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Sorting Networks

Disclaimer: These notes DO NOT substitute the textbook for this class. The notes should be

used IN CONJUNCTION with the textbook and the material presented in class. If a statement in

these notes seems to be incorrect, report it to the instructor so that it be fixed immediately.

These notes are only distributed to the students taking this class with A. Gerbessiotis in Fall

2004; distribution outside this group of students is NOT allowed.
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Sorting Networks
Comparison Networks

A sorting network is a (comparison) network that always sorts its inputs by performing comparisons only (i.e.
countsort, radix sort can not be implemented in such networks). Sorting networks are special cases of a broader class of
networks known as comparison networks.

A comparison network consists of wires and comparators. A comparator is a box with two inputs x and y and two
outputs a and b. The comparator compares x and y and outputs through a the minimum of x and y and through b the
maximum of x and y. The box of Fig 1. in most cases is simplified into the vertical line of Fig 2. Each comparator takes
O(1) time steps to compare the two keys and output them in proper order. The wires transmit values as a whole (think
of parallel communication rather than serial) from left to right. If multiple comparators are attached to a horizontal
line that transfers the input values the result of a preceding comparator must become available before a succeeding
comparator starts performing the comparison required. The depth of a sorting network is the maximum number of
comparators attached in a path (not line) from an input to an output. Thus if all input lines are of depth 0, and the
input wires to a comparator are of depth d1 and d2 then the two output wires of the comparator are of the same depth
max{d1, d2}+ 1.

A sorting network is a comparison network whose output lines generate the input sequence in monotonically increasing
order top-to-bottom (i.e. smallest element appear on top-right output line and largest in bottom-right).

------------

x----->| |---> a=minimum(x,y) x----|---- a

|comparator| or |

y----->| |---> b=maximum(x,y) y----|---- b

------------

Fig 1. Fig 2.

The sorting algorithm implied by a sorting network is an oblivious sorting algorithm. An oblivious algorithm
is an algorithm whose actions are always the same and independent of the input and output: in an oblivious sorting
algorithm the sequence of comparisons performed is the same for all inputs and outputs.
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Comparison Networks
Finding the maximum

Suppose we are interested in Finding the maximum of n values. Let n be a power of two.
One way to build a comparison network for finding the maximum is divide and conquer. Suppose that a comparison

network with n input lines and n output lines finds the maximum of n values fed through the input lines and this maximum
appears through the bottom wire of the output. We can construct this network recursively by first constructing two
networks, one that finds the maximum of the first n/2 values and one that finds the maximum of the remaining n/2
values. Then, a single comparison determines the maximum of the two maxima, i.e. the maximum of the n values.

MAX(i): A box with i input and i output wires.

The maximum appears through the bottom output wire

x1 -------

------| |--------------------

... | | ...

------|______|----x---------------

xn/2 MAX(n/2) |

|

xn/2+1 ------- |

------| |----|

... | | ...|

------|______|----x--------------

xn MAX(n/2) MAX(x1... xn)

Let S(n) be the size of MAX(n). Then,
S(n) = 2S(n/2) + 1

We have S(2) = 1. A solution for S(n) is S(n) = n − 1. Let D(n) be the depth/delay of MAX(n). Then,

D(n) = D(n/2) + 1

We have D(2) = 1. A solution for D(n) is D(n) = lg n.
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Sorting Networks
Some simple networks

Sorting 1 key ---------- Immediate

Sorting 2 keys ----X----- Trivial

|

----X-----

Sorting 3 keys -x------x- An insertion sort based network

| |

-x---x--x-

|

-----x----

Sorting 4 keys -x---x----x-- Sort first three keys as before

| | | Then binary search/insert 4th

-x-x-x-x--x-- key into the first three.

| |

---x---|--x--

| |

-------x--x--

or -x---x---x--- Sort using insertion sort;

| | | Last three comparators (one touched

-x-x-x-x-x--- from right) insert 4th key into the

| | sorted sequence of the first three

---x-x-x----- (figure from above)

|

-----x-------
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Sorting Networks
0-1 Sorting Lemma

The 0-1 Sorting Lemma also referred to as 0-1 (Sorting) principle can be used to show that a comparison network
is indeed a sorting network. The 0-1 sorting lemma says that if a sorting network sorts all inputs of zeroes and ones
correctly, then it can sort any type of inputs as well, be them floating point numbers, integers, etc. Note that the lemma
applies to sorting “algorithms” that are oblivious and use only comparisons and do not inspect the values of the input.

