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Mini-Project 2 85 points

Mini Project 2: Computing π (6 pages)

Rule 1. Submit per Handout 2 guidelines, at least mp2 ABC WXYZ.m, where ABC is the section number
and WXYZ the last 4 digits of your NJIT ID. Observe capitalization. Use underscore not a dash -.
Use semicolons to SUPPRESS output. We instruct you explicitly otherwise.

Rule 2. Send an email (with subject line that includes the three words mp2 ABC WXYZ, separated with
one space, as applied to you)
(a) to the instructor alexg+cs101@njit.edu,
(b) to the grader/TA tt72+cs101@njit.edu, and
(c) to yourself, to make sure that everything went fine with the transmission of your mail.

Rule 3. It is imperative that you fully conform to Rules 1 and 2. If you deviate from these rules points
will get deducted. Observe variable names and capitalization.

Due Date: Before noon time of Tue Dec 2, 2014.

1 Part 0: Primary function (15 points)

You will create a text-based M-file named (Rule 1) mp2 ABC WXYZ.m where ABC and WXYZ are as specified
in Rule 1. Always use semicolons to suppress output.

1. First 4 lines (7 points). The first and fourth line of this M-file are going to be empty MATLAB
comment lines. The second line will contain in the form of a MATLAB comment the words MP2 (capi-
talized), your section number, and the last four digits of your id. The third line will contain in the form
of a MATLAB comment, your last name (capitalized), and then your first or other given names. Any
number of 1,2,3 spaces may be used to delimit any two of the items described.

2. (Primary) Function (8 points). The fifth line would contain the definition of the primary function
of this file. It returns no values and has only one parameter NN. You should be able to figure out what
the name of this function should be. From this point one we refer to the lines of the primary function in
step 3,4,5,8, 11 below in Parts A,B,C to follow. The 8 points assigned to this item 2 are shared among
these other items that describe primary function code. Thus ”first line” below in item 3 would refer to
the first line of the primary function after its definition: this can be written as the sixth line of the file.
Empty lines that you use won’t be counted; it’s up to you whether you want to use them or not.

3. First line of (primary) function. It uses an fprintf statement to print your last name capitalized
in a box of width 20 right justified, followed by a single space, and then one (and only one) of your other
given names in a box of width 15 right justified, followed by a single space, and then the last four digits
of your NJIT ID in a box of width 7 as a decimal integer, left-justified. The fprintf statement should
move the cursor/prompt to the next line after it does what it is supposed to do. If I were to print my
info according to this specification it would appear on screen as the last line below (the comment line is
not output and is there for your convenience to assist you in counting spaces etc.)

%2345678901234567890123456789012345678901234567890
GERBESSIOTIS Alex 1234



2 Part A: S1(n) and π (20 points)

4. Second line of (primary) function. A MATLAB subfunction mp2 part a is to be called with
argument 100; it accepts only one argument and returns no values. It is described in items 6 and 7 below.
This function computes an approximation of π (not MATLAB’s pi) by computing a finite number of
terms n of an infinite sum that converges to π2/6. Sum S1(n) is given below. The limit limn→∞ S1(n) is
π2/6.
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Subfunction mp2 part a would only compute the first n terms of the sum, i.e. S1(n) and will thus compute
an approximation to π of order n. The actions of the subfunction are described below in items 6 and 7
to follow.
5. Third, Fourth lines of (primary) function. MATLAB subfunction mp2 part a is to be called
with arguments 1000 and 10000 respectively, that is three times altogether (item 4 included).
6. Subfunction mp2 part a. This subfunction is defined inside the M-file as necessary. It has exactly
one parameter that is called n (note the case) and would return no values to the calling program. It
works by performing a sequence of side effects.
7. Subfunction code. Use a variable v1 to compute and store the result S1(n). The computation of
S1(n) will be realized using array operations and neither for loops nor while loops. For this generate in
variables named v1a, v1b, ... the following

7.1 A vector 1, 2, . . . , n into v1a,

7.2 then square the elements of v1a to obtain 12, 22, . . . , n2, and

7.3 then invert those elements to obtain the terms of S1(n), followed

7.4 by a sum operation to obtain S1(n) that will then be stored into v1.

