Name: \qquad

ID Number: \qquad Exam Number: Grade: 1: ... 2: ... 3: ... 4: ... 5: ... 6: ... 7: ... 8: ... 9: ... Total:

Solve ALL the problems in the space provided
 Read the Problems CAREFULLY!

There are 6 (SIX) Pages This page included

In the exam, the following matrices MAY be used. Do not get puzzled if a reference to matrix X, Y or Z or etc arises! No problem modifies X, Y, Z, R, S in a way that missing that problem would change the answer of any other problem of the exam.

If you are asked to evaluate a MATLAB expression, and you think the result would generate an ERROR because a variable is undefined you could write ERROR instead of giving an answer. For example five $==5$ generates an ERROR since variable five is never defined anywhere in the exam.

$$
X=\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
$$

Problem 1. (60 points)
Give short answers to the following questions.
(1) How many bytes in 2 KiB ?
(2) What is an 1Kib?
(3) How many bytes is a MATLAB int32 ?
(4) How many bytes is a MATLAB char ?
(5) How many bytes is a MATLAB logical?
(6) What is the range of values for uint8 in MATLAB? (give number of values,lowest and highest value in the range.)
(7) What is array element $Y(e n d-1$, end -1$)$?
(8) What is array element $X($ end -3$)$?
(9) Represent decimal (i.e. base-10) integer 40 in hexadecimal.
(10) How many bits in a byte nowadays?
(11) How much is $i * i * i * i$ in MATLAB?
(12) Represent decimal (i.e. base-10) integer 40 in 8-bit binary.

Problem 2. (30 Points)
What is the value, Size (i.e geometry/shape), number of Bytes, and the Class (i.e. data type) of variables $\mathrm{p} 2 \mathrm{a}, \mathrm{p} 2 \mathrm{~b}, \mathrm{p} 2 \mathrm{c}, \mathrm{p} 2 \mathrm{~d}, \mathrm{p} 2 \mathrm{e}, \mathrm{p} 2 \mathrm{f}$, as needed for the MATLAB program below.

```
>> clear
>> p2a = 5 == 5 == 5;
>> p2a
>> whos p2a %p2a= ............ Size ... x ... Bytes ...... Class .........
>> p2b = int32(5*5-5);
>> p2b
>> whos p2b %p2b= ........... Size ... x ... Bytes ...... Class ..........
>> p2c = 5 > 5 + 5;
>> p2c
>> whos p2c %p2c= ........... Size ... x ... Bytes ...... Class
>> p2d = 5&5+5;
>> p2d
>> whos p2d %p2d= ........... Size ... x ... Bytes ...... Class .........
>> p2e = 12:-2:1;
>> p2e
>> whos p2e %p2e= ............ Size ... x ... Bytes ...... Class .........
>> p2f = R*S;
>> p2f
>> whos p2f %p2f= ........... Size ... x ... Bytes ...... Class .........
```

This is the end of page 2 containing Problems 1 and 2. Turn page.

Problem 3. (90 Points)
Evaluate the following MATLAB expressions.
(example) $z=\operatorname{ones}(2) \quad$ Answer $z=\left[\begin{array}{lll}1 & 1 ; 1 & 1\end{array}\right]$.

```
>> clear;
>> p3a = 2:2:11
>> p3a
>> p3b = size(Y);
>> p3b
>> p3c =length(Y);
>> p3c
>> p3d = 2*eye(3)+4*ones(3)-2;
>> p3d
>> p3e = sum(Y);
>> p3e
>> p3f = diag(Y);
>> p3f
>> p3g = X(1:3, 2:end);
>> p3g
>> p3h = X .* transpose(X);
>> p3h
>> p3i = diag(diag(Y));
>> p3i
```

Problem 4. (24 POINTS)
(a) List the elements of X in column-major order/filin/form.
(b) List the elements of X in row-major order/filin/form.

This is the end of page 3 containing Problems 3 and 4 . Turn page.

Problem 5. (36 POINTS)
(a) Write MATLAB code that copies matrix X into matrix B.