Lemma MonotonicP. If a comparison network transforms a = 〈a1, . . . , an〉 into a b = 〈b1, . . . , bn〉, then for any
monotonically increasing function f , the network transforms f(a) = 〈f(a1), . . . , f(an)〉, into f(b) = 〈f(b1), . . . , f(bn)〉.

Proof MonotonicP. A proof of the monotonic property will be by induction.
The basis of the induction is the proof that a single comparator has the monotonic property. Suppose that the

inputs to a comparator are x and y. If x ≤ y, then f(x) ≤ f(y) by the monotonicity of f . In the former case x
is output on the top output line and in the latter case f(x) is output on the top output line. A similar observation
applies to the case x ≥ y, where y, f(y) are on the top output line. Therefore min(f(x), f(y)) = f(min(x, y)) , and
max(f(x), f(y)) = f(max(x, y)).

A comparator C at depth d has input lines that are of depth strictly less that d. If these input lines carry ai and aj

when the input is a, they will carry, by the inductive hypothesis f(ai) and f(aj), when the input is f(a). This completes
the induction, as C would produce. f(min(ai, aj)), f(max(ai, aj)) by the base case.

0-1 Sorting Lemma If a comparison network with n inputs sort all 2n possible input sequences of zeroes and ones,
then it sort all sequences of arbitrary numbers correctly.

Proof 0-1SL. Suppose that the comparison network sort all 2n binary n inputs, but fails to sort a sequence s of
arbitrary numbers. Then this means that in sequence s there are two numbers si and sj that are out of order, i.e. si < sj

but the network places sj before si. We then define the following monotonically increasing sequence.

f(x) =

{
0 if x ≤ si

1 if x ≥ si

Since the network places sj before si then given a monotonically increasing f it would place f(sj) = 1 before f(si) = 0
in the output sequence, i.e. it would place an 1 before a 0. Then this specific input sequence of 0’s and 1’s (implied by
f) would not be sorted contradicting the assumption that all binary sequences are sorted correctly.
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Sorting networks
Building Steps

In order to build a sorting network, we will proceed in steps.

• We first show how to sort more structured sequences called bitonic sequences, and thus how to construct a bitonic
sorting network.

• We then show how to merge two sorted sequences and thus how to construct a merging sorting network.

• We finally show how to sort an arbitrary sequence.
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Sorting networks
Bitonic sorting

A bitonic sequence is a sequence that

S1 monotonically increases and then monotonically decreases or

S2 is a circular shift (rotation) of a sequence described in case S1.

For example 〈4, 7, 8, 6, 5, 3, 2, 1〉 is a bitonic sequence, and so is 〈7, 8, 6, 5, 3, 2, 1, 4〉 that results from shifting/rotating
the former sequence one position to the left.

We first show how to sort a bitonic sequence of length n.
In the remainder we will assume that n is a power of two. If this is not the case, we can pad keys in the sequence so

that its length becomes a power of two.

Idea. A comparison network where line i is connected to line i + n/2, 0 ≤ i < n/2, turns a bitonic
sequence of 0’s and 1’s into two bitonic sequences of half the original size, one of which is clean (all
output lines contain one kind of input).

Algorithm BitonicSort. Use the idea recursively until we “clean” all the lines. The first application cleans half
the input (which becomes a trivial bitonic sequence) and turns the other half into a bitonic sequence whose elements are
smaller than (or equal to) the cleaned ones if it is the top-half (and at least than the cleaned elements if it is the bottom
half).

