI_Win_fence(0,win);
bsp_popregister(src); MPI_Win_free(0,&win);

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 15

MPI
Message-Passing primitives

#include <mpi.h>
/* Blocking send and receive */
int MPI_Send(void *buf, int count, MPI_Datatype dtype, int dest, int tag, MPI_Comm comm);
int MPI_Recv(void *buf, int count, MPI_Datatype dtype, int src, int tag, MPI_Comm comm, MPI_Status *stat);
/* Non-Blocking send and receive */
int MPI_Isend(void *buf, int count, MPI_Datatype dtype, int dest, int tag, MPI_Comm comm, MPI_Request *req);
int MPI_Irecv(void *buf, int count, MPI_Datatype dtype, int src, int tag, MPI_Comm comm, MPI_Request *req);
int MPI_Wait(MPI_Request *preq, MPI_Status *stat);

buf - initial address of send/receive buffer
count - number of elements in send buffer (nonnegative integer)

or maximum number of elements in receive buffer.
dtyp - datatype of each send/receive buffer element (handle)

dest,src - rank of destination/source (integer)
Wild-card: MPI_ANY_SOURCE for recv only.

tag - message tag (integer). Range 0...32767.
Wild-card: MPI_ANY_TAG for recv only; send must specify tag.

comm - communicator (handle)
stat - status object (Status), which can be the MPI constant

MPI_STATUS_IGNORE if the return status is not desired

data type correspondence between MPI and C
MPI_CHAR --> signed char , MPI_SHORT --> signed short int , MPI_INT --> signed int
MPI_LONG --> signed long int , MPI_FLOAT --> float , MPI_DOUBLE --> double

The MPI Send and MPI Recv functions are blocking, that is they do not return unless it is safe to modify or use the
contents of the send/receive buffer. MPI also provides for non-blocking send and receive primitives. These are MPI Isend

and MPI Irecv, where the I stands for Immediate. These functions allow a process to post that it wants to send to or
receive from another process, and then allow the process to call a function (eg. MPI Wait to complete the send-receive
pair. Non-blocking send-receives allow for the overlapping of computation/communication. Thus MPI Wait plays the
role of bsp sync(): the send/receive are only advisories and communication is only effected at the MPI Wait.

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 16

MPI
An example with the blocking operations

#include <stdio.h>
#include <mpi.h>
#define N 10000000 // Choose N to be multiple of nprocs to avoid problems.
// Parallel sum of 1 , 2 , 3, ... , N
int main(int argc,char **argv){
int pid,nprocs,i,j;
int sum, start, end, total;
MPI_Status status;

MPI_Init(argc,argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&pid);
sum = 0; total = 0;
start = (N/nprocs)*pid +1 ; // Each processor
end = (N/nprocs)*(pid+1);
for(i=start;i<=end;i++) sum += i;
if (pid != 0) {
MPI_Send(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD);

}
else {
for (j=1;j<nprocs;j++) {
MPI_Recv(&total,1,MPI_INT,j,1,MPI_COMM_WORLD,&status);
sum = sum + total;
}

}
if (pid == 0) {
printf(" The sum from 1 to %d is %d \n",N,sum);
}
MPI_Finalize();

}
// Note: Program neither compiled nor run!

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 17

MPI
An example with the non-blocking operations

#include <stdio.h>
#include <mpi.h>
#define N 10000000 // Choose N to be multiple of nprocs to avoid problems.
// Parallel sum of 1 , 2 , 3, ... , N
int main(int argc,char **argv){
int pid,nprocs,i,j;
int sum, start, end, total;
MPI_Status status;
MPI_Request request;
MPI_Init(argc,argv);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&pid);
sum = 0; total = 0;
start = (N/nprocs)*pid +1 ; // Each processor
end = (N/nprocs)*(pid+1);
for(i=start;i<=end;i++) sum += i;
if (pid != 0) {
// MPI_Send(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD);
MPI_Isend(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD,&request);
MPI_Wait(&request,&status);

}
else {
for (j=1;j<nprocs;j++) {
MPI_Recv(&total,1,MPI_INT,j,1,MPI_COMM_WORLD,&status);
sum = sum + total;
}

}
if (pid == 0) {
printf(" The sum from 1 to %d is %d \n",N,sum);
}
MPI_Finalize();

} // Note: Program neither compiled nor run!

(c) Copyright Alex. Gerbessiotis. All rights reserved. (CIS 786 NOTES Fall 2004) 18