Then, write MATLAB code that uses the colon operator and extracts/prints
(b) the third row of B,
(c) the second column of B, and
(d) deletes from B its first row
(e) prints X in column major form in the form of a column,
(f) that defines row vector $[1,8,27,64,125, \ldots, 1000]$ in as short a way as possible (fewer than 15 characters).
(a)
(b) \qquad
(c) \qquad
(d) \qquad
(e) \qquad
(f) \qquad

Problem 6. (36 POINTS)
What is the value of $\mathrm{p} 6 \mathrm{a}, \mathrm{p} 6 \mathrm{~b}, \mathrm{p} 6 \mathrm{c}, \mathrm{p} 6 \mathrm{~d}, \mathrm{p} 6 \mathrm{e}, \mathrm{p} 6 \mathrm{f}$ after the execution of the following code?

```
>> p6a=10;
>> p6b=15;
>> p6c=20;
>> p6c=p6a;
>> p6a=p6b;
>> p6b=p6c;
>> p6a % p6a = ..................
>> p6b
>> p6c % p6c = ..................
>> p6d=10;p6e=15; p6f=25;
>> p6d= p6d+p6e+p6f;
>> p6e= p6d+p6f;
>> p6f= p6d+p6e+p6f;
>> p6d
>> p6e
>> p6f
```

```
% p6b = ..................
```

% p6b =
p6d % p6d =
p6e % p6e =
p6f % p6f =

```

This is the end of page 4 containing Problems 5 and 6. Turn page.

Problem 7. (24 points)
The sum is approximately equal to \(\ln n\) up to an additive constant \(\gamma\) that is known as Euler's constant.
\[
S(n)=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k} \approx \ln n+\gamma
\]

We are interested in finding the value of \(\gamma\). An n-term approximation of \(\gamma\) is \(c(n)\) which is \(S(n)-\ln n\).
\[
c(n)=\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}\right)-\ln n
\]

Then \(\lim _{n \rightarrow \infty} c(n)=\gamma\). Use the formula for \(c(n)\) to compute in MATLAB an approximation to \(\gamma\) using array operations. Fill the lines missing or are otherwise incomplete.
\begin{tabular}{|c|c|c|}
\hline \% Compute & pproximation to order \(n\) & Comment Line 1 \\
\hline \(\mathrm{n}=\) input & of approximation ' ); & \% Line 2 \\
\hline \(\mathrm{a}=\) & ; & \% Line 3 \\
\hline \(\mathrm{a}=\) & ; & \% Line 4 \\
\hline \(\mathrm{a}=\operatorname{sum}(\mathrm{a})\) & ; & \% Line 5 \\
\hline \(\mathrm{c}=\) & ; & \% Line 6 \\
\hline disp(c) & ; & \% Line 7 \\
\hline
\end{tabular}

Problem 8. (30 POINTS)
(a) Use the colon operator to create row vector variable p8a such that
\[
\mathrm{p} 8 \mathrm{a}=\left[\begin{array}{llllllll}
25 & 21 & 17 & 13 & 9 & 5 & 1 & -3
\end{array}\right] .
\]
(b) Create a MATLAB variable p8b that computes using MATLAB functions the number of 2 s of matrix \(3 *\) ones \((400,400)+2 *\) eye (400) -1 .
(c) Create matrix variable p8c such that it is a \(5 \times 5\) matrix of the numbers from 1 to 25 in column major order as shown below. (You may not use more than two times the colon operator.)
\[
\mathrm{p} 8 \mathrm{c}=\left[\begin{array}{cccc}
1 & 6 & \ldots & 21 \\
2 & 7 & \ldots & 22 \\
3 & 8 & \ldots & 23 \\
4 & 9 & \ldots & 24 \\
5 & 10 & \ldots & 25
\end{array}\right]
\]

Problem 9. ( 15 Points)
A matrix \(a\) is given. We want to create \(b\) from \(a\) as follows. Provide array operations to achieve this.
\[
b(i, j)=\left\{\begin{array}{lr}
a(i, j) & \text { if } a(i, j)>10 \\
-10 & \text { if } a(i, j)==10 \\
+20 & \text { if } a(i, j)<10
\end{array}\right.
\]

\footnotetext{
>>
\(\gg\)
>>
\(\gg\)
>>
\(\gg\)
}

This is the end of page 5 containing Problems 7-9. Turn page.
\[
X=\left[\begin{array}{lll}
2 & 1 & 2 \\
2 & 1 & 2 \\
1 & 0 & 1
\end{array}\right], Y=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right], Z=\left[\begin{array}{llll}
1 & 2 & 1 & 2
\end{array}\right], R=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], S=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]
\]

This is the last page (Page 6) of the exam.
Intentionally left blank. Copies of front-page matrices included You may tear-off this last page and use it as scratch paper; do not turn IT in```