Analysis of BitonicSort. This will take lgn phases. Each phase consists of n/2 comparators. The depth of the
network is lg n and its size n lg n/2.
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Bitonic sorting
Algorithm Correctness

0 --x------0-x--0-x-- 0 Bitonic Sorter
| | | Depth

1 --|-x----1-|-x0-x-- 0 D(n) = D(n/2)+1 i.e. D(n) = lgn.
| | | | Size

1 --|-|-x--0-x-|0-x-- 0 S(n) = n lgn.
| | | | |

1 --|-|-|-x0---x1-x-- 1
| | | |

1 --x-|-|-|1-x--1-x-- 1
| | | | |

1 ----x-|-|1-|-x1-x-- 1
| | | |

0 ------x-|1-x-|1-x-- 1
| | |

0 --------x1---x1-x-- 1

BitonicSort Algorithm Correctness
In order to prove the correctness of this scheme we distinguish four cases assuming the input is of the form 0̄1̄0̄, where

1̄, 0̄ denote a block of 1’s and 0’s of arbitrary (potentially not equal) size respectively. The symmetric case 1̄0̄1̄ is treated
analogously.

a 1̄ does not include the midpoint and falls in top half.

b 1̄ does not include the midpoint and falls in bottom half.

c 1̄ includes midpoint and length less than n/2.

d 1̄ includes midpoint and length not less than n/2.

In case (a) a block 0̄ of length at least n/2 results in top half (i.e it is clean). Same for case (b). In case (c) we have
the same. In case d we have a block 1̄ of length n/2 in the bottom/upper half, and a bitonic sequence in the bottom
half.

In all cases we obtain at least one clean half, two bitonic sequences, and every element in the top half is less than or
equal to every element in the bottom half.
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Sorting networks
Merging

The problem of merging deals with merging two sorted sequences into one sorted sequence. Suppose the total length
of the sorted sequence is n = k + l, and k, l are the lengths of the two sequences to be merged. In the remainder we will
assume that k = l = n/2. The sequence formed by the first sequence and the reverse of the latter is bitonic.
Since it is bitonic it can be sorted with the bitonic sorter presented in the previous section.

The only problem that needs to be resolved is transforming two sorted sequences into a bitonic sequence. This
transformation can be incorporated in the first phase of the bitonic network described in the previous section.

We recall that in the first phase of the bitonic network line i is compared to i + n/2 and a clean sequence (which is
also trivially bitonic) of length n/2 results in one of the halves, and a bitonic sequence results in the other half.

The key of the input sequence that should be in the i + n/2 line if the input sequences was to be converted into a
bitonic sequence would have been the i-th largest key of the second sequence that would be reversed. However that key
is currently in line n − i + 1. The easy way to resolve this problem is by performing a comparison not between i and
i+ n/2 but between i and n − i+ 1 instead. After the first phase is completed we get two bitonic sequences for the top
and bottom half and thus the remaining phase of the bitonic sorter need not be modified.

0 --x------0-x--0-x-- 0 Merging network (two sorted sequences of

| | | size n/2)

1 --|-x----1-|-x0-x-- 0

| | | | D(n) = lgn

1 --|-|-x--0-x-|0-x-- 0 S(n) = nlgn/2

| | | | |

1 --|-|-|-x0---x1-x-- 1

| | | |

0 --|-|-|-x1-x--1-x-- 1

| | | | |

0 --|-|-x--1-|-x1-x-- 1

| | | |

1 --|-x----1-x-|1-x-- 1

| | |

1 --x------1---x1-x-- 1
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Sorting networks
Sorting Networks

We are now ready to introduce the algorithm for sorting, i.e. build a sorting network that sorts its input. The
algorithm is merge-sort based. In order to sort n keys we produce two sorted sequences recursively (divide and conquer
step) and merge these sequences (combining step), by the n-line merging network of the previous section. The basis of
the recursive decomposition is easy. A sequence consisting of a single key is already sorted.

Therefore using this divide and conquer construction of a sorting network we conclude the following. The depth and
size of such a network can be found as follows.

D(n) = D(n/2) + lg n

This gives D(n) = O(lg2 n) by the master method and lg n(1 + lg n)/2 by the iteration method.

