CIS 667 and CIS 467H: Homework 2(Due: Feb 24, 2005)

Problem 1. (20 points)

a. What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply $n \times n$ matrices in time $o(n^{\lg 7})$? What would the running time of this algorithm be?

b. V. Pan has discovered a way of multiplying 68×68 matrices using 132464 multiplications, 70×70 matrices using 143640 multiplications, 72×72 matrices using 155424 multiplications. Which method yields the best asymtotic running time when used in a divide and conquer matrix multiplication algorithm? How does it compare to Strassen's algorithm?

Problem 2. (20 points)

You are given six polynomials f_1, \ldots, f_6 of degrees $1, 3, 2, 3, 4, 5$ respectively. We are interested in finding the product $f = f_1 f_2 f_3 f_4 f_5 f_6$ by performing pairwise multiplications. Assume that the cost of multiplying two polynomials of degree a and b is $a+b$, i.e. it is proportional to the space required to store the product which is a polynomial of degree $a+b$. Find a schedule for multiplying the six polynomials that is of the lowest possible total cost (total cost is the sum of the costs of all multiplications performed to determine f) for this non-traditional definition of a cost function.

Example. For three polynomials g_1, g_2, g_3 of degrees 1, 2, 3 respectively, you first compute g_2g_3 and then multiply the result by q_1 . The cost of the first multiplication is 5 $(2+3)$ and the cost of the second multiplication is 6 since you multiply the result, a degree 5 polynomial, to a degree one polynomial. Total cost is 11.

Problem 3. (20 points)

a. Let $M(n)$ be the time to multiply two $n \times n$ matrices and let $S(n)$ be the time to square an $n \times n$ matrix. Show that multiplying and squaring have essentially the same complexity: i.e. an $M(n)$ matrix multiplication algorithm implies an $O(M(n))$ squaring algorithm and and an $S(n)$ squaring algorithms implies an $O(S(n))$ matrix multiplication algorithm.

b. Show that interpolation can be done in $O(n^2)$ time. Hint: Read Exercise 30.1-5 of CLRS on page 830 (or Exercise 32.1-4 of CLR on page 783), and think of the implications of Problem 2, HW1.

Problem 4. (20 points)

Go to page 844 of CLRS. Problem 30-1 was partly solved in class; part (a) in the context of complex numbers, and part (c) through the Karatsuba-Ofman algorithm. Do part (b).

Problem 5. (20 points)

Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let $p(n, m)$ be the probability that no collisions occur. Show that $p(n, m) \leq exp(-n(n-1)/(2m))$. Argue that when $p(n, m)$ be the probability that no collisions occur. Show that $p(n, m) \leq e$.
n exceeds \sqrt{m} , the probability of avoiding collisions goes rapidly to zero.

Hint: Use $exp(x) \geq 1 + x$ for any real x. Note that $exp(x) = e^x$.

Option 1. (100 points)

(a) Implement Karatsuba-Ofman for polynomials of degree bound n , or arbitrarily long n -bit integers. Collect timing information compared to the ordinary algorithm for $n = 32, 128, 512, 1024$. (50 points).

(b) Implement Strassen's algorithm for $n \times n$ matrices (i) where n is a power of 2, (ii) n is not a power of two. Run experimental results for $n = 256$, $n = 512$ and $n = 1024$ and collect timing information. (50 points)

All programs to be sent to alg667@cs.njit.edu or alg467@cs.njit.edu.