
A. V. Gerbessiotis CIS 667/CIS 467h Spring 2005
Homework 5 Apr 7, 2005 100 points

CIS 667 and CIS 467H: Homework 5(Due: Apr 21, 2005)

Problem 1. (20 points)
You are given an a-bit positive integer A and an b-bit positive integer B. You may assume A ≥ B. How fast

can you compute A+B, A−B, A ·B, and find Q,R such that A = BQ+R, 0 ≤ R < B? Express your answer
in terms of a and b and justify it by pointing to the appropriate reference or give the algorithm. You can cite
results of the notes/textbook covered in class.

Problem 2. (20 points)
(a) Fibonacci Revisited. Show that Fn can be computed in O(n2) bit operations even if n-bit multiplication

can only be done in Θ(n2) bit operations.
(b) Suppose you want to raise intefer x to the y power i.e. computer n = xy. Show that this requires O(lg2 n)

bit operations.

Problem 3. (20 points)
The prime number theorem states that the number of primes less than x is about x/ lnx. Therefore the

density of primes is 1/ lnx. In other words if we pick uniformly at random an integer z between 1 and N with
probability 1/ lnN we choose a prime number and with probability 1− 1/ lnN we choose a composite number.
Let A = Am . . . A1 be an m-bit integer. Let B = Bm . . . B1 be an m-bit integer. Then A = Am2m−1 + . . . + A1

and B = Bm2m−1 + . . .+B1.
(a) Is A ≤ 2m? Explain. Is B ≤ 2m? Explain (3 points).
(b) If p/(A−B) then show that A mod p ≡ B mod p. Then show that if A mod p ≡ B mod p, the p/(A−B).
(c) Show A or B can have at most m distinct prime divisors.
(d) Let us pick a random number prime number p between 1 and 4n2m lnn, where n > m. Show that such

a p divides A−B with probability at most O(1/n2).

Problem 4. (10 points)
In Rabin-Karp let A be the pattern P of length m and T be the text of length n.
This is a continuation of Problem 2. Choose R so that R = 4n2m ln (4n2m); R is the prime number used to

perform fingerprint computations modulo R.
(a) Show that the probability a spurious hit occurs in position i of the text is O(1/n2).
(b) Show that the probability a spurious hit occurs anywhere in the text is O(1/n).
(c) Show that the expected running time of the algorithm is O(n).

Problem 5. (20 points)
Show that the GCD computation requires O(lg a lg b) bit operations thus improving the rough O(lg3 a) bound

given in class, i.e. complete the proof of Corollary 5 of the notes.
Hint. Use Corollary 4. Be very careful in counting operations. Go through all the division steps and count

the bit operations individually and be careful not to overestimate them. Treat the first division step separately.

Problem 6. (10 points)
In Homework 4, perfect power was analyzed in the word model (one multiplication cost one operation).

Analyze the algorithm in the bit model and show that you can determine whether A is a perfect power or not in
O(lgk A) bit operations. Keep k strictly) smaller than 4. Note that you count bit operations now and the only
input you are given is A in binary.



A. V. Gerbessiotis CIS 667/CIS 467h Spring 2005
Homework 5 Apr 7, 2005 100 points

CIS 667 and CIS 467H: Homework 5(Due: Apr 21, 2005)

Option 1. (100 points)
Part A (80 points)
Implement the algorithm for the perfect power problem (see Solutions of Homework 4 also) in C or C++.However

A can be arbitrarily long (eg. 1024 or 8192 bits). You are allowed to use libraries for arbitrary precision arith-
metic as long as (a) they are for free (i.e. I can use them and install them on a linux machine to test your code)
and (b) they are easily installable (i.e. I can install them easily). Alternatively, you can implement your own
functions for auxiliary operations (eg. arbitrarily long multiplication, exponentiation, etc).

I expect as an answer a .tar file sent by email. The .tar will be untarred on a Red Hat linux workstation
and compiled through gcc. I expect a make install command to compile everything and create an executable file
named powertest. powertest will accept as input a file containing n in decimal notation.

Thus if file myfile contains a base-10 integer such as

17487686712733928413644063750880864826316326531082890839798047131393
06920507121153268532108269241880671097659463948848837902966613039193
61801624726151915125942668649508993665419986623407409256320591797254
65901781768127877188903984695217669171609482765052925389918678373962
03339268758977282743385306120289869213112851446870454351518286400633
04862801177174173384780775389699560332291136389670468588940721006781
36076427022136733286307364152390825026213339153406940132529505642288
772655703441226679871017450488469651456

then the following command should return

% powertest myfile
x= 123456 y=101
It’s a power!

within a reasonable amount of time (eg. under 60 seconds for integers as long as 8192 bits, i.e with up to
2000-3000 digits).

Part B (20 points)
For arbitrarily long numbers (refer to Part A for limitations), implement the GCD, the extended GCD (both

non-recursive), and the modular equation solving algorithm.
Part C (20 points)
For arbitrarily long integers implement the Chinese Remainder Theorem. Based on the discussion in class,

n can be arbitrarily long say up to 8192 bits, and maintain ni relatively prime and up to 32 bits each (i.e. they
can be represented by a C/C++/Java int data type). Provide operations add, subtract, multiply based on the
Chinese Remainder Theorem, as explained in class.

You can choose to do Part B or Part C or do both to collect 20 extra points.