S(n) = 2S(n/2) + O(n lgn)

This gives S(n) = O(n lg2 n) by the master method.

* * *

0 --x0---x----x0-x---0x-0-x- 0 x-mer: x-merger merges two sorted

| | | | | | sequences of size x each

1 --x1---|--x-x1-|x--1|x0-x- 0 On every column block there are deployed

| | || || n/(2*x) such mergers

1 --x1---|--x-x1-||x-0x|0-x- 0

| | | ||| | |

1 --x1---x----x1-|||x0-x1-x- 1 * Columns are output values at the

|||| output of a merger

0 --x0---x----x0-|||x1x-1-x- 1

| | | ||| | |

0 --x0---|--x-x0-||x-1|x1-x- 1

| | || ||

1 --x1---|--x-x1-|x--1x|1-x- 1

| | | | | |

1 --x1---x----x1-x---1-x1-x- 1

1-mer 2-mer 4-mer
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Sorting Networks
Batcher’s Odd-even merge-sort

A variant of bitonic-based sorting that achieve a slighter better running time the + in lgn + 1 becomes a minus −,
is also due to Batcher. There are asymptotically faster networks today (eg. AKS due to Ajtai-Komlos-Szemeredi, 1984)
that have depth O(lgn); however they suffer from large constants hidden in the big-Oh notation. Batcher’s odd-even
merge sort algorithm was developed in the 1960’s and can be implemented in an O(n) size network to sort n keys in
time O lg2 n). The idea behind it is just plain merge-sort.

Merge-Sort(A,n,l=1,r=n)
1. Divide A[l..r] into two halves A[l..m] and A[m+1..r].
2. Sort A[l..m] and A[m+1..r] recursively.
3. Merge A[l..m] and A[m+1..r]

Question 1: How many recursive rounds? Answer: O(lgn).
Question 2: How do you parallelize? Answer: Step 2 is obvious.
Question 3: Step 3? Answer: ?
Question 4: Running Time? Answer:
The running time of a parallelization would be as follows.

Tsort(n) = Tsort(n/2) + Tmerge(n/2)

where Tsort(n) is the time to sort n keys in parallel with n processors, and Tmerge(n) is the time to merge 2 lists of n keys
each in parallel using 2n processors

The only question left unaswered is: Question 3. In order to merge we use a procedure called odd-even merge
that works miraculously well.
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Sorting Networks
Parallel Odd-even merge

Let A = 〈a0 . . . am−1〉 and B = 〈b0 . . . bm−1〉, where A, B are two sorted sequences to be merged.

begin OddEvenMerge (A = 〈a0 . . . am−1〉,B = 〈b0 . . . bm−1〉,m)
1a. Even(A) = 〈a0, a2, . . . , am−2〉;
1b. Odd(A) = 〈a1, a3, . . . , am−1〉;
1c. Even(B) = 〈b0, b2, . . . , bm−2〉;
1d. Odd(B) = 〈b1, b3, . . . , bm−1〉;
2a. C= OddEvenMerge(Even(A),Odd (B),m/2);
2b. D= OddEvenMerge(Odd (A),Even(B),m/2);
3. Lpre = 〈c0, d0, c1, d1, c2, d2, . . . , cm−1, dm−1〉;

// x:y means compare x and y and place so that the left of the two
// is the smallest of the two

4. L = 〈c0 : d0, c1 : d1, c2 : d2, . . . , cm−1 : dm−1〉;
//Perform a comparison side-by-side between ci and di.

5. Return(L);
end OddEvenMerge

Note. The variant given here slightly differs from the original Batcher paper. In that paper Odd(A) with Odd(B)
and Even(A) with Even(B) are merged. That however, would require the comparison of di with ci+1 in line 4 instead,
with c0 and dm−1 not participating in that step (left unchnaged).

