
A. V. Gerbessiotis CIS 667/CIS 467h Spring 2005
Homework 2 Feb 10, 2005 100 points

CIS 667 and CIS 467H: Homework 2(Due: Feb 24, 2005)

Problem 1. (20 points)
a. What is the largest k such that if you can multiply 3× 3 matrices using k multiplications (not assuming

commutativity of multiplication), then you can multiply n×n matrices in time o(nlg 7)? What would the running
time of this algorithm be?

b. V. Pan has discovered a way of multiplying 68 × 68 matrices using 132464 multiplications, 70 × 70
matrices using 143640 multiplications, 72× 72 matrices using 155424 multiplications. Which method yields the
best asymtotic running time when used in a divide and conquer matrix multiplication algorithm? How does it
compare to Strassen’s algorithm?

Problem 2. (20 points)
You are given six polynomials f1, . . . , f6 of degrees 1, 3, 2, 3, 4, 5 respectively. We are interested in finding

the product f = f1f2f3f4f5f6 by performing pairwise multiplications. Assume that the cost of multiplying two
polynomials of degree a and b is a+ b, i.e. it is proportional to the space required to store the product which is a
polynomial of degree a+b. Find a schedule for multiplying the six polynomials that is of the lowest possible total
cost (total cost is the sum of the costs of all multiplications performed to determine f) for this non-traditional
definition of a cost function.
Example. For three polynomials g1, g2, g3 of degrees 1, 2, 3 respectively, you first compute g2g3 and then multiply
the result by g1. The cost of the first multiplication is 5 (2 + 3) and the cost of the second multiplication is 6
since you multiply the result, a degree 5 polynomial, to a degree one polynomial. Total cost is 11.

Problem 3. (20 points)
a. Let M(n) be the time to multiply two n×n matrices and let S(n) be the time to square an n×n matrix.

Show that multiplying and squaring have essentially the same complexity: i.e. an M(n) matrix multiplication
algorithm implies an O(M(n)) squaring algorithm and and an S(n) squaring algorithms implies an O(S(n))
matrix multiplication algorithm.

b. Show that interpolation can be done in O(n2) time. Hint: Read Exercise 30.1-5 of CLRS on page 830 (or
Exercise 32.1-4 of CLR on page 783), and think of the implications of Problem 2, HW1.

Problem 4. (20 points)
Go to page 844 of CLRS. Problem 30-1 was partly solved in class; part (a) in the context of complex numbers,

and part (c) through the Karatsuba-Ofman algorithm. Do part (b).

Problem 5. (20 points)
Suppose that we insert n keys into a hash table of size m using open addressing and uniform hashing. Let

p(n,m) be the probability that no collisions occur. Show that p(n,m) ≤ exp(−n(n− 1)/(2m)). Argue that when
n exceeds

√
m, the probability of avoiding collisions goes rapidly to zero.

Hint: Use exp(x) ≥ 1 + x for any real x. Note that exp(x) = ex.

Option 1. (100 points)
(a) Implement Karatsuba-Ofman for polynomials of degree bound n, or arbitrarily long n-bit integers. Collect

timing information compared to the ordinary algorithm for n = 32, 128, 512, 1024. (50 points).
(b) Implement Strassen’s algorithm for n × n matrices (i) where n is a power of 2, (ii) n is not a power of

two. Run experimental results for n = 256, n = 512 and n = 1024 and collect timing information. (50 points)
All programs to be sent to alg667@cs.njit.edu or alg467@cs.njit.edu.