As soon as variable v1 holds S1(n), use an fprintf statement to print n and through v1 an approximation
to pi. The argument value of parameter n would be printed as a decimal integer of length 8 left-justified,
starting from the left margin of the available output line (make sure that previous fprintf statements
moved to a new line), followed by a single space, followed by the approximation of pi as computed
through variable v1. The latter approximation would be printed as a floating point number of total
width 9 and with 4 decimal digits, right justified. If i were to print n = 50 as specified and 3.123456 with
5 and not 4 decimal digits the result might look like. (Beware of the difference between this output and
the stated for part 7.)

%2345678901234567890123456789012345678901234567890
50 3.12346

Subsequently the subfunction terminates its execution. (Again note that v1 as soon as the execution of
7.4 completes does not hold an approximation to pi but of S1(n). It’s your responsibility to compute an
approximation of pi from that value. Minimize the number of additional variables used! The fewer the
better.)



3 Part B: More to come (20 points)

In item 5 above we had stopped after the fourth line of the primary function. We go on adding code to
that primary function.
8. Lines 5,6,7 of (primary) function. These three lines would call a second subfunction named
mp2 part b with argument values 100, 1000, 10000 respectively, one call per line used. This subfunction
computes S2(n), where
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is an approximation to pi4/90 i.e. the limit limn→∞ S2(n) is π4/90.
9. Subfunction mp2 part b. This subfunction is defined inside the M-file as necessary and after the
complete definition of the previous subfunction. It has exactly one parameter that is called n and would
return no values to the calling program. It works by performing a sequence of side effects.
10. Subfunction code. Use a variable v1 to compute and store the result S2(n). The computation of
S2(n) will be realized using array operations and neither for loops nor while loops. See step 7 before for
something similar for S1(n). Towards this generate

10.1 a vector 1, 2, . . . , n into v1a,

10.2 then quadruple the elements of v1a to obtain 14, 24, . . . , n4, and

10.3 then invert those elements to obtain the terms of S2(n), followed

10.4 by a sum operation to obtain S2(n) that will then be stored into v1.

As soon as variable v1 holds S2(n), use an fprintf statement to print n and through v1 an approximation
to pi. The argument value of parameter n would be printed as a decimal integer of length 8 left-justified,
starting from the left margin of the available output line (make sure that previous fprintf statements
moved to a new line), followed by a single space, followed by the approximation of pi as computed
through variable v1. The latter approximation would be printed as a floating point number of total
width 9 and with 4 decimal digits, right justified. Subsequently the subfunction terminates its execution.



4 Part C: Monte carlo approximation to π (30 points)

In Figure 1 we have a circle C with center coordinates (1/2, 1/2) of radius 1/2 inscribed into a square S of
side 1. The area of the square As is As = 1×1 = 1 and the area Ac of the circle is Ac = π× (1/2)2 = π/4.
The ratio of the area of the circle over the area of the square is Ac/As = (π/4)/1 = π/4; then 4Ac/As = π.
From now on we call this fraction 4Ac/As the magic number M i.e.
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Figure 1: Inscribed circle (of radius 1/2) of a 1× 1 square

A Monte-Carlo computation of π involves generating Ns = N random points within square S and
then counting how many of them fall within the inscribed circle C. The argument is that the number
of points Nc within the circle, and the number of points N inside the square will be proportional to the
corresponding areas Ac and As. Thus Nc/Ns = Nc/N ≈ Ac/As = π/4 and thus 4Nc/N ≈ π. Thus
estimating π is reduced to the problem of (generating) points within square S and then counting points
within circle C. We can describe this process in terms of the following steps.

Step 1. We generate N points pk, 1 ≤ k ≤ N , randomly so that they lie within S. Each point
pk = (xk, yk) will have coordinates xk, yk such that 0 ≤ xk, yk ≤ 1 since the square is of side 1 and its end
points in the coordinate system are (0, 0), (0, 1), (1, 1), (1, 0).