An Example.
A= < 1 5 7 8 >
B= < 2 3 4 6 >

even(A) = < 1 7 > odd(A) = < 5 8 >
even(B) = < 2 4 > odd(B) = < 3 6 >
C = OddEvenMerge(even(A), odd(B)) = < 1 3 6 7>
D = OddEvenMerge(odd (A),even(B)) = < 2 4 5 8>
Lpre = < 1 2 3 4 6 5 7 8>
Lpre = < 1:2 3:4 6:5 7:8>
L = < 1 2 3 4 5 6 7:8>
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Sorting Networks
Parallel Odd-even merge

Lemma OEm. OddEvenMerge works as claimed.
Proof of Lemma.
We use the 0-1 Sorting Lemma.
Let A consists of a 0’s and m − a 1’s, and B of b 0’s and m − b 1’s.
After Line1,

odd(A) has 	a/2
 0’s, and
even(A) has �a/2� 0’s.

Similarly,
odd(B) has 	b/2
 0’s, and
even(B) has �b/2� 0’s.

Then, after Line2, C has
c′ = �a/2�+ 	b/2
 0’s
and D has
d′ = �b/2�+ 	a/2
 0’s,
where |c′ − d′| ≤ 1.

Then, after Line3, we get
a. If c = d or c = d + 1,

L = Lpre 0 0 . . . 0 1 1 1 1
c + d 0’s

b. If c = d − 1,

L = Lpre 0 0 . . . 0 1 0 1 1
2c 0’s flip

This completes the proof.
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Sorting Networks
Parallel Odd-even merge: discussion

The interesting point about OddEvenMerge is that the preparatory steps for the recursive calls interlace the two
sequences, and

1. To merge two sequences of size n each, we merge recursively two of size n/2 twice

2. To merge two sequences of size n/2 each, we merge recursively two of size n/22 twice

i. To merge two sequences of size n/2i−1 each, we merge recursively two of size n/2i twice

lg n To merge two sequences of size 2 each, we merge recursively two of size 1 twice.

The base of the recursions is easy. Merging two sequences of size 1 requires just one comparison and is equivalent to
sorting/maximum finding.

At this point we have completed Line 2. Sorting the Lpre sequence is also easy. Lines 3 and 4 require just one parallel
step.

Thus the running time of the merging phase is

Tmerge(m) = Tmerge(m/2) + 1

Tmerge(m) = O(lgm).
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Sorting Networks
Parallel Odd-even merge-sort

Algorithm OddEvenMerge merges two sorted sequences. OddEvenMergeSort is described below for comple-
tion. It sorts a sequence of n keys.

begin OddEvenMergeSort (X = 〈x0 . . . xn−1〉,n)
1a. Left(A) = 〈x0, x1, . . . , xn/2−1〉;
1b. Right(A)= 〈xn/2, xn/2+1, . . . , xn−1〉;
2a. L(A) = OddEvenMergeSort(Left (A),n/2);
2b. R(A) = OddEvenMergeSort(Right(A),n/2);
3. Y= OddEvenMerge(L(A),R(A),n/2);
5. Return(Y);
end OddEvenMergeSort

The running time of OddEvenMergeSort is, however, more complicated. Lines 1a and 1b are done in parallel.
Lines 2a and 2b are done in parallel. Line 3 is Tmerge(n/2).

Tsort(n) = Tsort(n/2) + Tmerge(n/2)

Tsort(n) = O(lg2 n).

Theorem OE. Odd-even merge-sort works as claimed.
Proof. A proof that OE merge-sort works utilizes the 0-1 sorting lemma. By induction let us assume that OE

merge-sort works for sizes less than or equal to n − 1.
Therefore in order to sort n keys, we split them into 2 halves of size n/2 each. By the inductive hypothesis, o-e

merge-sort sorts independently the two halves. It remains to be shown that the merging algorithm so described merges
the two sorted sequences and the theorem is proved. ✷.
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Odd-even merge-sort
Implementation on the butterfly of the merging algorithm

Step 1: OddEvenMerge Step 2: Call OddEvenMerge recursively

Top Half: Horizontal links Even(A)+Odd(B) in A0-A2-A4-A6 [n/2 butterfly]

BottomHalf: Cross links Odd(A)+Even(B) in A1-A3-A5-A7 [n/2 butterfly]