Step 2. For every such random square point pk that will be generated, we then check whether it also lies
within circle C. If the point lies on or is inside the circle we account for it separately using a counter C
that counts how many points lie on or inside the circle, among the points of the square. Thus the value
of C is the value of Nc and C = Nc ≤ N .

Step 3. After all N points are generated and inspected we obtain the ratio 4 ∗ C/N . This becomes an
estimate of the magic number M i.e. of π.

I. How to check whether pk lies in/on circle (x = 1/2, y = 1/2, r = 1/2).

Say we have generated a point within the square (with the help of MATLAB) and let that point be
pk = (xk, yk). We then check whether that point lies within the circle. We can check whether this is so by



considering the distance between pk and the center of the circle that has coordinates (x = 1/2, y = 1/2).
If this distance is 1/2, then the point lies on the circle. If the distance is less than 1/2 it lies inside, and
if it is greater it lies outside the circle. Note that pk by default (we started the paragraph with a Say) is
a square point and thus it lies within S in all three cases. The distance check is easy to perform. Let dk

be the distance of pk from the center of the circle. Then dk is given by

dk =
√

(xk − 1/2)2 + (yk − 1/2)2

Thus depending on whether dk is less than or equal to 1/2, we increment C as needed.
II. Estimating π from C and N is easy: 4 ∗ C/N is an estimate of M and π!
III. MATLAB logistics: random numbers and other things.
Function rand generates random numbers in MATLAB. In fact a single call to rand or rand() returns a
single “random” real number in the interval (0, 1). Thus calling rand twice, once for xk and once for yk,
one could potentially generate a random point of the unit-square S.

In item 8 of Part B we had stopped after the seventh line of the primary function described in this
mini-project. We go on adding more lines to this primary function.
11. Lines 8,9, 10 of (primary) function. These three lines would call a third subfunction named
mp2 part c with argument values 10000, 1000000, NN respectively, one call per line used. This subfunction
computes an N approximation to M and to π itself. (Note that now we use N and not n for this part. If
the appearance of an NN confuses you, it has to do with primary function; read items 1-3 more carefully.)
12. Subfunction mp2 part c. This subfunction is defined inside the M-file as necessary and after the
previous subfunctions. It has exactly one parameter that is called N and would return no values to the
calling program. It works by performing a sequence of side effects.
13. Subfunction code. You are free to use array operations, for or while loops and any additional
variables you may wish to use. But make sure that your code works and is not slow!! The input parameter
should be named N , and two auxiliary variables inside it C,M would work as specified earlier. Minimally,
your code will

13.1 generate N points with coordinates (xk, yk) that fall inside the unit square, then

13.2 it would count into C the number of these points that fall into or onto the unit circle, and

13.3 then compute the value of M to provides an N -approximation to π.

As soon as variable M holds its value, use an fprintf statement to print the relevant information as before.
The argument value of parameterN would be printed as a decimal integer of length 8 left-justified, starting
from the left margin of the available output line (make sure that previous fprintf statements moved to a
new line), followed by a single space, followed by the approximation of pi as computed through variable
M. The latter approximation would be printed as a floating point number of total width 9 and with 4
decimal digits, right justified. Subsequently the subfunction terminates its execution.
14. Line 11 of (primary) function. It becomes the last line to terminate the primary function. This
is the end of it and of this mini project.



5 Part D: Grading

Of the 85 points of the assigment

• 9,9,15 points are assigned to the correct formulation of the fprintf statements, in Parts A, B, and
C respectively,

• of the extra 10 points of Part C (30 points instead of 20 points for Part A and Part B) all of them
are assigned to an implementation that is efficient and is able to handle gracefully problem sizes of
NN= 10000000 or more (line 10 of primary function in item 11 above).

Note 1. If you do not suppress the output, or your code print something else that is not specified in
the 4 fprintf statements of this assignment you will be losing 10pts for every piece of unspecified output.
Likewise for variable, parameter names as explicitly specified.

Note 2. In order to call the primary function you need to bind its parameter to an argument
value. You might choose one of the 10000 and 1000000 used in lines 8,9. If you feel confident with your
implementation use the value for NN that the grader will be using to determine whether you get the 10
extra points of Part C: 10 milliion i.e. NN=10000000.