3 2 1 0 3 2 1 0

a0 x---xa0x------x---x--------------x A0 a0 x---xa0x------x---x--------------x A0

\ / \ / \ / \ / \ / \ /

\ \ / \ / \ \ / \ /

/ \ \/ \ / / \ \/ \ /

a1 x---xa1x------x---x---\----------x A1 a1 x---xa1x------x---x---\----------x A1

\ / \/ \ \ / / \ / \/ \ \ / /

\ /\ \ \ / / \ /\ \ \ / /

/ \/ \ \ \ / / / \/ \ \ \ / /

a2 x---xa2x------x---x---\---\---/--x A2 a2 x---xa2x------x---x---\---\---/--x A2

\ / / \ \ \ / \ / / \ / / \ \ \ / \ / /

\ / \ \ \ / / \ / \ \ \ / /

/ \ / \ \ / \ / \ / / \ / \ \ / \ / \ /

a3 x---xa3x------x---x---\---\---\--x A3 a3 x---xa3x------x---x---\---\---\--x A3

\ / \ / \ / \/ \ / \ / \ / \/

\ \ \ /\ \ \ \ /\

/ \ / \ / \/ \ / \ / \ / \/ \

b0 x---xb1x------x---x---\---\---\--x A4 b0 x---xb1x------x---x---\---\---\--x A4

\ / \ / / \ / \ / \ \ / \ / / \ / \ / \

\ \ / / / \ \ \ \ / / / \ \

/ \ \/ / / \ / \ \ / \ \/ / / \ / \ \

b1 x---xb0x------x---x---/---\---\--x A5 b1 x---xb0x------x---x---/---\---\--x A5

\ / \/ / / \ \ \ / \/ / / \ \

/ /\ / / \ \ / /\ / / \ \

/ \/ \ / / \ \ / \/ \ / / \ \

b2 x---xb3x------x---x---/-------\--x A6 b2 x---xb3x------x---x---/-------\--x A6

\ / /\ / \ \ / /\ / \

\ / \ / \ \ / \ / \

/ \ / \ / \ / \ / \ / \

b3 x---xb2x------x---x--------------x A7 b3 x---xb2x------x---x--------------x A7

Step 1: Level 3 to Level 2 for 8-butterfly: Prepare odd-even sequences.
Step 2: Level 2 to Level 0 back to Level 2 : Recursive merging.
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Odd-even merge-sort
Implementation on the butterfly of the merging algorithm: 2

Step 3: The C/D are in level 2 Step 4: Done

Use leftmost cross links to

compare ci:di and fix position

3 2 1 0 3 2 1 0

x---xc0x------x---x--------------x A0 l0 x---xc0x------x---x--------------x A0

\ / \ / \ / \ / \ / \ /

\ \ / \ / \ \ / \ /

/ \ \/ \ / / \ \/ \ /

x---xd0x------x---x---\----------x A1 l1 x---xd0x------x---x---\----------x A1

\ / \/ \ \ / / \ / \/ \ \ / /

\ /\ \ \ / / \ /\ \ \ / /

/ \/ \ \ \ / / / \/ \ \ \ / /

x---xc1x------x---x---\---\---/--x A2 l2 x---xc1x------x---x---\---\---/--x A2

\ / / \ \ \ / \ / / \ / / \ \ \ / \ / /

\ / \ \ \ / / \ / \ \ \ / /

/ \ / \ \ / \ / \ / / \ / \ \ / \ / \ /

x---xd1x------x---x---\---\---\--x A3 l3 x---xd1x------x---x---\---\---\--x A3

\ / \ / \ / \/ \ / \ / \ / \/

\ \ \ /\ \ \ \ /\

/ \ / \ / \/ \ / \ / \ / \/ \

x---xc2x------x---x---\---\---\--x A4 l4 x---xc2x------x---x---\---\---\--x A4

\ / \ / / \ / \ / \ \ / \ / / \ / \ / \

\ \ / / / \ \ \ \ / / / \ \

/ \ \/ / / \ / \ \ / \ \/ / / \ / \ \

x---xd2x------x---x---/---\---\--x A5 l5 x---xd2x------x---x---/---\---\--x A5

\ / \/ / / \ \ \ / \/ / / \ \

/ /\ / / \ \ / /\ / / \ \

/ \/ \ / / \ \ / \/ \ / / \ \

x---xc3x------x---x---/-------\--x A6 l6 x---xc3x------x---x---/-------\--x A6

\ / /\ / \ \ / /\ / \

\ / \ / \ \ / \ / \

/ \ / \ / \ / \ / \ / \

x---xd2x------x---x--------------x A7 l7 x---xd3x------x---x--------------x A7

Step 3: Leve 2 back to Level 3: Compare ci to di to complete merging.
Step 4: Done. Output at level lg n (i.e. level 3 for 8-butterfly).
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Odd-even merge-sort
Merging algorithm on the butterfly: Proof of correctness

Merging Phase
Proof is by construction. Use induction.
Base case. A 2-input butterfly merges two keys (easy by inspection).
Inductive Hypothesis. an n/2-input butterfly merges two sorted sequences of size n/4 each. A merging operation

starts from the left (level lg n − 1) where the input resides, proceeds to the right (level 0) and returns to the left of a
reverted butterfly, where the output will become available.

Inductive Step. Use 2 n/2 butterflies in the form of an n-butterfly to merge two n/2-key sorted sequences.
Let the butterfly be in reverse order (lg n-level leftmost level, 0-level rightmost level).
Let a0, a1, . . . be the input to the top n/2 rows and

b0, b1, . . . be the input to the bottom n/2 rows.
The top half uses the level edges to transfer input keys to the next level lgn − 1. Output is even-odd indexed input

on even-odd indexed lines of the butterfly. The bottom half uses the cross edges and output is switched i.e. even-odff
indexed input resides on odd-even indexed lines of the butterfly.

Eliminate level lg n. We view the remainder as two n/2-butterflies. The two butterflies of size n/2 each have their
inputs intermixed. The topmost butterfly has inputs even(A) and odd(B) and the bottomost butterfly has inputs odd(A)
and even(B).

The two separate butterflies merge by induction their inputs.
After the merging step.
At level lg n − 1, after the merging had been performed separately in the topmost and bottomost butterflies, let the

outputs be c0, c1, . . . and d0, d1, . . . already intermixed. The crossed edges are utilized to perform the pairwise comparisons
in step 4 of the algorithm.
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Odd-even merge-sort
Implementation on the butterfly of the sorting algorithm

So far we have described how to perform merging on an n-butterfly. The odd-even sorting network (or algorithm on
the butterfly) has not yet been presented.

Sorting phase.
In order to sort n keys we input the keys on level lg n of a reverse butterfly (leftmost level is lg n, rightmost level is

0).
We split the n keys into n/2 pairs of sublists of size 1 and 1, and merge them independently using only the last two

levels of the butterfly (i.e. working lg n → lg n − 1 → lg n in 2 steps). The first two levels can be considered as a set of
n/2 2-row butterflies.

As a result of this phase we have n/2 sorted sequences of 2 keys. We will pair them and thus obtain n/4 sorted
sequences of 4 keys and so on.

We split the derived n/2 sublists of size 2 into n/4 pairs of sublists each of size 2 and merge them independently
using the last three levels of the butterfly
(i.e. lg n → lg n − 1 → lgn − 2 → lg n − 1 → lg n), in 4 steps.

We split the derived n/4 sublists of size 4 into n/8 pairs of sublists each of size 4 and merge them independently
using the last four levels of the butterfly
(i.e. lg n → lg n − 1 → lgn − 2 → lg n − 3 → lg n − 2 → lg n − 1 → lg n) in 6 steps.

In general in round i we merge n/2i pairs of sublists of size 2i−1 each that requires 2i steps. Total parallel time is

lg n∑
i=1

2i = lg n(lg n + 1)

The algorithm can be modified to work in half as many rounds by observing that the first lg n steps move keys to
the right for the purpose of mixing them and no actual work is performed.
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